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Wigner non-negative states that verify the Wigner entropy conjecture
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We present further progress, in the form of analytical results, on the Wigner entropy conjecture set forth
by Van Herstraeten and Cerf [Phys. Rev. A 104, 042211 (2021)] and Hertz et al. [J. Phys. A: Math. Theor.
50, 385301 (2017)]. Said conjecture asserts that the differential entropy defined for non-negative, yet physical,
Wigner functions is minimized by pure Gaussian states while the minimum entropy is equal to 1 + ln π . We
prove this conjecture for the qubits formed by Fock states |0〉 and |1〉 that correspond to non-negative Wigner
functions. In particular, we derive an explicit form of the Wigner entropy for those states lying on the boundary
of the set of Wigner non-negative qubits. We then consider general mixed states and derive a sufficient condition
for the conjecture’s validity. Lastly, we elaborate on the states which are in accordance with our condition.
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I. INTRODUCTION

Uncertainty relations are of fundamental interest in quan-
tum information theory. They are closely related to the
wave-particle duality in quantum mechanics and also illustrate
one of the essential differences between quantum and clas-
sical mechanics. Furthermore, uncertainty relations directly
put constraints on the precision of measurements and indicate
inherent limitations in our understanding of quantum systems.

The exploration of uncertainty relations traces back to the
foundational Heisenberg uncertainty principle [1], in which
the variance of the quadrature operators q̂ and p̂ is used as the
quantifier of uncertainty. Later studies on uncertainty relations
resulted in a natural generalization of classical information-
related entropies to quantum systems (for an overview of
entropic uncertainty relations see, for example, Refs. [2,3]). In
Ref. [4] an entropic uncertainty relation has been presented,
setting a lower bound on the summation of the Shannon
entropy of the probability distribution function (PDF) of the
position and the Shannon entropy of the PDF of the momen-
tum of a quantum system. Said lower bound is stronger than
the Heisenberg uncertainty relation. Furthermore, considering
the subadditivity of Shannon’s differential entropy, one can
expect that the entropy of the joint distribution of q and p, i.e.,
of the Wigner function, will induce an even stronger bound,
which would nevertheless imply the bound in Ref. [4].

The Wigner entropy S[W ] is defined in Refs. [5–7] as the
differential Shannon entropy of the Wigner function W (q, p)
of the state with non-negative Wigner function (not necessar-
ily corresponding to a classical state),

S[W ] = −
∫

dqd pW (q, p) ln W (q, p). (1)

It possesses several properties [5] such as additivity (for
product states) and, unlike the Wehrl entropy [8], invari-
ance under symplectic transformations. The Wigner entropy
has been used in the analysis of noisy polarizers [9], high-

energy physics [10], and nonequilibrium field theory [11]. In
a broader view, phase space methods exploring the properties
of quantum states are always of current interest; see, for ex-
ample, Refs. [12–14]. In this work, we focus on the following
conjecture, presented in Refs. [5–7],

Conjecture 1. For any Wigner non-negative state,

S[W ] � 1 + ln π, (2)

while the lower bound is attained by any pure Gaussian state.
It is known that the marginals of the Wigner function

coincide with probability densities of q and p, denoted as
Pq = ∫

d pW (q, p) and Pp = ∫
dqW (q, p), respectively. As

discussed before, the Bialynicki-Birula-Mycielski inequality
[4] and the subadditivity of Shannon’s differential entropy
give

S[Pq] + S[Pp] � 1 + ln π, (3)

S[Pq] + S[Pp] � S[W ]. (4)

If Conjecture 1 is true, inequalities (3) and (4) can be written
as

S[Pq] + S[Pp] � S[W ] � 1 + ln π, (5)

i.e., we get a stronger entropic uncertainty relation for Wigner
non-negative states.

In Ref. [5], Conjecture 1 was proven analytically for pas-
sive states, i.e., states whose Fock basis representation has
the form ρ̂p = ∑∞

n=0 qn|n〉〈n| under the condition qn+1 � qn,
where qn are probabilities (non-negative real numbers satisfy-
ing

∑∞
n=0 qn = 1), and provided seminumerical evidence for

states that can be produced by mixing Wigner non-negative
states in a balanced beam splitter. In this paper, we prove
analytically Conjecture 1 for (1) qubits in the basis {|0〉, |1〉},
where |0〉 and |1〉 are Fock states, and (2) general mixed states
which are Wigner non-negative and satisfy a sufficient condi-
tion. Throughout the paper we consider single-mode states.
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It is worthwhile to mention that recent progress has been
made in similar conjectures relating to the family of Rényi
entropies for non-negative Wigner functions [15,16].

This paper is organized as follows: In Sec. II, we analyze
the conditions for any qubit in the basis {|0〉, |1〉} to have a
non-negative Wigner function. We then demonstrate that the
Wigner entropy attains its minimum on the boundary of the
Wigner non-negative set as defined by the derived condition.
We explicitly derive the form of the Wigner entropy for these
states and indeed verify that the lower bound of the Wigner
entropy of such Wigner non-negative qubits matches the one
of Conjecture 1. In Sec. III, we consider the more general case
of any mixed state and derive a sufficient condition such that
Wigner non-negative states satisfy the lower bound stated in
Conjecture 1. In Sec. IV, by showing a few concrete examples,
we demonstrate that the set of states in accordance with our
condition is nonempty and distinct from the set described in
Ref. [5]. Finally, in Sec. V we summarize our results very
briefly and we discuss future directions.

II. QUBIT STATES

We denote the matrix representation of the density operator
of a qubit formed by Fock states |0〉 and |1〉 in Bloch ball
representation as

ρ = 1
2 (I + r1σx + r2σy + r3σz ), (6)

where {σx, σy, σz} are the Pauli matrices,

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (7)

I is the identity matrix, and ri ∈ [−1, 1] for i = 1, 2, 3 satisfy

r2
1 + r2

2 + r2
3 � 1. (8)

Following standard procedures (e.g., the compact formulation
presented in Ref. [17, Sec. 1.5]), we can find the Wigner
function corresponding to Eq. (6) to be

W (q, p) = 1

π
e−q2−p2

[(q2 + p2)(1 − r3)

+
√

2r1q +
√

2r2 p + r3]. (9)

Since Eq. (6) under condition (8) represents a physical state,
the Wigner function of Eq. (9) is naturally physical under the
same condition. However, we need to identify a condition on
ri, i = 1, 2, 3, such that Eq. (9) also represents a non-negative
Wigner function. To this end, we require W (q, p) � 0 and we
derive the following condition by completing the squares with
respect to q and p in the polynomial part of Eq. (9):

2
(
r2

1 + r2
2

) + (1 − 2r3)2 � 1. (10)

Under the conditions of Eqs. (8) and (10), we are able to ana-
lyze whether Conjecture 1 is true for the qubit case. However,
some observations leading to simplifications are due.

First, the Wigner entropy is invariant under symplectic
transformations. Therefore, we can set r2 = 0 in Eq. (9) since
arbitrary values of r2 correspond to optical phase shifts, i.e.,
a Gaussian unitary transformation [18] (optical phase shifting
corresponds to a symplectic transformation on phase space).

FIG. 1. The Bloch ball (yellow with black mesh lines), as de-
fined by the |0〉 and |1〉 Fock vectors, contains all physical states,
even those corresponding to partly negative Wigner functions. The
ellipsoid (red with white mesh lines) contains physical states whose
Wigner function is non-negative. States that belong to the same
latitude are equivalent up to an optical phase. Therefore, it suffices to
look only at states contained in the intersection of the disk (shown in
blue) and the ellipsoid [the region defined by Eq. (13)], i.e., physical
states with non-negative Wigner functions. In fact, it suffices to
consider only states contained in said elliptical region only on the left
of (or on the right of) the line depicting the |0〉 vector. This is because
symmetric states with respect to the upward vector are equivalent up
to an optical phase shifting.

Therefore, the Wigner function and the conditions we con-
sider, respectively, become

W13(q, p) = 1

π
e−q2−p2

[(q2 + p2)(1 − r3) +
√

2r1q + r3],

(11)

r2
1 + r2

3 � 1, (12)

2r2
1 + (1 − 2r3)2 � 1. (13)

The Bloch ball with the Wigner non-negative regions of
our system is depicted in Fig. 1.

Second, for any fixed q, p, r3, the second derivative on
−W13(q, p) ln W13(q, p) with respect to r1 gives

∂2

∂r2
1

{−W13(q, p) ln[W13(q, p)]} = −2q2e−2q2−2p2

π2W13(q, p)
� 0,

(14)

implying that the Wigner entropy is concave with respect to
r1 due to the linearity of integration in Eq. (1). Thus, the
minimum of the Wigner entropy can only exist at some point
along the boundary defined by condition (13), i.e.,

2r2
1 + (1 − 2r3)2 = 1. (15)

Finally, using Eq. (15), we simplify further Eq. (11),

W ±
3 (q, p) = 1

π
e−q2−p2

[(q2 + p2)(1 − r3)

± 2q
√

r3(1 − r3) + r3], (16)
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FIG. 2. The Wigner entropy S[W13] numerically evaluated for
20 000 unique choices of (r1, r3), compatible with Eqs. (12) and (13).
The border of the surface is the Wigner entropy S[W ±

3 ] [its analytical
expression is given in Eq. (18)], while the upper point corresponds to
the maximally mixed state 1

2 |0〉〈0| + 1
2 |1〉〈1| and lower point corre-

sponds to |0〉. The concavity with respect to r1 and the minimization
of the Wigner entropy are proven analytically in the main text.

where the ± corresponds to the two possible solutions of
Eq. (15) with respect to r1. Both Wigner functions of Eq. (16)
are equivalent up to an optical phase. Therefore, they corre-
spond to the same Wigner entropy. We choose to work with
W +

3 (q, p),

W3(q, p) ≡ W +
3 (q, p). (17)

The explicit form of the Wigner entropy on the boundary
defined by Eq. (15) (see Appendix A) is

Sb ≡ S[W ±
3 ] = e− r3

1−r3 (1 − r3) + r3 + ln
π

r3

+ Ei

(
− r3

1 − r3

)
, (18)

where Ei(x) = ∫ x
−∞ dt et

t is the exponential integral function
and the subscript b denotes that we work on the boundary of
the Wigner non-negative qubits. In Fig. 2, we plot the Wigner
entropy S[W13]. We find that the entropy Sb is minimized at
r3 = 1 and its minimum value is 1 + ln π , which is consistent
with Conjecture 1. For r3 = 1 and r2 = 0, per Eq. (8) we get
r1 = 0, which means that the state minimizing the Wigner
entropy is |0〉, which is the only pure Gaussian state in the
Bloch ball. The details on the minimization are provided in
Appendix A.

III. A SUBSET OF WIGNER NON-NEGATIVE STATES

In this section, for a restricted set of physical and Wigner
non-negative (in general mixed) states ρ̂, we find that the
Wigner entropy is in accordance with Conjecture 1.

Let k ∈ R and k � 1. For any non-negative Wigner func-
tion W (q, p), we define the functional,

μk[W ] = kπ k−1
∫

dqd pW k (q, p). (19)

We note that μ1[W ] = 1 (normalization) and μ2[W ] is the pu-
rity of the state corresponding to the Wigner function W (q, p).
We pose the following conjecture:

Conjecture 2.

∂μk[W ]

∂k

∣∣∣∣
k→1

� 0. (20)

The left-hand side of Eq. (20) is equal to 1 + ln π − S[W ].
Therefore, Conjecture 2 is equivalent to Conjecture 1. As
discussed before, for k = 1 we get the normalization property
of Wigner functions,

μ1[W ] =
∫

d pdqW (q, p) = 1. (21)

Therefore, Conjecture 2 is true if the following sufficient
condition holds:

μk[W ] � 1 (22)

for k ∈ R and k � 1. Furthermore, utilizing the fact that∫
dqd pW k

0 (q, p) = 1

kπ k−1
, (23)

where W0(q, p) denotes the Wigner function of |0〉, we can
rewrite Eq. (22) as

νk[W ] � νk[W0], (24)

where

νk[W ] =
∫

dqd pW k (q, p) (25)

for k ∈ R and k � 1.
We now derive a sufficient condition such that Eq. (24) is

true. For any (generally mixed) state ρ̂, its Wigner function
has the form (see Appendix B)

W (q, p) = W0(q, p)P(q, p), (26)

where P(q, p) = ∑∞
a,b=0 cabqa pb is a polynomial in q, p. To

prove Eq. (26), one can start by writing ρ̂ on the Fock basis
and then calculate the generic Wigner function using well-
known methods (see, for example, Ref. [17]). Since Wigner
functions are real-valued, cab ∈ R for any (a, b) ∈ N2. We
introduce coefficients c̃ab such that Eq. (26) is rewritten as

W (q, p) = W0(q, p)
∞∑

a,b=0

π c̃ab

�
(

1+a
2

)
�

(
1+b

2

)qa pb, (27)

where �(x) = ∫ ∞
0 sx−1e−sds and since W (q, p) is normalized,

the coefficients c̃ab must satisfy
∞∑

a,b=0

c̃ab = 1. (28)

We define Fab(q, p) as

Fab(q, p) = W0(q, p)
π

�
(

1+a
2

)
�

(
1+b

2

)qa pb. (29)
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In Appendix C we prove that

‖F‖k
k � νk[W0], (30)

where ‖F‖k = (
∫

dqd p|Fab(q, p)|k )
1
k for any (a, b) ∈ N2 and

k ∈ R and k � 1.
Let us impose the following condition:
Condition 1.

∞∑
a,b=0

|c̃ab| = 1.

For a non-negative Wigner function W (q, p) satisfying
Condition 1, we utilize Eq. (30) and the triangle inequality
to get

νk[W ] ≡ ‖W ‖k
k �

⎡
⎣ ∞∑

a,b=0

|c̃ab|‖Fab(q, p)‖k

⎤
⎦

k

(31)

�

⎡
⎣ ∞∑

a,b=0

|c̃ab|(νk[W0])
1
k

⎤
⎦

k

(32)

= [(νk[W0])
1
k ]k = νk[W0]. (33)

Therefore, Condition 1 is a sufficient condition for Conjecture
2 and thus Conjecture 1 to hold.

IV. EXAMPLES

We provide a few examples demonstrating that the set of
states satisfying our conditions is nonempty and distinct from
the set of passive states explored in Ref. [5]. In particular, we
give three examples to show how the set of states explored in
Sec. III intersects with both the sets of passive states and of
Fock-diagonal states.

Example 1. Consider states of the form p0|0〉〈0| + p1|1〉〈1|
with 0 � pi � 1, i = 0, 1, and

∑1
i=0 pi = 1. All states of this

form which additionally satisfy p1 � 1
2 (e.g., passive states)

satisfy Condition 1.
Example 2. Consider states of the form p0|0〉〈0| +

p1|1〉〈1| + p2|2〉〈2| with 0 � pi � 1, i = 0, 1, 2, and∑2
i=0 pi = 1. All such states with

p1 � 1
2 , (34)

p1 − 2p2 � 0 (35)

satisfy Condition 1. This set of states does not necessarily
include passive states. For example, for

p0 = p2 = 1
4 , (36)

p1 = 1
2 (37)

the state is not passive but still satisfies Condition 1 and thus
satisfies Conjecture 1.

Example 3. Consider the state of p0|0〉〈0| + p1|1〉〈1| +
p2|2〉〈2| + p3|3〉〈3| with 0 � pi � 1, i = 0, 1, 2, 3, and∑3

i=0 pi = 1. All such states with

p1 − 2p2 + 3p3 � 0, (38)

p2 − 3p3 � 0, (39)

p0 + p2 � 1
2 (40)

FIG. 3. Graphical explanation of the relation between the states
satisfying Condition 1, passive and (more generally) Fock-diagonal
states.

satisfy Condition 1. We note that when p0 = p1 = p2 = p3 =
1
4 , the state is passive but does not satisfy Condition 1.

From the examples above, we observe that our set only
intersects with the set of passive states but does not contain
it. Moreover, it directly follows that if a state is Fock-diagonal
and Wigner non-negative, the state is not necessarily in com-
pliance with Condition 1. In Appendix D, we delve deeper
into the relationship between our set and the set of Fock-
diagonal states. We find that our Condition 1 does not imply
that a state ρ̂ is Fock-diagonal but it does imply it when
ρn,m = 0 if |n − m| is odd, where ρn,m is the element of the
matrix representation of ρ̂ on the Fock basis.

V. CONCLUSIONS

In this paper, we proved that the newly introduced Con-
jecture 1 [5–7] holds true for two cases: for (generally mixed)
qubits formed by Fock states |0〉 and |1〉 and for states that sat-
isfy Condition 1. Therefore, for Wigner non-negative states,
we presented progress toward a stronger position-momentum
uncertainty relation compared to the one derived in the semi-
nal work [4] and expanded the results of Ref. [5]. Moreover,
the entropic uncertainty relation considered in this work,
subsumes [5] the Wehrl entropy inequality for the always
non-negative Q functions. We note that the Wehrl entropy
is minimized for coherent states while it is not in general
invariant under symplectic transformations, e.g., the Wehrl
entropy of a coherent state and a squeezed state are not in
general equal.

The relationship between the set defined by Condition 1
and the sets of passive states and Fock-diagonal states is
depicted in Fig. 3. The difficulty of proving Conjecture 1
for all W (q, p) � 0 lies in lacking a computationally useful
criterion for Wigner non-negativity which also excludes non-
physical states: the condition W (q, p) � 0 merely imposes
non-negativity on the the function, while one would need to
take into account the condition∫

dqd pW (q, p)W|ψ〉(q, p) � 0 (41)
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for all pure states |ψ〉, as well to ensure that W (q, p) cor-
responds to a physical state. One way forward could be to
consider a set of functions W̃ (q, p) that includes all physical
Wigner functions, plus a subset of functions that are non-
negative but do not correspond to physical states. For example,
this can be done by considering only a (convenient) subset
of pure states satisfying Eq. (41). We note that an approach
leading to the conclusion that the Wigner non-negative state
minimizing the Wigner entropy is a pure state would prove
Conjecture 1 in general. This would be an immediate con-
sequence of Hudson’s theorem stating that any pure state
with a non-negative Wigner function is necessarily a Gaussian
state [19].

Lastly, we envision future works elaborating on Conjecture
1 for states defined across multiple modes, entropy power
inequalities [3], or even on the properties for the complex-
valued Wigner entropy, i.e., for partly negative Wigner
functions, in the direction of Refs. [7,20,21].
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APPENDIX A: MINIMIZATION OF EQ. (18)

In this Appendix, we prove that the Wigner entropy Sb of
Eq. (18) attains its minimum at r3 = 1 and the corresponding
value is 1 + ln π .

Under the change of variables,

q′ =
√

1 − r3q and p′ =
√

1 − r3 p, (A1)

and using the condition of Eq. (15), Eq. (17) and its corre-
sponding Wigner entropy become

W ′
3 (q′, p′) = 1

π
e− q′2+p′2

1−r3 [p′2 + (q′ + √
r3)2], (A2)

Sb ≡ S[W ′
3] = − 1

1 − r3

∫
dq′d p′W ′

3 ln(W ′
3 ). (A3)

With further change of variables,

q′ = R sin θ and p′ = R cos θ, (A4)

satisfying dq′d p′ = RdRdθ , Eq. (A2) becomes,

W ′′
3 (R, θ ) = 1

π
e− R2

1−r3 [R2 + 2
√

r3R sin θ + r3], (A5)

and the Wigner entropy Sb of Eq. (A3) in the new variables
can be computed as

Sb ≡ S[W ′′
3 ] = − 1

1 − r3

∫ ∞

0

∫ 2π

0
dRdθR

1

π
e− R2

1−r3 (R2 + 2
√

r3R sin θ + r3) ln(W3) (A6)

= − 1

1 − r3

∫ ∞

0

∫ 2π

0
dRdθR

1

π
e− R2

1−r3 (R2 + 2
√

r3R sin θ + r3)

[(
− ln π − R2

1 − r3

)
+ ln(R2 + r3 + 2

√
r3R sin θ )

]
(A7)

= − 1

1 − r3

∫ ∞

0

∫ 2π

0
dRdθR

1

π
e− R2

1−r3

{
(R2 + r3)

(
− ln π − R2

1 − r3

)
(A8)

+ 2
√

r3R sin θ

(
− ln π − R2

1 − r3

)
+ (R2 + r3) ln(R2 + r3 + 2

√
r3R sin θ )

+ 2
√

r3R sin θ ln(R2 + r3 + 2
√

r3R sin θ )

}
. (A9)

We have the following useful relations pertaining to the previ-
ous integrals:

∫ 2π

0
dθ sin θ = 0, (A10)∫ 2π

0
dθ ln(R2 + r3 + 2

√
r3R sin θ )

= 2π

(
ln

R2+ r3

2
+ ln

R2 + r3+
√

(R2 − r3)2

R2 + r3

)
, (A11)

∫ 2π

0
dθ sin θ ln(R2 + r3 + 2

√
r3R sin θ )

= 2π
R2 + r3 −

√
(R2 − r3)2

2
√

r3R
, (A12)

which when used in Eq. (A9) obtains

Sb = 2e− r3
1−r3 (1 − r3) + r3 − 2U

1 − r3
, (A13)

where

2U

1 − r3
= −e− r3

1−r3 (r3 − 1) − Ei

(
r3

−1 + r3

)
− ln

π

r3
. (A14)

Therefore,

Sb = e− r3
1−r3 (1 − r3) + r3 + ln

π

r3
+ Ei

(
− r3

1 − r3

)
. (A15)
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Then, we calculate the derivative

d

dr3
Sb = e− r3

1−r3
r3 − 2

1 − r3
+ 1 − 1

r3
+ e− r3

1−r3

r3(1 − r3)
(A16)

= e− r3
1−r3

r2
3 − 2r3 + 1

r3(1 − r3)
− 1 − r3

r3
(A17)

= e− r3
1−r3

1 − r3

r3
− 1 − r3

r3
(A18)

= 1 − r3

r3
(e− r3

1−r3 − 1) (A19)

� 0. (A20)

It is clear that d
dr3

Sb = 0 is only possible when r3 = 0, 1. By
L’Hôpital’s rule, we have

limr3→0
(1 − r3)(e− r3

1−r3 − 1)

r3
= 1 + e

− r3
1−r3 (r3−2)

1−r3

1
= −1,

(A21)

limr3→1
(1 − r3)(e− r3

1−r3 − 1)

r3
= 0(0 − 1)

1
= 0. (A22)

Therefore, we conclude that Sb obtains its minimum value
1 + ln π at r3 = 1.

APPENDIX B: PROOF OF EQ. (26)

In this Appendix, we prove that the Wigner function
W (q, p) for any N-mode, generally mixed state ρ̂ can be
written as W (q, p) = W0(q, p)P(q, p), and we give the ex-
pressions for W0(q, p) and P(q, p).

We write the state ρ̂ on the Fock basis

ρ̂ =
∑
n,m

cnm|n〉〈m|, (B1)

where |n〉 = |n1, . . . , nN 〉.

The Wigner characteristic function for the state ρ is

Xρ̂ (η) = tr[D̂(η)ρ̂] =
∑
n,m

cnm〈m|D̂(η)|n〉, (B2)

where η = (η1, . . . , ηN ), ηi = (qηi + ipηi )/
√

2, and D̂(η) is
the N-mode displacement operator.

Utilizing the representation of the displacement opera-
tor on the Fock basis [17] and the fact that 〈m|D̂(η)|n〉 =∏N

i=1〈mi|D̂(ηi)|ni〉, Eq. (B2) can be written as

Xρ̂ (η) = e− |η|2
2

∑
n,m

cnm

N∏
i=1

f̃ni,mi (ηi),

where

f̃ni,mi (ηi) = θ (mi − ni )

√
ni!

mi!
ηmi−ni L(mi−ni )

ni
(|ηi|2)

+ θ (ni − mi )

√
mi!

ni!
(−η∗)ni−mi L(ni−mi )

mi
(|ηi|2)

+ δnimi Ln(|ηi|2) (B3)
and L(m−n)

n (.) is the associated Laguerre polynomial of the nth
order. For |x| �= 0 we define θ (.) as θ (|x|) = 1, θ (−|x|) = 0,
and θ (0) = 0.

We can write Eq. (B3) as

Xρ̂ (η) = X|0〉〈0|(η)
∑
n,m

cnm

N∏
i=1

f̃ni,mi (ηi). (B4)

Performing a 2N-dimensional Fourier transform (qηi , pηi ) →
(qi, pi ), i = 1, . . . , N on Eq. (B4), we find the Wigner
function,

W (q, p) = W0(q, p)P(q, p), (B5)

where W0(q, p) ≡ W|0〉〈0|(q, p) is the Wigner function of an
N-mode vacuum state and

P(q, p) =
∑
n,m

cnm

N∏
i=1

fni,mi (qi, pi ), (B6)

where

fni,mi (qi, pi ) = θ (mi − ni )

√
ni!

mi!
(−1)ni (

√
2qi + i

√
2pi )

mi−ni L(mi−ni )
ni

(
2q2

i + 2p2
i

)
(B7)

+ θ (ni − mi )

√
mi!

ni!
(−1)mi (

√
2qi − i

√
2pi )

ni−mi L(ni−mi )
mi

(
2q2

i + 2p2
i

)
+ (−1)ni Lni

(
2q2

i + 2p2
i

)
δnimi . (B8)

Note that P(q, p) can be strictly a polynomial, or a polynomial (series) expansion of a function, e.g., for the case of the thermal
state.

APPENDIX C: PROOF OF EQ. (30)

First, by plugging in Fab(q, p) to Eq. (30), we get

ln

(
π k−1k− a+b

2 k �( 1+ak
2 )�( 1+bk

2 )
[�( 1+a

2 )�( 1+b
2 )]k

)
� 0, (C1)
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which is equivalent to

(k − 1) ln π − a + b

2
k ln k + ln

[
�

(
1 + ak

2

)]
+ ln

[
�

(
1 + bk

2

)]
− k ln

[
�

(
1 + a

2

)]
− k ln

[
�

(
1 + b

2

)]
� 0. (C2)

Denoting by f (a, b, k) the left-hand side of the above inequality and using the result from Ref. [22],

ψ (x) � ln x − 1

2x
, (C3)

where ψ (x) = d
dx {ln[�(x)]}, we get

∂ f (a, b, k)

∂k
= ln π − a + b

2
(1 + ln k) + a

2
ψ

(
1 + ak

2

)
+ b

2
ψ

(
1 + bk

2

)
− ln

[
�

(
1 + a

2

)]
− ln

[
�

(
1 + b

2

)]
(C4)

� ln π − a + b

2
(1 + ln k) + a

2
ln

1 + ak

2
− a

2(1 + ak)

+ b

2
ln

1 + bk

2
− b

2(1 + bk)
− ln

[
�

(
1 + a

2

)]
− ln

[
�

(
1 + b

2

)]
(C5)

=: g(a, b, k). (C6)

We can then calculate

∂g(a, b, k)

∂k
= −a + b

2k
+ a2

2(1 + ak)
+ a2

2(1 + ak)2
+ b2

2(1 + bk)
+ b2

2(1 + bk)2
(C7)

= − a

2k(1 + ak)2
− b

2k(1 + bk)2
< 0, (C8)

where we always work with k ∈ R and k � 1.
Denote h(a, b) as

h(a, b) = g(a, b, 1) (C9)

= ln π − a + b

2
+ a

2
ln

1 + a

2
− a

2(1 + a)
+ b

2
ln

1 + b

2
− b

2(1 + b)
− ln

[
�

(
1 + a

2

)]
− ln

[
�

(
1 + b

2

)]
. (C10)

When a > 0, we apply results from Ref. [22],

ψ (x) > ln x − 1

2x
− 1

12x2
, (C11)

to get

∂h(a, b)

∂a
= −1

2
+ 1

2
ln

1 + a

2
+ a

2(1 + a)
− 1

2(1 + a)2
− 1

2
ψ

(
1 + a

2

)
(C12)

= 1

2

[
−1 + ln

1 + a

2
+ a

1 + a
− 1

(1 + a)2
− ψ

(
1 + a

2

)]
(C13)

<
1

2

(
−1 + ln

1 + a

2
+ a

1 + a
− 1

(1 + a)2
− ln

1 + a

2
+ 1

1 + a
+ 1

3(1 + a)2

)
(C14)

= − 1

3(1 + a)2
(C15)

< 0. (C16)

Similarly for b, we have ∂h(a,b)
∂b < 0.

Now, setting a or b equal to 0, we also have

∂h(a, b)

∂a

∣∣∣∣
a=0

< 0 (C17)

∂h(a, b)

∂b

∣∣∣∣
b=0

< 0. (C18)
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Thus, for any a, b ∈ N, we have

h(a, b) � max{h(0, 0), h(0, 1), h(1, 0), h(1, 1)} (C19)

= max

{
0,

1

2

(
ln π − 3

2

)
, ln π − 3

2

}
(C20)

� 0. (C21)

Then, combining with ∂g(a,b,k)
∂k < 0, for any a, b ∈ N and k ∈ R and k � 1, we have

g(a, b, k) � g(a, b, 1) = h(a, b) � 0, (C22)

which implies ∂ f (a,b,k)
∂k � 0.

Thus, we conclude that for any (a, b) ∈ N2 and k ∈ R and k � 1, we have

f (a, b, k) � f (a, b, 1) = 0, (C23)

which prove Eq. (30) for any (a, b) ∈ N2 and k ∈ R and k � 1.

APPENDIX D: FOCK BASIS PROPERTIES FOR STATES SATISFYING CONDITION 1

In this Appendix, we show that Condition 1 does not imply that the state ρ̂ is Fock-diagonal but it implies ρ̂n,m = 0 if |n − m|
is odd.

Let W (q, p) be a Wigner function that satisfies Condition 1 and χW (η), η ∈ C, be its corresponding Wigner characteristic
function. Without loss of generality, we can assume n − m = l � 0 and get

〈n|ρ̂|m〉 = 1

π

∫
χW (η)〈n|D̂†(η)|m〉d2η (D1)

= 1

π

∫
χW (η)e− |η|2

2 〈n|e−ηâ†
eη∗â|m〉d2η (D2)

= 1

π

∫
χW (η)e

|η|2
2

( ∞∑
s=0

(−η∗)s

s!
âs|n〉

)†( ∞∑
t=0

(η∗)t

t!
ât |m〉

)
d2η (D3)

= 1

π

∫
χW (η)e− |η|2

2

⎛
⎝ n∑

s=0

(−η∗)s

s!

√
n!

(n − s)!
|n − s〉

⎞
⎠

†⎛
⎝ m∑

t=0

(η∗)t

t!

√
m!

(m − t )!
|m − t〉

⎞
⎠d2η (D4)

= 1

π

∫
χW (η)e− |η|2

2

(
m∑

t=0

(−η)t+l (η∗)t

(t + l )!t!

√
(m + l )!m!

(m − t )!

)
d2η (D5)

= 1

π

∫
χW (η)e− |η|2

2 (−η)l

(
m∑

t=0

(−1)t |η|2t

(t + l )!t!

√
(m + l )!m!

(m − t )!

)
d2η. (D6)

The case for n − m < 0 can be easily handled by switching m to n and t to s. Since the (inverse) Fourier transform conserves
the parity of the function, we have that χW (η) is an even function of η. Together with the fact that (

∑m
t=0

(−1)t |η|2t

(t+l )!t!

√
(m+l )!m!
(m−t )! ) is

also an even function of η, the parity of the integrand only depends on l . Therefore, when l is odd, which in turn means the
integrand is odd in η, we have 〈n|ρ̂|m〉 = 0.

When k is even, 〈n|ρ̂|m〉 can be nonzero. The example below shows this. Consider a more general form of the Wigner
function, p0|0〉〈0| + p1|1〉〈1| + p2|2〉〈2| + c|0〉〈2| + c∗|2〉〈0|, and let c = c1 + ic2, c1 = Rec and c2 = Imc, then we have

W (q, p) = W0[(1 − 2p1) + (2p1 − 4p2 + 2
√

2c1)q2 + 4p2q2 p2 + (2p1 − 4p2 − 2
√

2c1)p2 + 2p2q4 + 2p2 p4 − 4
√

2c2qp].

(D7)

Therefore, all states with

p1 � 1
2 , p1 − 2p2 −

√
2c1 � 0, c2 � 0 (D8)

satisfy Condition 1. So, when p0 = 1
3 , p1 = 1

2 , p2 = 1
6 , c =

√
2

16 − i, the state is not Fock-diagonal but still satisfies Condition 1.
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