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Quantum network nonlocality sharing provides a unique perspective for constructing large-scale quantum
networks and holds promise for numerous potential applications. In this paper we demonstrate the network
nonlocality sharing via unsharp measurements in a two-forked n-layer tree-shaped network, which features
2n − 2 independent sources and 2n − 1 nodes. We investigate the (2n − 2)-local scenarios via any m-sided
sequential measurements, and conclude that arbitrarily many independent observers on each sequential side can
share the non-(2n − 2)-locality for a sufficiently large value of n. For a finite n, we present a method that enables
directly obtaining the number of observers on each sequential side, who can share the non-(2n − 2)-locality
simultaneously. To interpret our results more intuitively, we discuss the simplest case of n = 3, and find that
at most 30, 6, 3, and 2 sequential observers per sequential side can simultaneously share the non-6-locality in
m-sided cases for m = 1, 2, 3, 4, respectively.
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I. INTRODUCTION

A seminal concept distinguishing quantum mechanics
from classical mechanics is Bell nonlocality. Bell’s well-
known theorem [1] provides us with experimentally testable
criteria suitable for verifying Bell nonlocality by violating a
Bell inequality. Specifically, when two separated observers
perform local measurements on a pair of entangled particles
distributed by a single source, correlations between measure-
ment outcomes are said to be nonlocal, provided that they
violate a Bell inequality. A series of Bell experiments [2–5]
have been conducted to detect Bell nonlocality, including
multipartite cases where all the separated parties receive their
particles from a common source. Bell nonlocality has become
a significant resource in a variety of quantum tasks, such as
randomness expansion [6,7] and quantum key distribution [8].

With the development of quantum technology, long-
distance and large-scale multiuser quantum networks become
an important goal of quantum communication. Different
from typical multipartite Bell experiments, the network
Bell experiments contain more than one source. Quantum
network nonlocality, a new form of multipartite nonlocality
that may transcend typical Bell nonlocality, is fundamental
for the quantum communication network. Quantum network
nonlocality has been verified through the violation of suitable
network Bell inequalities in various quantum networks
[9–19], including the simplest bilocal networks [9,10], n-local
chain-shaped networks [11], n-local star-shaped networks
[12–15], and tree-shaped networks [16,17]. The network
nonlocality has been used in device-independent frameworks,
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such as quantum key distribution [20], self-testing [21], and
blind quantum computation [22].

Early works of the exploration of Bell nonlocality focused
on the scenario where each particle from an entangled pair
was measured once in a round of experiments. In 2015 Silva
et al. [23] began to study whether many independent observers
can sequentially measure one of the particles from an entan-
gled system and share Bell nonlocality with a single observer
on the other side. Since then, much attention has been devoted
to detecting the sharing of Bell nonlocality [24–29]. These
studies have indicated that sequential measurement scenarios
provide an advantage in probing the maximum number of
observers who can simultaneously demonstrate nonlocality,
thereby implying potential applications in quantum networks.
The goal of a quantum network is to achieve information
transmission and secure communication between large-scale
users. Based on suitable network Bell inequalities and an
appropriate measurement strategy, network nonlocality can
be revealed by all quantum nodes, with only a single observer
per node in the original network. Network nonlocality
sharing explores whether all observers in a generalized
network scenario, which sequentially adds extra observers
to some nodes in the original scenario, can simultaneously
share nonlocality. In 2022 network nonlocality sharing
based on two-sided sequential measurements in the bilocal
scenario was first discussed in Ref. [30]. Subsequently, Wang
et al. [31] explored a scenario involving n-sided sequential
measurements in n-local star-shaped networks. Mahato et al.
[32] showed that an alternative form of inequality could
achieve the same effect, allowing an unbounded number of
sequential observers to share star-shaped network nonlocality
in a one-sided sequential measurement scenario. The scenario
wherein an arbitrary number of sequential observers can
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participate on each of any m sides was established in
Ref. [33]. More recently, Mao et al. [34] experimentally
realized a star-shaped network nonlocality sharing
protocol.

Apart from star-shaped networks, the tree-shaped network
is another kind of quantum network generalized from the
bilocal network. A tree-shaped network may show an ad-
vantage over a star-shaped network for some problems, such
as time-evolution methods [35] and stochastic methods for
open quantum systems [36]. In 2021 Yang et al. [16] initially
introduced nonlinear Bell-type inequalities and confirmed
the presence of network nonlocality in the tree-shaped
network. However, it remains unclear whether sequential
measurements can contribute to expanding the scale of
the tree-shaped network. We investigate network nonlocality
sharing in the two-forked n-layer (n � 2) tree-shaped network
through multiple violations of the (2n − 2)-local inequality
[16]. Such a network features (2n − 2) independent sources
and (2n − 1) nodes. The uth (1 � u � n) layer contains
2u−1 nodes. For the first n − 1 layers, each node shares
two different sources with two nodes in the next layer,
respectively. Our findings indicate that for a sufficiently large
value of n, an unbounded number of sequential observers on
each sequential side can share the non-(2n − 2)-locality in
any m-sided sequential measurement scenario. Furthermore,
when n is finite, the study obtains a series of ranges about m in
which one can directly obtain how many observers can share
the non-(2n − 2)-locality per sequential side. For the simplest

two-forked tree-shaped network (i.e., n = 3), the sharing
of the non-6-locality is demonstrated through four different
cases. From one-sided to four-sided sequential measurement
scenarios, it is respectively shown that at most 30, 6, 3, and
2 sequential observers on each sequential side can share the
non-6-locality.

The structure of the paper is as follows: In Sec. II we review
the description of the two-forked n-layer tree-shaped network.
Subsequently, the network nonlocality sharing in the two-
forked n-layer tree-shaped network is completely analyzed
in Sec. III. We demonstrate the network nonlocality sharing
in the two-forked three-layer tree-shaped network, as shown
in Sec. IV. We end the paper with a conclusion in Sec. V.

II. PRELIMINARIES: THE TWO-FORKED N-LAYER
TREE-SHAPED NETWORK

As depicted in Fig. 1, we consider a two-forked n-layer
tree-shaped network for any n � 2, composed of 2n − 2 in-
dependent sources and 2n − 1 nodes. The 2n − 1 nodes are
denoted by Alice11 (A11), Alice21 (A21), Alice22 (A22), . . . ,
Alicen1 (An1), . . . , Alicen2n−1

(An2n−1
), where the superscript

indicates every node’s location. Denote the binary input
and output of Aliceuv (u = 1, 2, . . . , n; v = 1, 2, . . . , 2u−1)
by xuv ∈ {0, 1} and auv ∈ {0, 1}, respectively. All the 2n − 2
sources are characterized by independent hidden variable
λ1, . . . , λ2n−2, respectively. The joint probability of all 2n − 1
nodes can be written in the following factorized form:

P
(
a11, a21, a22, a31, . . . , an1, . . . , an2n−1 ∣∣x11, x21, x22, x31, . . . , xn1, . . . , xn2n−1)
=

∫
. . .

∫
dλ1 . . . dλ2n−2P(λ1, . . . , λ2n−2)

[
P(a11 | x11, λ1, λ2)P(a21|x21, λ1, λ3, λ4)P(a22 | x22, λ2, λ5, λ6) . . .

× P(an1 | xn1, λ2n−1−1) . . . P
(
an2n−1 | xn2n−1

, λ2n−2
)]

. (1)

where P(λ1, . . . , λ2n−2) is a probability distribution over λ1, . . . , λ2n−2.
Since all the sources are independent of each other, probability distribution P(λ1, . . . , λ2n−2) can be written as

P(λ1, . . . , λ2n−2) = P(λ1) . . . P(λ2n−2), (2)

where
∫

dλlP(λl ) = 1, l = 1, 2, . . . , 2n − 2. The (2n − 1)-partite correlations are (2n − 2)-local if they satisfy the decompo-
sition of Eq. (1) along with the constraint of Eq. (2). The correlation in terms of the probability distribution can be given as

〈
A11

x11 . . . An2n−1

xn2n−1

〉 =
∑

a11,...,an2n−1

(−1)a11+a21+···+an2n−1

P
(
a11, . . . , an2n−1 ∣∣x11, . . . , xn2n−1)

, (3)

where Auv
xuv denotes the operator of Aliceuv with binary inputs xuv , u ∈ {1, 2, . . . , n}, v ∈ {1, 2, . . . , 2u−1}. To verify non-(2n − 2)-

locality, Yang et al. [16] introduced a set of Bell-type inequalities:

S(2n−2)−local = 2n−1
√∣∣Ii1,...,i2n−1−1,0

∣∣ + 2n−1
√∣∣I j1,..., j2n−1−1,1

∣∣ � 1, (4)

where

Ii1( j1 ),...,i2n−1−1( j2n−1−1 ),t = 1

22n−1

∑
xn1,...,xn2n−1

(−1)t∗(xn1+···+xn2n−1
)
〈
A11

i1( j1 ) . . . An2n−1

xn2n−1

〉
, (5)

ir, jr ∈ {0, 1}, r ∈ {1, . . . , 2n−1 − 1}, and t ∈ {0, 1}.
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FIG. 1. The two-forked n-layer tree-shaped network is composed
of 2n − 2 independent sources and 2n − 1 nodes. The 2n − 1 nodes
are distributed into n (n � 2) layers. The superscript uv in Aliceuv

indicates the vth node on the uth layer (1 � u � n). There exist
2u−1 nodes on the uth layer. For the first n − 1 layers, each node
respectively shares two different sources with two nodes in the next
layer.

Violating at least one possible inequality of Eq. (4) guar-
antees the corresponding non-(2n − 2)-locality. Taking ir =
0, jr = 1 for r = 1, . . . , 2n−1 − 1, then inequality (4) be-
comes the following form:

S(2n−2)−local = 2n−1
√|I0,...,0| + 2n−1

√|I1,...,1| � 1. (6)

Assuming that each source produces a maximally en-
tangled two-qubit state, the optimal quantum violation of
S(2n−2)−local in Eq. (6) is

√
2, which can be obtained by the

following measurement strategy:

A11
0 = σz ⊗ σz, Auv

0 = σz ⊗ σz ⊗ σz, Ani
0 = σz + σx√

2
,

A11
1 = σx ⊗ σx, Auv

1 = σx ⊗ σx ⊗ σx, Ani
1 = σz − σx√

2
,

(7)

where u ∈ {2, 3, . . . , n − 1}, v ∈ {1, 2, . . . , 2u−1}, and i ∈
{1, 2, . . . , 2n−1}.

III. NETWORK NONLOCALITY SHARING
IN THE N-LAYER TREE-SHAPED NETWORK

The scenario depicted in Fig. 2 is considered, where 2n −
2 independent sources emit the state ρA11A21 , ρA11A22 , . . . ,
ρA(n−1)1An1 , . . . , ρA(n−1)2n−2 An2n−1 , respectively. Then the overall
quantum state has the following form:

ρ = ρA11A21 ⊗ · · · ⊗ ρA(n−1)1An1 ⊗ · · · ⊗ ρA(n−1)2n−2 An2n−1 . (8)

Suppose that there are k observers on Aliceni’s side for
i ∈ {1, . . . , 2n−1}, which are denoted by Aliceni

1 (Ani
1 ), Aliceni

2
(Ani

2 ), . . . , Aliceni
k (Ani

k ), respectively. On each Aliceni’s side,
Aliceni

1 performs the measurement Ani
1,xni

1
according to her mea-

surement choices xni
1 (∈ {0, 1}) and records the outcomes ani

1 (∈
{0, 1}). The postmeasurement state is then sent to Aliceni

2 .
Using the Lüders rule, the state shared between Alice11, . . . ,
Alice(n−1)2n−2

, Alicen1
2 , . . . , Alicen2n−1

2 is given by

ρ (2,...,2) = 1

22n−1

∑
an1

1 ,...,an2n−1
1

xn1
1 ,...,xn2n−1

1

(MI ⊗ N1)†ρ (1,...,1)(MI ⊗ N1),

(9)
where

MI = (I ⊗ I ) ⊗ (I ⊗ I ⊗ I ) ⊗ · · · ⊗ (I ⊗ I ⊗ I ),

N1 = (
I ⊗

√
An1

1,an1
1 |xn1

1

) ⊗ · · · ⊗ (
I ⊗

√
An2n−1

1,an2n−1
1 |xn2n−1

1

)
, (10)

and ρ (1,...,1) is the initial state ρ, Ani
1,ani

1 |xni
1

is the positive operator-valued measure (POVM) element corresponding to the outcome

ani
1 of Aliceni

1 ’s measurement for the input xni
1 , and I is the 2 × 2 identity matrix.

After a direct calculation, we have

ρ (2,...,2) = ρA11A21 ⊗ · · · ⊗ ρA(n−2)2n−3 A(n−1)2n−2

2n−2⊗
s=1

⎛
⎝ 2s⊗

i=2s−1

ρ
(2)
A(n−1)sAni

⎞
⎠, (11)

where

ρ
(2)
A(n−1)sAni = 1

2

∑
ani

1 ,xni
1

(
I ⊗

√
Ani

1,ani
1 |xni

1

)
ρ

(1)
A(n−1)sAni

(
I ⊗

√
Ani

1,ani
1 |xni

1

)
. (12)

Repeating this process, the state shared between Alice11, . . . , Alice(n−1)2n−2
, Alicen1

k , . . . , Alicen2n−1

k can be represented as

ρ (k,...,k) = ρA11A21 ⊗ · · · ⊗ ρA(n−2)2n−3 A(n−1)2n−2

2n−2⊗
s=1

⎛
⎝ 2s⊗

i=2s−1

ρ
(k)
A(n−1)sAni

⎞
⎠, (13)
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where

ρ
(k)
A(n−1)sAni = 1

2

∑
ani

k−1,x
ni
k−1

(
I ⊗

√
Ani

k−1,ani
k−1|xni

k−1

)
ρ

(k−1)
A(n−1)sAni

(
I ⊗

√
Ani

k−1,ani
k−1|xni

k−1

)
. (14)

In the whole process, Aliceni
j acts independently of the previ-

ous observers in this sequence, and the measurement choices
of Aliceni

1 , . . . , Aliceni
k are completely unbiased.

Since a projective measurement destroys the state max-
imally, the postmeasurement state is unentangled [24]. To
achieve an optimal trade-off between measurement distur-
bance and information gain, the unsharp measurement [25]
is considered, which is a particular kind of POVM. We em-
ploy the dichotomic POVMs with measurement operators
{E , I − E}, where E = 1

2 (I + γ σ�r ), �r = (r1, r2, r3) ∈ R3 with
‖�r‖ = 1, γ ∈ [0, 1] is the sharpness parameter, and σ�r =
r1σx + r2σy + r3σz.

Our measurement strategy of Alice on the first n − 1 layers
is the same as Eq. (7). On each Aliceni’s (i ∈ {1, . . . , 2n−1})
side, each Aliceni

j except the final Aliceni
k performs unsharp

measurements. Aliceni
j ’s POVMs are defined as

Ani
j,0|0 = 1

2

(
I + γ ni

j√
2

[σz + σx )

]
,

(15)

Ani
j,0|1 = 1

2

(
I + γ ni

j√
2

[σz − σx )

]
,

where γ ni
j ∈ [0, 1] (i ∈ {1, 2, . . . , 2n−1}, j ∈ {1, 2, . . . , k})

denotes the sharpness parameter of Aliceni
j . Further, the ex-

pectation operators are given by Ani
j,xni

j
= Ani

j,0|xni
j

− Ani
j,1|xni

j
for

xni
j ∈ {0, 1}. Using these measurements, the expected value

of S(k,...,k)
(2n−2)−local among Alice11, . . ., Alice(n−1)2n−2

, Alicen1
k , . . .,

Alicen2n−1

k is obtained.
Theorem 1. For the initial overall quantum state ρ (1,...,1) =

ρA11A21 ⊗ ρA11A22 ⊗ · · · ⊗ ρA(n−1)1An1 ⊗ · · · ⊗ ρA(n−1)2n−2 An2n−1 ,
where ρA11A21 = · · · = ρA(n−1)2n−2 An2n−1 = |ψ〉〈ψ |, |ψ〉 =
|00〉+|11〉√

2
, the expected value of S(k,...,k)

(2n−2)−local associated with the

state ρ (k,...,k) is given by

S(k,...,k)
(2n−2)−local =

√
2 2n−1

√√√√√√
2n−1∏
i=1

⎛
⎜⎝γ ni

k

k−1∏
j=1

1 +
√

1 − (
γ ni

j

)2

2

⎞
⎟⎠,

(16)

where γ ni
j ∈ [0, 1] is the sharpness parameter of Aliceni

j . The
proof is given in the Appendix.

In what follows, we consider the m-sided (1 � m �
2n−1) sequential measurement case where m denotes the
number of S nodes. We can assume without loss of gen-
erality that Aliceni (Aliceni

1 , i ∈ {1, . . . , m}) is an S node,
and there are multiple sequential observers (Aliceni

k ) who
perform unsharp measurements on each Aliceni’s side. The
Alicenl (Alicenl

1 , l ∈ {m + 1, . . . , 2n−1}) and all the nodes
on the first n − 1 layers are non-S nodes. Hence, Alicenl

(l ∈ {m + 1, . . . , 2n−1}) performs projective measurements,

i.e., γ
n(m+1)
1 = · · · = γ n2n−1

1 = 1. Consequently, the expected
value of S(k,...,k)

(2n−2)−local can be rewritten as

S(

m︷ ︸︸ ︷
k, . . . , k,1,...,1)

(2n−2)−local =
√

2 2n−1

√√√√√√
m∏

i=1

⎛
⎜⎝γ ni

k

k−1∏
j=1

1 +
√

1 − (
γ ni

j

)2

2

⎞
⎟⎠.

(17)

For simplicity, when γ n1
j = γ n2

j = · · · = γ nm
j = γ j , Eq. (17)

reduces to

S(k,...,k,1,...,1)
(2n−2)−local =

√
2

⎛
⎝γk

k−1∏
j=1

1 + √
1 − γ j

2

2

⎞
⎠

m
2n−1

. (18)

To ensure the arbitrary kth observer per S node can share
the non-(2n − 2)-locality with all non-S nodes. It is sufficient

FIG. 2. Network nonlocality sharing under 2n−1-sided sequential
measurements in the two-forked n-layer tree-shaped network. For
simplicity, the green nodes on the nth layer that have multiple se-
quential blue observers are labeled as S nodes, while any other green
nodes are labeled as non-S nodes. Since there exist k sequential
observers on each Aliceni’s side, Aliceni (Aliceni

1 ) is an S node for
i = 1, 2, . . . , 2n−1.
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to choose appropriate values of γ j such that S( j,..., j,1,...,1)
(2n−2)−local > 1

holds for all j ∈ {1, . . . , k}. From Eq. (18), we thus deduce

γ1 > 2− 2n−2

m , (19a)

γ j >
2γ j−1

1 + √
1 − γ j−1

2
, j = 2, . . . , k. (19b)

Note that the inequality 1 + √
1 − γ j

2 � 2
√

1 − γ j
2 holds for

any γ j ∈ [0, 1], Applied it to Eqs. (19), we obtain

γ j >
γ j−1√

1 − γ j−1
2
, j = 2, . . . , k. (20)

For j = 2,

γ2 >
γ1√

1 − γ1
2

= 1√
1

γ 2
1 −1

>
1√

2
2n−1

m − 1

. (21)

Repeating this process, we obtain the lower bound of sharp-
ness parameter γk for the kth sequential observer

γk >
1√

2
2n−1

m − (k − 1)
. (22)

Note further that the lower bound of sharpness parameter γk

holds for a suitable n, the inequality (22) can be rewritten as

2n−1 > m log2

(
k − 1 + 1

γ 2
k

)
. (23)

If the kth sequential observer performs projective measure-
ments, i.e., γk = 1, we have

2n−1 > m log2 k. (24)

For any given m and k, there may be a suitable n that sat-
isfies Eq. (24). That is to say, in any m-sided sequential
measurement scenario, there exists a suitable n such that the
kth sequential observer on each of m sides can share the
non-(2n − 2)-locality with all non-S nodes. Hence, when n is
arbitrarily large, k is unbounded. We also find that when n is
fixed, the smaller m indicates the greater k.

Since the lower bound of γk , which depends on n and m, in
Eq. (22) is an approximate solution, it is interesting to explore
the direct relationship among k, m, and n. We define the criti-
cal value γ ∗

j of the sharpness parameter γ j , which is the maxi-

mum value that satisfies the inequality S( j,..., j,1,...,1)
(2n−2)−local � 1 for all

j ∈ {1, . . . , k}. Then S( j,..., j,1,...,1)
(2n−2)−local > 1 as long as γ j > γ ∗

j .

Taking x = 2− 2n−2

m (0 < x � 1√
2

), we will discuss the spe-
cific value of k for different ranges of x.

(1) k = 2, i.e., there are at most two sequential observers
on each of m sides. Let us consider the critical values of γ1,
γ2, and γ3. Using Eqs. (19) for k = 3, we have

γ ∗
1 = x2,

γ ∗
q+1 = 2γ ∗

q

1 +
√

1 − γ ∗
q

2
, q ∈ {1, 2}. (25)

As shown in Fig. 3(a), taking x1 = 1√
2
, both γ ∗

1 and γ ∗
2

are less than 1 for all x ∈ (0, x1]. Hence, there are at least
two sequential observers per sequential side. As illustrated

FIG. 3. Critical values of sharpness parameters of sequential
observers on each side required for violating the (2n − 2)-local in-
equality. (a) Plot of γ ∗

1 and γ ∗
2 with blue and red lines, respectively.

(b) Plot of γ ∗
1 , γ ∗

2 , γ ∗
3 , and γ ∗

4 , with blue, red, green, and black lines,
respectively. Points A1, B1, and C1 represent the intersection points
of γ ∗

3 , γ ∗
2 , and γ ∗

1 , respectively, and x = x2. Points A2, B2, C2, and D2

represent the intersection points of γ ∗
4 , γ ∗

3 , γ ∗
2 , and γ ∗

1 , respectively,
and x = x3.

in Fig. 3(b), when γ ∗
3 = 1, we obtain γ ∗

2 = 0.8, γ ∗
1 = 0.6897,

and x2 = γ ∗
1 = 0.6897. As γ ∗

3 is a monotonically increasing
function of x, when x � x2, γ ∗

3 is an invalid value, i.e., γ ∗
3 � 1.

Therefore, for all x ∈ [x2, x1], there are at most two sequential
observers per sequential side.

(2) k = 3, i.e., there are at most three observers on each of
m sides. Let us consider the critical values of γ1, γ2, γ3, and
γ4. Using Eqs. (19) for k = 4, we have

γ ∗
1 = x3,

γ ∗
q+1 = 2γ ∗

q

1 +
√

1 − γ ∗
q

2
, q ∈ {1, 2, 3}. (26)

As shown in Fig. 3(b), for any x < x2, γ ∗
1 , γ ∗

2 , and γ ∗
3 are

less than 1. It implies that there are at least three sequential ob-
servers per sequential side for x ∈ (0, x2). When γ ∗

4 = 1, we
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TABLE I. Ranges of m(n) for any k, where m(∈ N+) is the num-
ber of S nodes. For a fixed k and n, the range of m may not include a
positive integer; it implies that the number k of sequential observers
can be achieved by the positive integer obtained by rounding down
the lower bound of the range.

k m

2 2.0000 × 2n−2 � m � 1.8655 × 2n−2

3 1.8655 × 2n−2 > m � 1.4324 × 2n−2

4 1.4324 × 2n−2 > m � 1.2062 × 2n−2

5 1.2062 × 2n−2 > m � 1.0649 × 2n−2

6 1.0649 × 2n−2 > m � 0.9672 × 2n−2

7 0.9672 × 2n−2 > m � 0.8948 × 2n−2

8 0.8948 × 2n−2 > m � 0.8388 × 2n−2

9 0.8388 × 2n−2 > m � 0.7939 × 2n−2

10 0.7939 × 2n−2 > m � 0.7569 × 2n−2

· · · · · ·
29 0.5075 × 2n−2 > m � 0.5016 × 2n−2

30 0.5016 × 2n−2 > m � 0.4960 × 2n−2

31 0.4960 × 2n−2 > m � 0.4906 × 2n−2

· · · · · ·

have γ ∗
3 = 0.8, γ ∗

2 = 0.6897, γ ∗
1 = 0.6164, and x3 = 0.6164.

When x � x3, γ ∗
4 is an invalid value, i.e., γ ∗

4 � 1. Similarly,
for all x ∈ [x3, x2), there are at most three sequential observers
on each of m sides.

(3) Repeating this procedure, we obtain a sequence of xk ,
k ∈ {1, 2, 3, . . .} in the following:

x1 = 0.7071,

x2 = 0.6897,

xk = 4xk−1

4 + xk−1
2
, k = 3, . . . . (27)

When x ∈ [xk, xk−1), there are at most k observers per sequen-

tial side. Since x = 2− 2n−2

m , we get m = − 2n−2 log 2
log x , the direct

relationship among k, m, and n. As shown in Table I, given a
finite n, we can explicitly obtain the number k of sequential
observers for different m-sided cases.

When n = 2, as illustrated in Table II, we have the fol-
lowing: (1) When m = 2, there are at most two observers.
(2) When m = 1, there are at most six observers. This is
coincident with the result derived in Refs. [30,32]. For the case
of k = 7, the range of m does not include a positive integer.
Then the lower bound 0.8948 rounds down to 0. This implies

TABLE II. Ranges of m for any k when n = 2.

k m

2 2.0000 � m � 1.8655
3 1.8655 > m � 1.4324
4 1.4324 > m � 1.2062
5 1.2062 > m � 1.0649
6 1.0649 > m � 0.9672
7 0.9672 > m � 0.8948

FIG. 4. Network nonlocality sharing under four-sided sequential
measurements in the two-forked three-layer tree-shaped network.
There exist k sequential observers on Alice3i’s side for i ∈
{1, 2, 3, 4}. Each Alice3i

j , j ∈ {1, . . . , k − 1} performs unsharp mea-
surements, and Alice3i

k performs projective measurements.

that network nonlocality cannot be shared under one-sided
and two-sided sequential measurements.

IV. NETWORK NONLOCALITY SHARING
IN THE THREE-LAYER TREE-SHAPED NETWORK

To further illustrate our results for a finite n, we consider
network nonlocality sharing in the two-forked three-layer
tree-shaped network, which is composed of seven spatially
separated nodes (Alice11, Alice21, Alice22, Alice31, Alice32,
Alice33, Alice34) and six sources (S1, S2, S3, S4, S5, S6), as
illustrated in Fig. 4. Alice3i (Alice3i

1 , i ∈ {1, 2, 3, 4}) is an S
node, while Alice11, Alice21, and Alice22 are non-S nodes.
Multiple independent Alice3is (say, Alice3i

1 , . . . , Alice3i
k ) mea-

sure their shared qubit sequentially for i = 1, 2, 3, 4.
Similarly to Theorem 1, we can obtain the expected value

of S(k,k,k,k)
6−local .

Corollary 1. For the initial state ρ (1,1,1,1) = ρAB1 ⊗ ρAB2 ⊗
ρB1C1 ⊗ ρB1C2 ⊗ ρB2C3 ⊗ ρB2C4 , where ρAB1 = ρAB2 = ρB1C1 =
ρB1C2 = ρB2C3 = ρB2C4 = |ψ〉〈ψ |, |ψ〉 = |00〉+|11〉√

2
, the ex-

pected S6−local value of ρ (k,k,k,k) is given by

S(k,k,k,k)
6−local =

√
2 4

√√√√√√
4∏

i=1

⎛
⎜⎝γ 3i

k

k−1∏
j=1

1 +
√

1 − (
γ 3i

j

)2

2

⎞
⎟⎠. (28)

In the four-sided sequential measurement scenario, we as-
sume that γ 31

j = γ 32
j = γ 33

j = γ 34
j = γ j , j ∈ {1, . . . , k}. To

find γ j and the maximum value of k for the number of se-
quential observers such that S( j, j, j, j)

6−local > 1 for all j ∈ {1, . . . , k}
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TABLE III. Ranges of m for any k when n = 3.

k m

2 4.0000 � m � 3.7310
3 3.7310 > m � 2.8648
4 2.8648 > m � 2.4124
5 2.4124 > m � 2.1298
6 2.1298 > m � 1.9344
7 1.9344 > m � 1.7896

· · · · · ·
29 1.0150 > m � 1.0032
30 1.0032 > m � 0.9920
31 0.9920 > m � 0.9812
· · · · · ·

is necessary. From Eq. (28), we obtain

γ1 >
1√
2
,

γ j >
2γ j−1

1 +
√

1 − γ 2
j−1

, j = 2, . . . , k. (29)

The critical values of γ1, γ2, and γ3 are γ ∗
1 = 0.7071, γ ∗

2 =
0.8284, and γ ∗

3 = 1.0620, respectively. This implies that at
most two sequential observers on each Alice3i (i = 1, 2, 3, 4)
side can share the non-6-locality through the violation of the
6-local inequality in Eq. (6) with all non-S nodes. In the
m-sided (m = 1, 2, 3) sequential measurement case, Alice31,
. . . , Alice3m are S nodes, while all other nodes are non-S
nodes. Similarly, we can obtain the first invalid value in the
m-sided (m = 1, 2, 3) cases, respectively: (1) m = 3, γ ∗

4 =
1.0699; (2) m = 2, γ ∗

7 = 1.1354; (3) m = 1, γ ∗
31 = 1.3574.

This implies that at most 3, 6, and 30 sequential observers on
each S node can share the non-6-locality through the violation
of the 6-local inequality in Eq. (6) with all non-S nodes in
three-sided, two-sided, and one-sided cases, respectively.

As illustrated in Table III, when n = 3, the above result
of network nonlocality sharing in the two-forked three-layer
tree-shaped network can be directly obtained.

V. CONCLUSION

As a powerful resource in quantum networks, network non-
locality has been applied in various information processing
tasks. Unlike the typical Bell scenario, the set of local corre-
lations in the network is nonconvex, rendering the detection
and sharing of network nonlocality more challenging. In this

work, the phenomenon of quantum network nonlocality shar-
ing in the two-forked n-layer tree-shaped network via arbitrary
m-sided (m ∈ {1, 2, . . . , 2n−1}) sequential measurements has
been discussed.

In the general case involving n layers, given an arbitrary
m there exists a suitable n that enables a maximum value of
k(n, m) independent observers per sequential side to share
the non-(2n − 2)-locality. Especially, when n is sufficiently
large, an unbounded number of independent observers per
sequential side can simultaneously share the non-(2n − 2)-
locality. When n is finite, we have respectively obtained a
range of m for any k ∈ {2, 3, . . . }. This allows for the direct
determination of how many observers can share the non-
(2n − 2)-locality when the values of n and m are known. In
the simple special case of n = 2, our scenario backs to the
bilocal scenario, and the result matches those in Refs. [30,32].
Furthermore, we can also provide distinct combinations of m
and n for a specific number of observers.

To further illustrate our conclusion regarding the finite n
situation, we have considered the case of n = 3 via arbi-
trary m-sided (m = 1, 2, 3, 4) sequential measurements, and
demonstrated that the non-6-locality can be shared by, at most,
30, 6, 3, and 2 sequential observers on each sequential side,
respectively. This indicates that as m increases, the quantity
of sequential observers decreases.

Based on the premise that each source emits a maximally
entangled two-qubit state, our work presents a framework for
sharing network nonlocality within a two-forked tree-shaped
network. Conceptually, our framework facilitates the analysis
of nonlocality sharing in this network configuration, applica-
ble to any pure or mixed two-qubit entangled state. It also
enhances the generalization and realization of known appli-
cations found in typical nonlocality sharing scenarios, such as
randomness certification.

The experimental demonstration of the nonlocality sharing
has been realized by Hu et al. [37], which achieved double
Bell inequality violations introduced in Ref. [23] under a
state visibility of (99.70 ± 0.06) percent. Our research ad-
vances the implementation of network nonlocality sharing in
two-forked tree-shaped networks. As our work incorporates
much more observers, the visibility requirement may exceed
99.70%. This should be carefully considered for the subse-
quent verification experiment.
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APPENDIX: PROOF OF THEOREM 1

We provide detailed proof of Theorem 1, according to the expression of Eq. (6), the expected S(k,...,k)
(2n−2)−local value of ρ (k,...,k) can

be given in the following:

S(k,...,k)
(2n−2)−local = 2n−1

√∣∣I (k,...,k)
0,...,0

∣∣ + 2n−1
√∣∣I (k,...,k)

1,...,1

∣∣, (A1)
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where

I (k,...,k)
0,...,0 = 1

22n−1

∑
xn1,...,xn2n−1

〈
A11

0 . . . A(n−1)2n−2

0 An1
xn1 . . . An2n−1

xn2n−1

〉
(A2)

and

I (k,...,k)
1,...,1 = 1

22n−1

∑
xn1,...,xn2n−1

(−1)xn1+···+xn2n−1 〈
A11

1 . . . A(n−1)2n−2

1 An1
xn1 . . . An2n−1

xn2n−1

〉
. (A3)

Next, using the state ρ (k,...,k) in Eq. (13), the value of I (k,...,k)
0,...,0 can be calculated:

I (k,...,k)
0,...,0 = 1

22n−1

〈
A11

0 · · · A(n−1)2n−2

0

(
An1

k,0 + An1
k,1

) · · · (An2n−1

k,0 + An2n−1

k,1

)〉

= 1

22n−1 Tr[(σz ⊗ σz )ρA11A21 ] · · · Tr[(σz ⊗ σz )ρA(n−2)2n−3 A(n−1)2n−2 ]

×
2n−2∏
s=1

2s∏
i=2s−1

Tr
[
σz ⊗ (

Ani
k,0 + Ani

k,1

)
ρ

(k)
A(n−1)sAni

]

= 1

22n−1

2n−2∏
s=1

2s∏
i=2s−1

Tr
[
σz ⊗ (

Ani
k,0 + Ani

k,1

)
ρ

(k)
A(n−1)sAni

]
. (A4)

Now consider the quantity Tr[σz ⊗ (Ani
k,0 + Ani

k,1)ρ (k)
A(n−1)sAni ]. Using Eq. (14) and the identity

√
Ani

k−1,ani
k−1|xni

k−1
= 1

2
√

2

(√
1 + γ ni

k−1 −
√

1 − γ ni
k−1

)
I + 1

2
√

2
(−1)ani

k−1
(√

1 + γ ni
k−1 −

√
1 − γ ni

k−1

)
Ani

xni
k−1

, (A5)

we can get

Tr
[
σz ⊗ (

Ani
k,0 + Ani

k,1

)
ρ

(k)
A(n−1)sAni

] = γ ni
k Tr

[
σz ⊗ (

Ani
0 + Ani

1

)
ρ

(k)
A(n−1)sAni

]

= γ ni
k

1 +
√

1 − (
γ ni

k−1

)2

2
Tr

[
σz ⊗ (

Ani
0 + Ani

1

)
ρ

(k−1)
A(n−1)sAni

]
. (A6)

By recursion, we have

Tr
[
σz ⊗ (

Ani
k,0 + Ani

k,1

)
ρ

(k)
A(n−1)sAni

] =
√

2γ ni
k

k−1∏
j=1

1 +
√

1 − (
γ ni

j

)2

2
Tr

[
σz ⊗ σzρ

(1)
A(n−1)sAni

]

=
√

2γ ni
k

k−1∏
j=1

1 +
√

1 − (
γ ni

j

)2

2
. (A7)

Substituting Eq. (A7) into Eq. (A4), we obtain

I (k,...,k)
0,...,0 = 1

(
√

2)2n−1

2n−1∏
i=1

⎛
⎜⎝γ ni

k

k−1∏
j=1

1 +
√

1 − (
γ ni

j

)2

2

⎞
⎟⎠. (A8)

Similarly, we get

I (k,...,k)
1,...,1 = 1

(
√

2)2n−1

2n−1∏
i=1

⎛
⎜⎝γ ni

k

k−1∏
j=1

1 +
√

1 − (
γ ni

j

)2

2

⎞
⎟⎠. (A9)

Substituting Eq. (A8) and Eq. (A9) into Eq. (A1), the expected S(k,...,k)
(2n−2)−local value is given by

S(k,...,k)
(2n−2)−local =

√
2 2n−1

√√√√√√
2n−1∏
i=1

⎛
⎜⎝γ ni

k

k−1∏
j=1

1 +
√

1 − (γ ni
j )2

2

⎞
⎟⎠. (A10)
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