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Robust quantum optimal control for Markovian quantum systems
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Resisting diverse noise effects is crucial for the accurate manipulation of quantum systems. For static or
slowly varying noises, many efficient noise mitigation strategies have been developed, such as composite pulses
and dynamical decoupling. However, for fast fluctuating noise in the Markovian limit, whether and to what
extent coherent quantum control can enhance quantum engineering tasks remains unclear and less explored.
Here, we propose a robust quantum optimal control method to tackle Markovian noises. The basic idea is that,
regarding the Markovian noise channel as perturbation, we quantitatively characterize the noise-induced error
evolution by the perturbative expansion term, and then take them as the objective functions to be suppressed.
During optimization, the optimal controls are obtained by maximizing the control target function and meanwhile
minimizing the perturbative terms due to Markovian noise order by order. As demonstration examples, we
first apply our method to quantum state transfer tasks on two-level and three-level � systems, then use it to
design quantum gates in two-level and three-level ladder systems, all under Markovian noises. The simulation
results illustrate that our method can notably enhance quantum state transfer fidelities and have very limited
improvement on gate fidelities. The method presented here is versatile and can be extended to enhance the
performance of various control tasks under Markovian noise in multilevel or multiqubit quantum systems.
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I. INTRODUCTION

Precisely manipulating quantum systems is essential for
the realization of various quantum technologies [1]. How-
ever, quantum systems are fragile and easily affected by
a variety of noises. Over the past several decades, numer-
ous effective methods, such as composite pulses [2–4] and
robust quantum control [5–8], have been successfully demon-
strated to enhance control performance, typically operating
under the assumption that the considered noise is quasistatic.
This assumption is not universally valid, as noise can un-
dergo temporal changes in many quantum systems [9]. To
date, tremendous experiments have unveiled time-correlated
features of noises across various qubit platforms, including
superconducting circuits [10,11], spin defects [12,13], and
ion traps [14,15]. For slowly varying noises, there also have
existed several notable suppression techniques, including dy-
namical decoupling [16–18] and methods under the filter
function formalism [19–21]. On the contrary, for fast vary-
ing noises, the investigation into how quantum control can
enhance the performance of typical engineering tasks, and to
what extent, represents a less-explored area.

Resisting fast fluctuating noise is usually highly challeng-
ing due to its distinct features. Typically, the correlation time
of fast fluctuating noise is much shorter than the timescale
of system dynamics; hence, the Markovian approximation is
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applicable [22]. In this scenario, the system dynamics can be
effectively described by the Lindblad equation [23,24]. How-
ever, the memoryless nature of Markovian systems makes
it challenging to recover information leaked into the en-
vironment [25]. This implies that coherent controls cannot
easily undo the Markovian noise effects [26], as observed in
the static or slowly varying case. Extensive research efforts
have aimed to mitigate Markovian noise through quantum
optimal control [27–31]. While this approach offers flexi-
bility in addressing various control targets and constraints,
the achieved improvements are often limited and come at
the expense of significant computational resources. Quan-
tum error correction is routinely designed to mitigate the
impact of Markovian noise, yet it requires a substantial
number of physical qubits and additional extensive quantum
operations below the precision threshold [32–34]. Another
commonly employed technique for mitigating Markovian
noise involves decoherence-free subspaces [35–37], provided
that the system-bath interaction exhibits a symmetry, but a
suitable symmetry is not always present. Additionally, the
controllability and reachable sets for Markovian systems are
not fully understood [38–41]. Hence, there is an ongoing
need to develop practical control methods to resist Markovian
noises.

In this work, we introduce a robust quantum optimal con-
trol method specifically designed to address Markovian noise
in common quantum control tasks. The crucial distinction
from conventional quantum optimal control methods lies in
the incorporation of robustness to the considered Marko-
vian noise into the control target function. This robustness is
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effectively quantified by employing the concept of directional
derivatives introduced in Ref. [42], which measures the vari-
ation in the time-evolution operator due to noise perturbation.
Moreover, these directional derivatives can be conveniently
calculated using the Van Loan integral formula [43]. Together
with the primary control target, such as quantum state or gate
fidelity, we address this multiobjective optimization problem
using the widely employed gradient ascent pulse engineering
(GRAPE) algorithm [44]. As a demonstration, we assess the
performance of the proposed robust quantum optimal control
method in quantum state transfer and quantum gate prepa-
ration tasks under Markovian noise for both two-level and
three-level systems. In particular, for state transfer in a three-
level � system, we compare our method with the conventional
stimulated Raman adiabatic passage (STIRAP) pulses [45].
Additionally, for gate preparation in a three-level ladder sys-
tem, our method is compared with the conventional GRAPE
algorithm, both starting from the derivative removal by adi-
abatic gate (DRAG) pulse [46]. The numerical simulations
indicate that our method can significantly improve the perfor-
mance of quantum state transfer in the presence of Markovian
noise, while having little impact on gate fidelity. The under-
lying reason can be explained as follows: It is comparatively
easier to find a specific robust evolutionary trajectory for state
transfer than to maintain robustness across the entire space for
a quantum gate, as the latter involves more constraints. The
proposed method presented here is general and can be readily
extended to address Markovian noises in other control tasks
or in multiqubit and multilevel quantum systems.

II. METHODOLOGY

We consider the task of designing robust controls to miti-
gate the Markovian noise effects in common control scenarios.
In the following, we introduce our robust quantum optimal
control method.

A. Description of Markovian dynamics

In many quantum systems, the interacting environments
can be assumed to be large and memoryless, thereby val-
idating the use of Markovian approximation [47,48]. The
dynamics of a Markovian quantum system can be described
by the master equation in Lindblad form [23], i.e.,

ρ̇ = −i[H (t ), ρ] + R̂ρ, (1)

where ρ is the system density matrix, H (t ) represents the
noiseless Hamiltonian, R̂ is the dissipative superoperator that
characterizes the Markovian noises, and [A, B] = AB − BA
denotes the commutator. Precisely, the superoperator R̂ has
a general form

R̂ρ =
∑

α

�α

(
LαρL†

α − 1

2
{L†

αLα, ρ}
)

, (2)

where the subscript α signifies the αth noise channel, Lα is the
Lindblad operator modeling the effect of the αth noise, �α is
the corresponding dissipative rate, and {A, B} = AB + BA is
the anticommutator. Under control, the noiseless Hamiltonian
can generally be written as H (t ) = HS + ∑

l ul (t )Hl
C , where

HS and Hl
C are the system Hamiltonian and the lth control

Hamiltonian, respectively, and ul (t ) is the corresponding con-
trol amplitude with respect to Hl

C .
For the sake of convenience, we move to the Bloch vector

representation [40,49] by introducing an orthogonal and com-
plete basis set B = {Bk}N2−1

k=0 , where Tr(BkBj )/N = δk j, k, j =
0, . . . , N2 − 1 with N the system dimension. For example,
the basis set for two-level systems can be formed through the
products of the Pauli matrices, and for three-level systems, it
can be derived from the Gell-Mann matrices. Then, we can
rewrite Eq. (1) as

ṙ =
(

H(t ) +
∑

α

�αLα

)
r, (3)

where r = (r0, . . . , rk, . . . , rN2−1)T represents the state vector
with rk = Tr(ρBk )/N , and the elements of H(t ) and Lα can be
expressed as

Hk j = Tr(iH (t )[Bk, Bj]), (4)

Lα
k j = Tr(L†

αBkLαBj ) − 1
2 Tr(L†

αLα{Bk, Bj}). (5)

The solution of the linear matrix differential equation in
Eq. (3) can then be formulated as the following form

r(t ) = T exp

(∫ t

0
dt1[H(t1) +

∑
α

�αLα]

)
r(0), (6)

where T is the time-ordering operator. In this way, we can
more easily calculate the controlled system’s dynamic evo-
lution under Markovian noise determined by the dissipative
terms {Lα}.

B. Perturbative analysis of Markovian noise

As described in Eq. (6), the total time-evolution operator
can be written as

V (t ) = T exp

(∫ t

0
dt1[H(t1) +

∑
α

�αLα]

)
. (7)

To conveniently analyze the Markovian noise effects, we first
move to the toggling frame, where the frame transformation
operator is defined as

Vtog(t ) = T exp

(∫ t

0
dt1

∑
α

�αL̃α (t1)

)
. (8)

Here, L̃α (t ) ≡ U †(t )LαU (t ), and U (t ) is the noiseless evolu-
tion, i.e.,

U (t ) = T exp

(∫ t

0
dt1H(t1)

)
. (9)

Based on these definitions, it holds that

V (t ) = U (t )Vtog(t ), (10)
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which means that the noise effects can be separated out from
the overall evolution. We remind that all these operators are
N2-dimensional matrices. Subsequently, we assume that �α is
small, thus the total evolution operator V (t ) can be perturba-
tively expanded using the Dyson series [50], i.e.,

V (t ) = U (t )

⎛⎝1 +
∑

α

∫ t

0
dt1�αL̃α (t1)

+
∑
α,β

∫ t

0
dt1

∫ t1

0
dt2�α�βL̃α (t1)L̃β (t2) + · · ·

⎞⎠.

In general, the noise effects can be alleviated by system-
atically reducing these perturbative terms, order by order.
Several studies have been dedicated to mitigating the noise
effects by analytically minimizing the lower orders of the
perturbative terms [6,51]. Nevertheless, handling higher-order
perturbations and multiple types of noises becomes chal-
lenging due to the increased complexity involved in the
analysis.

To efficiently quantify and minimize the perturbative
terms, we adopt the concept of directional derivatives [42],
which are defined as the derivatives of V (t ) with respect to �α

at �α = 0. For example, the first-order and the second-order
directional derivatives can be defined as

D(1)
U (Lα ) ≡ dV (t )

d�α

∣∣∣∣
�α=0

= U (t )
∫ t

0
dt1L̃α (t1) (11)

and

D(2)
U (Lα, Lβ ) ≡ d2V (t )

d�αd�β

∣∣∣∣
�α=�β=0

= 2U (t )
∫ t

0
dt1

∫ t1

0
dt2L̃α (t1)L̃β (t2), (12)

respectively. The higher-order directional derivatives can be
derived in a similar way. Now, we can easily quantify the
deviation of a system’s evolution from its ideal trajectory
caused by the presence of noise. However, it is resource-
consuming to directly calculate the multiple-fold integral in
the above expressions of the directional derivatives. Fortu-
nately, as Ref. [42] pointed out, this issue can be effectively
addressed by constructing the following Van Loan differential
equation [43]

V̇ (t ) = G(t )V (t ), V (0) = 1, (13)

where G(t ) represents a block matrix comprising n types
of Markovian noises described by the dissipative operators
Lα, Lβ, . . . , Lγ , i.e.,

G(t ) =

⎛⎜⎜⎜⎜⎜⎜⎝

H(t ) Lα 0 . . . 0

0 H(t ) Lβ . . . 0
...

...
...

. . .
...

0 0 0 . . . Lγ

0 0 0 . . . H(t )

⎞⎟⎟⎟⎟⎟⎟⎠. (14)

According to the Van Loan integral formula [42,43], the solu-
tion of Eq. (13) can be expressed as

V (t ) = T exp

(∫ t

0
G(t1)dt

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

U (t ) D(1)
U (Lα )(t ) D(2)

U (Lα, Lβ )(t ) . . . D(n)
U (Lα, Lβ . . . , Lγ )(t )

0 U (t ) D(1)
U (Lβ )(t ) . . . D(n−1)

U (Lβ, . . . , Lγ )(t )
...

...
...

. . .
...

0 0 0 . . . D(1)
U (Lγ )(t )

0 0 0 . . . U (t )

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

As such, we can conveniently extract the directional deriva-
tives from the off-diagonal elements of V (t ) shown in
Eq. (15).

C. Procedure of the robust quantum optimal control

Now we can minimize the directional derivatives to reduce
the noise effects with the help of robust optimal control. We
first specify a primary target function f0(u) for the control task
of consideration, such as quantum state or gate preparation.
For example, Let U (T ) denote the noise free time-evolution
operator at the final time t = T , the state fidelity in the Bloch
representation can be expressed as

f0,state(u) = NrT
tarU (T )r(0), (16)

where rtar represents the target state vector, the superscript “T”
denotes the transpose operation. The average gate fidelity is

defined as

f0,gate(u) =
∑

j (Utarv j )TU (T )v j + N2

N2(N + 1)
, (17)

where v j/
√

N forms an orthonormal operator basis for an N-
dimensional system in the Bloch representation [52]. f0,gate

can be simplified as

f0,gate(u) = 1

3

∑
j=±x,±y,±z

(Utarr j )
TU (T )r j, (18)

where r±x = [ 1
2 ,± 1

2 , 0, 0]T, r±y = [ 1
2 , 0,± 1

2 , 0]T, and r±z =
[ 1

2 , 0, 0,± 1
2 ]T are six axial states on the Bloch sphere [53],

and Utar is the target gate in the Bloch representation. This
expression can also be extended to the average gate fidelity
of two-dimensional subspace in a three-level system [46]. We
then define an additional cost function to assess the magni-
tude of directional derivatives, aimed at assigning robustness
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ALGORITHM 1. Van Loan GRAPE algorithm.

Input: Target gate Utar or state rtar

Lindblad operators {Lα, Lβ, . . . , Lγ }
Weighting coefficients {wn

α,β,...,γ }
Set tolerance ε0

Set step length χ

Output: Control parameters uk
l

1: Initialization: Guess initial controls uk
l

2: Evolution: �M
k=1 exp{τHk}

3: Cost function: f (u) = − f0(u) + f1(u)
4: while f (u) � ε0 do
5: Calculate gradient ∂ f

∂uk
l

= − ∂ f0
∂uk

l
+ ∂ f1

∂uk
l

6: Update: uk
l ← uk

l − χ
∂ f
∂uk

l

7: Evolution: �M
k=1 exp{τHk}

8: Cost function: f (u) = − f0(u) + f1(u)
9: end while

requirements, i.e.,

f1(u) =
∑

n

∑
α,β,...,γ

wn
α,β,...,γ

∥∥D(n)
U (Lα, Lβ, . . . , Lγ )

∥∥, (19)

where ‖ · ‖ denotes the Frobenius norm, and wn
α,β,...,γ are

some carefully chosen weighting coefficients. Overall, this
is a multiobjective optimization problem, and the total cost
function to be minimized can be expressed as

f (u) = − f0(u) + f1(u). (20)

Various optimization algorithms can be chosen to optimize
the control fields u for minimizing f (u). Here, we employ
the popular GRAPE algorithm [44]. Specifically, the overall
evolution time T is divided into M equal steps, each with
a duration of τ = T/M and a constant amplitude uk

l , k =
1, 2, . . . , M. The gradients of the cost function f (u) with
respect to u are analytically derived for updating the controls
(see Appendix A for details). With employing the Van Loan
integral formula to conveniently acquire directional deriva-
tives within the GRAPE algorithm procedure, we refer to
the overall algorithm as Van Loan GRAPE. The algorithmic
pseudocode is presented in Algorithm 1.

III. QUANTUM STATE TRANSFER
UNDER MARKOVIAN NOISE

In the following, we employ the introduced robust optimal
control method to reduce the influence of Markovian noise in
the context of quantum state transfer tasks.

A. Two-level system

We begin by considering the task of robust state transfer
for two-level systems in the presence of Markovian noise.
The Hamiltonian of a two-level quantum system in the inter-
action frame, with respect to the drive frequency ω1, can be
written as

H (t ) = δ

2
σz + ux(t )

2
σx + uy(t )

2
σy, (21)

where δ = ω0 − ω1 denotes the detuning of the transi-
tion frequency ω0 with respect to the drive frequency,

σα (α = x, y, z) represents Pauli matrix, and ux(t ) and uy(t )
are time-dependent transverse control fields. The unitary evo-
lution part can be described using the Pauli basis within the
Bloch representation, i.e.,

H(t ) =

⎛⎜⎜⎜⎜⎝
0 0 0 0

0 0 −δ uy(t )

0 δ 0 −ux(t )

0 −uy(t ) ux(t ) 0

⎞⎟⎟⎟⎟⎠. (22)

Without loss of generality, we assume that the drive frequency
is resonant with the transition frequency, i.e., δ = 0. For the
dissipative part, we consider the coexistence of amplitude
damping and phase damping, thus their Lindblad operators
read [54]

L1 = σ+ =
(

0 1

0 0

)
, L2 = σz =

(
1 0

0 −1

)
. (23)

As described above, these operators can be expressed in the
Bloch representation, namely,

L1 =

⎛⎜⎜⎜⎜⎝
0 0 0 0

0 − 1
2 0 0

0 0 − 1
2 0

1 0 0 −1

⎞⎟⎟⎟⎟⎠,

L2 =

⎛⎜⎜⎜⎝
0 0 0 0

0 −2 0 0

0 0 −2 0

0 0 0 0

⎞⎟⎟⎟⎠. (24)

By incorporating Eqs. (22) and (24) into Eq. (3), the system’s
evolution function is effectively established within the Bloch
representation. We then follow the procedures introduced in
Secs. II B and II C to search optimal controls for realizing
robust state transfer under the considered Markovian noises.

As demonstration, we consider the problem of quantum
state transfer from state polarized in the −y direction (r−y =
[1/2, 0,−1/2, 0]) to the y direction (ry = [1/2, 0, 1/2, 0]).
By restricting the maximum Rabi frequency to �max =
50×2π MHz, a straightforward strategy is simply to apply
a rectangular pulse along the x axis, with an amplitude of
�max and a duration of π/�max, i.e., ux(t ) = �max, uy(t ) = 0,
as depicted in Fig. 1(a). Using optimal control, the robust
pulse found is depicted in Fig. 1(c), where we constrained√

u2
x (t ) + u2

y (t ) � �max to ensure a fair comparison. It is evi-

dent that the optimal pulse corresponds to a π rotation along
the −x axis. To compare the robustness between these two
pulses, we compute the state transfer fidelities for various
values of the dissipative rates �1 and �2, as presented in
Figs. 1(b) and 1(d). The significant enhancement in robust-
ness against the two considered Markovian noises is clearly
observed when employing our optimal pulse. Particularly, for
amplitude damping quantified by �1, our optimal pulse ex-
hibits notably stronger robustness compared to the first pulse.

To understand the reason behind the improved robustness
of our optimal pulse, we depict the evolution trajectories
corresponding to these two pulses in the Bloch sphere for
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(a)

(c) (d)

(b) (e)

FIG. 1. Quantum state transfer from r−y = [1/2, 0, −1/2, 0] to ry = [1/2, 0, 1/2, 0] in a Markovian two-level system. (a), (c) demonstrate
two π pulses that can implement perfect state transfer in the absence of noise, one rotating about the x axis, the other about the −x axis. The
considered Markovian noise can lead to different influences on these two evolution trajectories. Our algorithm yields the latter pulse with more
robustness, thus demonstrating its ability to find the robust pulse. Here the number of optimized steps M = 40, and the maximal number of
iterations is 80. (b), (d) show the state transfer fidelities in the presence of amplitude damping (�1) and phase damping (�2), which correspond
to the evolution under pulses in (a) and (c), respectively. (e) plots their resulting evolution trajectories within the Bloch sphere. The gray
ellipsoid is obtained according to Eq. (25) with �2 = 0, within which the Markovian noise helps to recover the purity of quantum states.

�1 = �2 = �max/10 [55]; see Fig. 1(e). While both the resul-
tant final states are polarized along the target direction (y axis),
the polarization of the state controlled by the first pulse (blue
dots) decays more severely compared to that of the optimized
one (red dots). This leads to a state transfer fidelity of 0.71,
while using the optimized pulse we can improve to 0.87. The
underlying reason can be explained through an analysis of the
Markovian evolution under the control. We use the system pu-
rity function to study the impact from noise, which is defined
as p ≡ Tr(ρ2). For convenience, we express the quantum
state as r = [1/2, x, y, z]T with −1/2 � x, y, z � 1/2. Thus,
we have p = 2rTr, and its derivative with respect to time
is ṗ = 2(ṙTr + rTṙ). By substituting Eq. (3) into ṗ = 0, we
obtain (

�1

2
+ 2�2

)
(x2 + y2) − �1

(
1

2
− z

)
z = 0, (25)

which forms an ellipsoid. This ellipsoid, as shown in the Bloch
sphere in Fig. 1(e), clearly separates the Bloch sphere into
two parts. For quantum states outside the ellipsoid, ṗ < 0,
indicating that purity is about to decrease. Conversely, states
inside the ellipsoid will gain purity. The intrinsic reason for
the robustness of our Van Loan GRAPE method is that the
evolved state under our optimized pulses traverses this ellip-
soid, allowing it to recover some of the lost purity.

B. Three-level � system

Now, we apply our method to enhance the efficiency of
state transfer in three-level � systems under the influence of
Markovian noise. Specifically, we consider state transfer from
the initially populated state |0〉 to the target state |2〉, as shown

in Fig. 2(a). Usually, this is accomplished using the technique
of stimulated Raman adiabatic passage (STIRAP) [56–59],
which adiabatically transfers the population from |0〉 to |2〉
by coupling the intermediate state |1〉 through two pulsed
fields: pump and Stokes. During STIRAP, the population be-
comes confined in a dark state created by the two-photon
resonance between states |0〉 and |2〉, without involving the
intermediate state |1〉 [60]. This is remarkable since it means
that STIRAP is robust to the relaxation of state |1〉. However,
its effectiveness is constrained due to the significant impact
of decoherence on the timescale prescribed by the adiabatic
theorem [61,62]. To address this problem, one can design
shorter control pulses to achieve the wanted population trans-
fer. However, in this scenario, the spontaneous emissions from
the intermediate state will have noticeable impacts [60,63].
In the following, we describe how our robust optimal control
method can design robust pulses to address this issue and
compare it with two conventional schemes.

The system Hamiltonian and control Hamiltonian of a �

system, considered in a frame rotating at both driving frequen-
cies and under the rotating-wave approximation, are expressed
as follows:

H0 = δ|1〉〈1| + �|2〉〈2|, (26)

HC (t ) = up(t )|0〉〈1| + us(t )|1〉〈2| + H.c., (27)

where δ represents the one-photon detuning, � denotes the
two-photon detuning, up(t ) is the pump pulse acting on the
|0〉 ↔ |1〉 transition, and us(t ) is the Stokes pulse on the |1〉 ↔
|2〉 transition. Here, we let � = 0 and only consider resonant
STIRAP with one-photon detuning δ. The spontaneous emis-
sion from the intermediate state |1〉 can be characterized by
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(a) (b)

(c) (d)

FIG. 2. Quantum state transfer in a Markovian three-level �

system using STIRAP under different control schemes and the cor-
responding robustness. (a) Schematic diagram of STIRAP, where
|0〉, |1〉, and |2〉 represent the initially populated, intermediate, and
target states, respectively. Here, δ denotes the one-photon detuning,
while � denotes the two-photon detuning. The terms up(t ) and us(t )
represent the pump and Stokes pulses, respectively. (b) Envelopes
of the Vitanov pulses u(1), the SATD pulses u(2) and our robust
pulses u(3), for realizing STIRAP, where solid lines denote the pump
pulses up(t ), and dashed lines denote the Stokes pulses us(t ). Here
the number of optimized steps M = 200, and the maximal number
of iterations is 100. (c) The population on the intermediate state |1〉
during the evolution. (d) The final population on the target state for
various spontaneous emission rates, where �1 = �2 = �.

the following Lindblad operators [60,64,65]

L1 = |0〉〈1|, L2 = |2〉〈1|. (28)

Expressing Eqs. (26) and (28) in the Bloch representation, and
applying the procedures introduced in Secs. II B and II C, we
can search robust pulses that can improve the effectiveness of
STIRAP; see details in Appendix B.

For comparison, we first introduce a control scheme pro-
posed in Ref. [66], which is known to be adiabatically optimal
and robust to pulse variations as well as single-photon de-
tuning. Precisely, the pulse shape, named as Vitanov pulse,
is described by

u(1)
s (t ) = �(1)(t ) cos[θ (1)(t )], (29)

u(1)
p (t ) = �(1)(t ) sin[θ (1)(t )], (30)

with θ (1)(t ) = π/[2 + 2e−ν(t−T/2)] and t ∈ [0, T ]. Here we set
the parameters �(1)(t ) = 100×2π MHz, ν = 0.6 GHz, and
total pulse time T = 16.8 ns. As such, the adiabatic condition
is not fully satisfied and the efficiency of STIRAP is limited
even in the absence of dissipation. To speedup the adiabatic
state transfer and minimize the occupancy of the intermediate
level during evolution, there was proposed the superadiabatic

transitionless driving (SATD) method for STIRAP [58,63]. It
is constructed by modifying the Vitanov pulse to

u(2)
s (t ) = �(2)(t ) cos[θ (2)(t )], (31)

u(2)
p (t ) = �(2)(t ) sin[θ (2)(t )], (32)

where θ (2)(t ) = θ (1)(t ) − arctan[ξ̇ /�(1)(t )], �(2)(t ) =√
�(1)(t )2 + ξ̇ 2, and ξ = − arctan[θ̇ (1)(t )/�(1)(t )]. This

restricts the evolution to a dressed state basis and facilitates
rapid driving for the desired state transfer.

We demonstrate the pulse shapes of these three control
schemes for STIRAP in Fig. 2(b). Our robust pulse, marked
as u(3)

s and u(3)
p , is found by minimizing the directional deriva-

tives with respect to L1 and L2 up to the second order. For a fair
comparison, we constrained the amplitude of u(3) not to ex-
ceed that of u(2), that is, maxt |u(3)(t )| � maxt |u(2)(t )| ≡ �max

with |u(t )| ≡
√

u2
s (t ) + u2

p(t ) (see Appendix B for details).

It is evident that the shapes of the Vitanov pulse (u(1)) and
the SATD pulse (u(2)) are similar, while the shape of our
robust pulse is different. To compare their performance on
state transfer, we first display the variation of the population
on the intermediate state during the evolution, i.e., P1(t ) =
〈1|ρ(t )|1〉; see Fig. 2(c). For the Vitanov pulse, we observe
that the population on the intermediate state remains small in
the first half of the evolution but increases rapidly in the latter
half, reaching up to 0.72. Meanwhile, the final P1(t ) still has a
residual value of 0.05. For the SATD pulse, P1(t ) is symmetric
and attains the maximum population of 0.38 in the middle
time of the evolution, while at the final time it is negligible.
With our robust pulse, the population on the intermediate
state is maintained below 0.11 throughout the entire evolution
process, and the final P1(t ) is also negligible. From these
results, we deduce that the efficiency of the state transfer can
be considerably improved using our robust pulse. To verify
this, we plot the final population on the target state, i.e.,
P2(T ) ≡ 〈2|ρ(T )|2〉, under different values of spontaneous
emission rates �1 = �2 = �; see Fig. 2(d). As expected, Vi-
tanov pulse fail to achieve a high population on the target
state even in the absence of spontaneous emission (� = 0).
This is attributed to the relatively short evolution time, leading
to the violation of the adiabatic theorem. Nevertheless, the
significant occupation of the intermediate state contributes to
the increase in P2(T ) as the spontaneous emission rates rise,
reaching up to 0.66 for � = 0.24�max. SATD performs better
due to its implementation of a fast adiabatic transfer strategy.
Remarkably, our robust pulse outperforms both the Vitanov
pulses, showcasing an improvement of P2(T ) up to 0.68, and
the SATD pulses, demonstrating an improvement of P2(T ) up
to 0.07, across the tested spontaneous emission rates.

IV. QUANTUM GATE UNDER MARKOVIAN NOISE

In this section, we investigate the application of our robust
optimal control method to quantum gate preparation under
Markovian noise.
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A. Two-level system

We first consider preparing a NOT gate in a two-level
system in the presence of both phase damping and amplitude
damping. The system Hamiltonian and the Lindblad operators
are Eqs. (22) and (23) as presented in Sec. III A. Following the
procedures introduced in Secs. II B and II C, we can search
optimal controls for realizing the target quantum gate under
the considered Markovian noises.

During the optimization process, we limit the maxi-
mum Rabi frequency �max to not exceed 50×2π MHz, i.e.,√

u2
x (t ) + u2

y (t ) � �max and we set the duration of the control

pulse as T = 10 ns. For the considered Markovian noises, we
choose �1 = �2 = �max/10. We divide the evolution into 40
discrete steps and set the maximal number of iterations as 80.
For comparison, we employ the conventional GRAPE method
without considering the robustness condition, and the gate
fidelity reaches f0,gate = 86.52%. Applying our robust optimal
control with Van Loan GRAPE, however, we find that the
gate fidelity cannot be further improved, even with a longer
pulse duration than T . This suggests that optimal control is
not able to resist Markovian noise in a two-level system for
the quantum gate problem.

B. Three-level ladder system

We then consider the task of preparing a NOT gate on the
lowest two levels in a three-level ladder system subject to
both phasing damping and amplitude damping. The motiva-
tion here is to see whether adding an extra level will make it
possible to resist Markovian noises. As a concrete example,
we investigate a superconducting transmon qubit, where the
lowest two levels |0〉 and |1〉 serve as a qubit, and the third
level |2〉 accounts for leakage; see Fig. 3(a). Working in a
frame rotating at the drive frequency and employing the ro-
tating wave approximation, the system’s intrinsic Hamiltonian
and the control Hamiltonian can be expressed as

H0 = δ|1〉〈1| + �|2〉〈2|,

HC (t ) =
∑
j=1,2

[(
ux(t )

2
+ i

uy(t )

2

)
λ j | j〉〈 j − 1| + H.c.

]
,

where ux,y(t ) couple the adjacent energy levels, the drive
frequency is assumed to be resonant with the qubit frequency,
i.e., δ = 0, and � denotes the anharmonicity of the system. In
our simulation, we set � = 400×2π MHz, λ1 = 1, and λ2 =√

2, resulting in undesired leakage out of the qubit subspace.
The Markovian noise we consider are amplitude damping and
phasing damping, the corresponding Lindblad operators can
be written as [67]

L1 = |0〉〈1| + √
2|1〉〈2|, L2 = 2

√
2

3 (|0〉〈0| − |2〉〈2|),
L3 =

√
2

3 (|0〉〈0| − |1〉〈1|), L4 =
√

2
3 (|1〉〈1| − |2〉〈2|).

Following the procedures introduced in Secs. II B and II C, we
can search for optimal controls to realize the target quantum
gate under the considered Markovian noises.

During optimization, we restrict the maximum Rabi fre-
quency to be �max = 500×2π MHz, and minimize the
directional derivatives with respect to Lα (α = 1, 2, 3, 4) up to

(a) (b)

(c) (d)

FIG. 3. Quantum gate in a Markovian three-level ladder system.
(a) The qubit is formed by the states |0〉 and |1〉, while |2〉 accounts
for leakage. The offset between the drive frequency and the qubit
frequency is marked as δ, and � represents the anharmonicity of
the system. (b) Control pulses searched by the conventional GRAPE
algorithm and our Van Loan GRAPE algorithm. The initial guess
is chosen as the DRAG pulse. Here the number of optimized steps
M = 200, and the maximal number of iterations is 100. (c) Transition
probability to |2〉 from |0〉 or |1〉 using pulses in (b), which are
searched by the conventional GRAPE algorithm and our Van Loan
GRAPE algorithm. (d) Statistical distribution of quantum gate fideli-
ties for 100 runs with different random initial controls. The dashed
lines indicate the results obtained with the initial guess of the DRAG
pulse.

the second order. For comparison, we also apply the conven-
tional GRAPE algorithm to find pulses to implement the target
NOT gate. Here, we set �1 = �2 = �3 = �4 = �max/10. The
initial guess for the optimal search is chosen as the first-order
derivative removal by adiabatic gate (DRAG) pulse [46,68].
The corresponding pulse shapes are shown in Fig. 3(b). The
gate fidelity using the pulse searched by the conventional
GRAPE algorithm is 80.26%, which can be slightly improved
to 80.29% with the pulse searched by our Van Loan GRAPE
algorithm; see the dashed lines Fig. 3(d). To understand why
our robust control can achieve enhancement, we plot the
transition probability to the state |2〉 from |0〉 and |1〉 during
the evolution, as depicted in Fig. 3(c). We observe a slight
suppression of leakage to the state |2〉 during the evolution
using our robust control compared to conventional GRAPE,
implying an improved robustness to the considered noises.
To further validate this result, we conduct 100 runs for both
GRAPE algorithms with different randomly chosen initial
values, as illustrated in Fig. 3(d). This bar plot reveals that
the distribution of gate fidelities using our Van Loan GRAPE
(red bars), with the standard deviation of 7.6×10−5, is much
narrower than that of the conventional GRAPE (blue bars),
with the standard deviation of 2.8×10−4. The mean gate fi-
delity is also slightly improved from 80.23% to 80.28%. This
gives evidence suggesting that our Van Loan GRAPE may
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more easily improve gate fidelity under the considered Marko-
vian noise. The current scenario differs from the previously
discussed two-level case, primarily due to the presence of an
additional energy level |2〉 in the system, which introduces
possibilities for robust optimal control to drive the system
within subspaces characterized by low dissipative rates. Com-
pared with optimizing a specific evolution trajectory for
the problem of quantum state transfer, the task of quantum
gate is more restrictive as it requires resisting relaxation over
the entire state space. Due to the inevitable transition into the
state |2〉 and the existence of dissipation, though slower, be-
tween |0〉 and |1〉, the performance of quantum gate can only
be slightly improved. This result is consistent with previous
studies [25,28].

V. SUMMARY AND DISCUSSIONS

Although numerous effective methods have been devel-
oped to suppress quasistatic and slowly varying noises in
routine control tasks, the resistance of fast fluctuating Marko-
vian noise remains a challenging and less explored problem.
Our work presents a robust quantum optimal control method
for tackling Markovian noises described by Lindblad opera-
tors. The numerical simulations of quantum state transfer in
a two-level system and a three-level � system demonstrate
that our method can significantly enhance fidelity compared to
conventional control strategies, including the mentioned two
STIRAP pulses. In the context of quantum gate preparation
under Markovian noise, the numerical results indicate that the
gate fidelity cannot be improved for a two-level system and
can only be slightly enhanced for a three-level ladder system;
this agrees with findings from previous studies [25,28].

The current work presents a practical and versatile method
for addressing Markovian noises, extendable to other control
scenarios such as quantum sensing [69,70] and quantum infor-
mation processing [71]. Moreover, our method is applicable
for tackling Markovian noises in multilevel and multiqubit
systems, where the increasing complexity of noises and pa-
rameter spaces offer additional opportunities for optimization
[72]. To alleviate the exponentially increasing computational
cost, we can further incorporate the hybrid quantum-classical
approach [73] and variational quantum algorithms [74] into
our robust control protocol. Additionally, our approach can be
further enhanced by introducing ancillary qubits to provide
more optimization spaces and additional incoherent opera-
tions to potentially recover the noisy dynamics [75]. While
the number of examples demonstrating successful control
of Markovian quantum systems is increasing, our current
comprehension of controllability and the most promising
control strategies for Markovian quantum systems remains
relatively restricted. Thus the design of advanced suppression
methods may necessitate resorting to relevant theoretical stud-
ies, such as quantum speed limit [76,77] and controllability
analysis [40].
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APPENDIX A: GRADIENT OF COST FUNCTION

The cost function f is the weighted sum of fidelity and
the magnitudes of the directional derivatives, as mentioned
in Eq. (20), and the goal is to find the optimal control that
minimizes f . The gradient of f with respect to each piecewise
control field is needed for the gradient-based algorithm, which
can also be expressed as the weighted sum of the gradient of
fidelity and directional derivatives, i.e.,

∂ f

∂uk
l

= − ∂ f0

∂uk
l

+ ∂ f1

∂uk
l

. (A1)

In the following, we show the detailed calculations.
We first calculate ∂ f0/∂uk

l . Let Hk = HS + ∑
l uk

l Hl
C de-

notes HS + ∑
l uk

l Hl
C in the Bloch representation. Due to the

discretization of the total evolution, the only term contains uk
l

is the evolution at the kth step, i.e., e�tHk
. Hence

f0,state

uk
l

= rT
tar

[(
�M

m=k+1e�tHm)∂e�tHk

∂uk
l

(
�k−1

m=1e�tHm)]
r0.

According to the standard formula ∂xeA(x) =∫ 1
0 eτA(∂xA)e(1−τ )Adτ , we have

∂e�tHk

∂uk
l

= �t
∫ 1

0
eτ�tHk

(
∂Hk

∂uk
l

)
e−τ�tHk

dτe�tHk

= �t
∫ 1

0
eτ�tHk

Hl
Ce−τ�tHk

dτe�tHk
.

= �t
∫ 1

0
eτ�tHk,×

Hl
Cdτe�tHk

, (A2)

with Hk,× being the commutation superoperator, i.e., A×B =
[A, B]. This expression can be further expanded with the Tay-
lor series

∂e�tHk

∂uk
l

= �t
∫ 1

0

∞∑
n=0

(τ�t )ndτ

n!
(Hk,×)nHl

Ce�tHk

=
∞∑

n=0

(�t )n+1

(n + 1)!
(Hk,×)nHl

Ce�tHk
. (A3)

Gradients with arbitrary-order accuracy can thus be evaluated
from a finite sum of commutators. Here we assume the con-
dition �t � ‖Hk‖−1 is satisfied. Using the first order in �t ,
Eq. (A3) becomes �tHl

Ce�tHk
. Denote the shorthand notation

V j
k = ∏ j

m=k e�tHm
, then the gradient of fidelity to the first

order in �t is
∂ f0,state

∂uk
l

= (�t )rT
tar

[
V M

k+1Hl
CV k

1

]
r0.

Similarly,

∂ f0,gate

∂uk
l

= �t

6

∑
j

(Utarr j )
T
[
V M

k+1Hl
CV k

1

]
r0.
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For the first-order gradient of directional derivatives, the tech-
nique of Van Loan integral formula is used again

∂ f1

∂uk
l

= 2
∑

n

∑
α,β,...γ

wn
α,β,...γ × Re

[(
�M

m=1e�tGm)†

1,n+1

×(
�M

m=k+1e�tGmG l
C�k

m=1e�tGm)
1,n+1

]
, (A4)

with

Gm =

⎛⎜⎜⎜⎜⎜⎜⎝

Hm Lα 0 . . . 0

0 Hm Lβ . . . 0
...

...
...

. . .
...

0 0 0 . . . Lγ

0 0 0 . . . Hm

⎞⎟⎟⎟⎟⎟⎟⎠, (A5)

and

G l
C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Hl
C Lα 0 . . . 0

0 Hl
C Lβ . . . 0

...
...

...
. . .

...

0 0 0 . . . Lγ

0 0 0 . . . Hl
C

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A6)

APPENDIX B: DETAILS OF ROBUST STIRAP

For the three-level quantum system, we work in the Bloch
representation by expanding the state and the operators with
respect to the traceless Hermitian Gell-Mann matrices of the
SU(3) group, i.e.,

λ1 =

⎛⎜⎝0 1 0

1 0 0

0 0 0

⎞⎟⎠, λ2 =

⎛⎜⎝0 −i 0

i 0 0

0 0 0

⎞⎟⎠,

λ3 =

⎛⎜⎝1 0 0

0 −1 0

0 0 0

⎞⎟⎠, λ4 =

⎛⎜⎝0 0 1

0 0 0

1 0 0

⎞⎟⎠,

λ5 =

⎛⎜⎝0 0 −i

0 0 0

i 0 0

⎞⎟⎠, λ6 =

⎛⎜⎝0 0 0

0 0 1

0 1 0

⎞⎟⎠,

λ7 =

⎛⎜⎝0 0 0

0 0 −i

0 i 0

⎞⎟⎠, λ8 = 1√
3

⎛⎜⎝1 0 0

0 1 0

0 0 −2

⎞⎟⎠.

These matrices obey the trace orthonormality relation. In this
way, we work in a real representation, which is convenient for
numerical computations.

FIG. 4. Mixing angles of STIRAPs under different control strate-
gies. θ (1)(t ), θ (2)(t ), and θ (3)(t ) correspond to the mixing angles of
the Vitanov pulse, SATD pulse and our robust pulse, respectively.

We then compare the performance of our Van Loan
GRAPE with the SATD given by Eq. (31). For a fair com-
parison, we limit the amplitude of searched control fields

maxt |u(3)(t )| � maxt |u(2)(t )| with |u(t )| ≡
√

u2
s (t ) + u2

p(t ).

To this end, we change the form of control field as

up(t )|0〉〈1| + us(t )|1〉〈2| + H.c.

→�max
[
sin(θ (3)(t ))|0〉〈1| + cos(θ (3)(t ))|1〉〈2| + H.c.

]
,

with �max = maxt |u(2)(t )|, and the only parameter to optimize
is the mixing angle θ (3)(t ). To employ the Van Loan GRAPE
algorithm, we calculate the gradient of fidelity via the chain
rule for derivatives
∂ f0,state

∂θ
(3)
k

= (�max�t )rT
tar

[(
�M

m=k+1e�tHm)
×[

cos
(
θ

(3)
k

)
Hp − sin

(
θ

(3)
k

)
Hs

](
�k

m=1e�tHm)]
r0.

(B1)

with Hp, Hs being |0〉〈1| + H.c., |1〉〈2| + H.c. in the Bloch
representation. The gradient of f2 can be given in a similar
way.

The mixing angles in our simulation, which is closely
related to the population on the target state |3〉 in the STIRAP,
is shown in Fig. 4. For the adiabatic evolution and SATD, the
conditions of θ (t = 0) = 0 and θ (t = T ) = π/2 are satisfied,
thus in line with the standard design of STIRAP [45]. The
mixing angle optimized via Van Loan GRAPE oscillates, and
the behaviors at t = 0 and t = T are also significantly differ-
ent with previous designs.
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