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Detecting exceptional points through dynamics in non-Hermitian systems
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Non-Hermitian rotation-time reversal (RT )-symmetric spin models possess two distinct phases, the unbroken
phase in which the entire spectrum is real and the broken phase which contains complex eigenspectra, thereby
indicating a transition point, referred to as an exceptional point. We report that the dynamical quantities, namely,
the short- and long-time average of the Loschmidt echo, which is the overlap between the initial and the final
states, and the corresponding rate function can faithfully predict the exceptional point. In particular, when the
initial state is prepared as the ground state in the unbroken phase of the non-Hermitian Hamiltonian and the
system is quenched to either the broken or unbroken phase, we analytically demonstrate that the rate function
and the average Loschmidt echo can distinguish between the quench that occurred in the broken or the unbroken
phase for the nearest-neighbor non-Hermitian XY model with uniform and alternating magnetic fields, thereby
indicating the exceptional point. Furthermore, we exhibit that such quantities are capable of identifying the
exceptional point even in models like the non-Hermitian short- and long-range XY Z model with magnetic field,
which can only be solved numerically, thereby establishing it as detection criteria for recognizing exceptional
points.

DOI: 10.1103/PhysRevA.110.012226

I. INTRODUCTION

Non-Hermitian systems have recently attracted significant
interest as a result of the intricate extension of quantum
mechanics and the advancements made in quantum technolo-
gies, such as quantum sensing [1–3], quantum metrology [4],
and state tomography [5]. Importantly, several characteristics
and advantages emerge in these systems which cannot be
found in their Hermitian counterparts [6,7]. Furthermore, the
eigenspectrum makes the transition from real to imaginary
around an exceptional point (EP) [8,9] which has already
been observed in optical setups, cold atoms, and cavity sys-
tems [10–13] and also plays a crucial role in the study of
open system dynamics, especially, for the case of thermal
machines [14].

In similarity, a quantum phase transition, separating two
quantum phases of a Hermitian many-body systems, signifies
the sudden change of properties at zero temperature driven
by quantum fluctuations [15]. It has also been discovered
that during evolution, the behavior of the Loschmidt echo
(the overlap of the initial and the evolved state) may dis-
criminate between two scenarios: in one, the quenching and
the initial Hamiltonian are in separate phases, while in the
other, they are in the same phase [16,17]. The phenomenon is
referred to as a dynamical quantum phase transition (DQPT)
[18–20] (cf. [21–23]), which was initially demonstrated using
the quantum transverse Ising model. In this regard, several
counterintuitive results are also reported [24–42] which in-
clude nonuniformly spaced critical time in the XY model
with uniform and alternate magnetic fields, detection of phase
boundary at finite temperature via long-time average of the
Loschmidt echo [39], enhanced sensitivity in connection with
quantum sensing [34], and dynamical signature to disclose
the localization-delocalization transition in the Aubry-André

(AA) model [27]. Since there are only a few many-body
Hamiltonian which can be diagonalized analytically, the
observation of DQPT can also be a potential method to predict
a possible QPT at equilibrium. Moreover, DQPT has already
been captured in laboratories with physical systems like cold
atoms and trapped ions [43,44]. Notice that in all these inves-
tigations, the initial state is the ground state of a Hermitian
Hamiltonian and the evolution is unitary.

In a similar fashion, the localization regime in the dy-
namics of the non-Hermitian Aubry-André model with PT
symmetry using long-time survival probability [45] and the
effect of topology after quenching in the non-Hermitian gap-
less phase [46–51] have been studied to illustrate the role
of non-Hermiticity in spin models. Also, recent reports in
non-Hermitian systems have shown the spreading of corre-
lation and the change of block entanglement from volume
law to area law [52,53]. Further, the dynamics in the non-
Hermitian systems under sudden quench has been investigated
in optical systems [54], and also in quantum systems like the
Bose-Hubbard model [55,56] and hydrogen atom [57]. Note
that in all these previous works, the initial state is prepared
in the ground state of the Hermitian Hamiltonian while the
system is evolved according to a non-Hermitian Hamiltonian.
In contrast, in our work, the ground state is chosen as the
initial state of the non-Hermitian spin model and the evolution
occurs by abruptly changing the corresponding parameter of
the NH Hamiltonian.

Specifically, we explore the scenario where the ground
state of NH Hamiltonian in the unbroken phase evolves
according to a pseudo-Hermitian rotation-time reversal (RT )-
symmetric model. The prominent examples of the RT -
symmetric Hamiltonian include the XY model with imaginary
anisotropy parameter in the presence of a uniform and
alternating transverse magnetic field, referred to as iXY
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and iAT XY models, respectively. Note that similar to Her-
mitian models [58–61], both models can be mapped to
spinless fermions [62,63], making their dynamics analytically
tractable. Starting from the ground state of the unbroken
phase and employing the biorthogonalization technique, we
demonstrate that the rate function derived from Loschmidt
echo along with the averaged value of the Loschmidt echo
in a short and long time can determine whether the quench-
ing is performed across the EP or not. In particular, from
the unbroken to broken quench, the rate function increases
monotonically and saturates to a nonvanishing value, while
the sudden quench to the unbroken phase, the rate function
oscillates at a very low value. We illustrate that the nonana-
lytic behavior in the derivative of the long-time averaged rate
function correctly indicates the exceptional points known for
both the iXY and the iAT XY models.

In addition to the exactly solvable models, we deal with
the iXY Z model having short- and long-range interactions
which can be studied via exact diagonalization. In these non-
Hermitian models also, we reveal that dynamical quantifiers,
both Loschmidt echo and its time average in the transient
regime, can accurately locate the exceptional points, thereby
mimicking the study of long-time dynamics. It was noticed
that finding the spectrum in non-Hermitian systems is rela-
tively hard, thereby pinpointing EPs via exact diagonalization,
can face certain numerical problems [9] and should be solved
with the ARNOLDI algorithm [64]. Hence our results indicate
that dynamical quantifiers, which are accessible in the current
experimental setups can also be proposed as appropriate indi-
cators for determining EPs.

This paper is organized as follows. In Sec. II we introduce
the quantities that we use to analyze DQPT for short as well as
long time, while we describe different non-Hermitian Hamil-
tonian in Sec. III. Analytical computation of Loschmidt echo
and the behavior of the rate function for the iXY and iAT XY
models which detect EP are presented in Sec. IV. In Sec. V we
extend the scenario to capture the exceptional point through
transient dynamics for a system like iXY Z with short- and
long-range interaction which can only be solved numerically.
Finally, we draw conclusions of our findings in Sec. VI.

II. DYNAMICAL QUANTIFIERS

Dynamical quantum phase transitions (DQPT) have been
quantified by the nonanalytic behavior of a distance function
of the evolved and the initial states [65], called the Loschmidt
echo [17,66,67]. It is defined as

L(t ) = |〈�(0)|�(t )〉|2
〈�(t )|�(t )〉 , (1)

where |�(0)〉 is the initial state of the Hamiltonian while
|�(t )〉 represents the evolved state after a quench. Typically,
the initial state is considered to be the ground state of the
Hamiltonian, H (λ) at t = 0, corresponding to a certain phase
while the evolution occurs due to a sudden change of param-
eters in the Hamiltonian at t > 0, H (λ′), which may or may
not belong to the same phase as H (λ). We are interested in the
situation when |�(t )〉 is orthogonal to |�(0)〉, thereby arriving
at vanishing L(t ). More vividly, one can capture this feature

by determining the Loschmidt rate, which is defined as

λ(t ) = − lim
N→∞

1

N
lnL(t ), (2)

where N is the system size, and N → ∞ is taken for the ther-
modynamic limit. Note that the rate function is an analog of
free energy as it is the logarithm of a function that resembles
the partition function when the corresponding inverse temper-
ature is replaced with the imaginary time. The nonanalyticities
of the rate function, known as Fisher zeros, indicate the
crossing of a phase boundary, and hence, equilibrium phase
transition can be replicated using nonequilibrium dynamics
successfully in Hermitian systems [16] (for exceptional cases,
see [25,28,31,39]).

In this work we will employ these quantifiers, both L(t )
and λ(t ), to study non-Hermitian systems. Specifically, in-
stead of quantum critical points, our aim is to detect the
exceptional point, which distinguishes between broken and
unbroken phases in the non-Hermitian systems, from the prop-
erties of the evolved state. Precisely, the initial state is chosen
from the unbroken phase (the entire spectrum of the Hamil-
tonian is real), and then the system is quenched to either the
broken (some eigenvalues have a nonzero imaginary compo-
nent) or the unbroken phase. We investigate L(t ) or λ(t ) to
predict whether the system has crossed the exceptional point
or not. In the case of non-Hermitian models, eigenvectors are
not, in general, orthogonal, which can be made orthogonal by
defining an inner product with respect to a metric, known as
biorthogonalization (see Appendix C). This process ensures
that the initial Hamiltonian H (λ) has orthogonal eigenvec-
tors. As mentioned before, although in many situations the
Loschmidt rate can identify equilibrium phase transition suc-
cessfully, there are Hamiltonian including the quantum XY
model with uniform and alternating magnetic fields for which
the quantifiers fail [25,28,31,39]. To avoid such discrepancy,
in the case of Hermitian systems, time-averaged Loschmidt
rate and Loschmidt echo are used [68]. We choose the same
path since the non-Hermitian models considered in this work
resemble the Hermitian XY model.

To determine exceptional points through dynamics for a
non-Hermitian Hamiltonian, we adopt four figures of merits,
time average of the Loschmidt echo in the transient (steady)
state regimes, and the corresponding rate functions. Mathe-
matically, the rate functions are defined as

ηT = − 1

N
ln

[
1

τ0

∫ τ0

0
L(t )dt

]
(3)

and ηS = − 1

N
ln

[
lim

τ→∞
1

τ − τ1

∫ τ

τ1

L(t )dt

]
,

where τ0 and τ1 describe the end of transient time and be-
ginning time of the steady-state regime, respectively. It has
been shown [68] that ηS can be used to distinguish between
phases, thereby confirming the existence of quantum critical
points in different Hermitian models. We propose here that
ηS (averaged Loschmidt echo) is capable of differentiating
broken and unbroken phases in the steady-state domain while
ηT is the similar quantity calculated in the transient regime.
It turns out that the latter quantity is better for models that
can only be solved numerically since the finite-size effects
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accumulate in the long-time dynamics while both quantities
are effective for models like iXY and iAT XY models which
can be solved analytically.

III. RT -SYMMETRIC SPIN MODELS

Non-Hermiticity in spin models can be introduced ei-
ther by imaginary magnetic fields [69] or by considering
imaginary anisotropy parameter in the interactions [62]
that can reveal several novel features [70]. In this regard,
rotational-time (RT ) symmetry was found to be one of the
facets through which the spectrum can be made real in a
non-Hermitian interacting spin systems.

The rotation operator rotates each spin by angle π
2 about

the z axis, i.e., R = exp[−i π
4

∑N
i σ z

i ], while the time reversal
operator, T , which is the complex conjugation in finite-
dimensional system is an antilinear operator, i.e., T iT = −i.
Although Hamiltonian commutes with the RT operator (it
does not commute with R and T operators individually), they
may not share the common eigenvectors due to the antilin-
earity of the time reversal operator T , where the spectrum
becomes complex, known as the broken phase. However,
when they do share the eigenspectrum, the Hamiltonian has
the real eigenvalues and is in the unbroken phase. Hence,
by varying parameters of the Hamiltonian, we can traverse
between the broken and the unbroken regions.

A. Non-Hermitian iXY Hamiltonian

The rotation operator R essentially maps Pauli matrix σ x to
σ y and vice versa, while σ z remains unchanged as the rotation
is about the same. Thus, to look for the models that are en-
dowed with RT symmetry, we should look for the cases that
have complex conjugated coefficients from the interactions or
the magnetic fields in the x and y directions.

We investigate a variety of possible models having RT
symmetry. Replacing the anisotropy parameter γ by iγ in
the prototypical quantum XY model with nearest-neighbor
interactions in a transverse magnetic field, we obtain the iXY
model, which possesses RT symmetry,

H̄iXY =
N∑

l=1

J

4

[
(1 + iγ )σ x

l σ x
l+1 + (1 − iγ )σ y

l σ
y
l+1

] − h′

2
σ z

l ,

(4)
with the periodic boundary condition, σ i

N+1 ≡ σ i
1 ({i ∈

x, y, z}), J and h′ being the coupling constant and the strength
of magnetic field, respectively. We set h′

J = h.
Applying the same recipe of the Hermitian XY models

[58,59], i.e., after the Jordan-Wigner and Fourier transfor-
mations (see Appendix A), the block-diagonal form for
each mode in the momentum phase represented as H̄ p

iXY =
Â†

pH p
iXY Âp, where Âp is the column vector, (âp, a†

−p)T ,

H p
iXY =

[
h − cos φp −γ sin φp

γ sin φp cos φp − h

]
, (5)

and φp = 2π p
N with p ∈ [1, N

2 ] with â†
p and âp being the

fermionic creation and annihilation operators in the momen-
tum space, respectively. In the thermodynamic limit, i.e., as
N → ∞, we land in the scenario with φp ∈ (0, π ]. Therefore,

the eigenvalues of H̄ p
iXY are

ε∓
p = ∓

√
(h − cos φp)2 − γ 2 sin2 φp, (6)

where the corresponding eigenvectors are |v−
p 〉 and |v+

p 〉, re-
spectively. They are written in the columns of a matrix, Pp,
as

Pp =
[ √

h − cos φp − εp −√
h − cos φp + εp

−√
h − cos φp + εp

√
h − cos φp − εp

]
, (7)

where εp = |ε∓
p |. Note that |v−

p 〉 and ε−
p contribute to the

ground state and ground-state energy, respectively, for each
momentum φp.

B. Non-Hermitian iATXY model

Another prominent quantum spin model is the nearest-
neighbor XY model with alternating magnetic fields, i.e.,
the AT XY model, which was shown to possess a richer
phase diagram than the XY model [60,61]. Its non-Hermitian
counterpart, referred to as the iAT XY model, can also be
analytically solved [63]. The governing Hamiltonian reads as

H̄iAT XY = H̄iXY +
N∑

l=1

(−1)l h′
a

2
σ z

l ,

with h′±h′
a

J = h ± ha being the strength of the magnetic field at
even and odd sites, respectively.

Unlike the iXY model, the modified Jordan-Wigner trans-
formation [63,71] changes the one-dimensional model to
two-component Fermi gas based on even and odd sites,
followed by the Fourier transform. The final 4 × 4 momen-
tum block [60,63] can be written in the basis of Sp =
{a†

p, a−p, b†
p, b−p} as H̄iAT XY = ⊕

p SpH p
iAT XY S†

p such that

H p
iAT XY

=

⎡
⎢⎢⎣

h + cos φp −γ sin φp 0 −ha

γ sin φp −h − cos φp ha 0
0 ha cos φp − h −γ sin φp

−ha 0 γ sin φp h − cos φp

⎤
⎥⎥⎦,

(8)

where ap and bp are fermionic operators that correspond to
even and odd sites, respectively, with φp ∈ [−π/2, π/2] in
the thermodynamic limit. The eigenvalues of the momentum
block are given by ±ε̃±

p where

ε̃±
p = (

h2 + h2
a + cos2 φp − γ 2 sin2 φp

± 2
√

h2h2
a + h2 cos2 φp − h2

aγ
2 sin2 φp

)1/2
. (9)

Note that calculations with the exact form of the eigenvectors
will be too cumbersome; rather, they are computed follow-
ing numerical diagonalization of H p

iAT XY , which are used for
biorthogonalization (see Appendix C) during the dynamics.

C. Non-Hermitian iXY Z models: Short-
and long-range interactions

Up to now, all the non-Hermitian models that we discussed
are analytically diagonalizable. Apart from these models, we
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also consider a model which can be solved only by numerical
means or approximate methods. Specifically, we deal with
iXY Z models having RT symmetry with short- (SR) and
long-range (LR) interactions, given, respectively, by

H̄iXY Z =
N∑

l=1

J

4

[
(1 + iγ )σ x

l σ x
l+1 + (1 − iγ )σ y

l σ
y
l+1

+�σ z
l σ z

l+1

] −
N∑

l=1

h′

2
σ z

l (10)

and

H̄LR
iXY Z =

∑
l,m

Jlm

4

[
(1 + iγ )σ x

l σ x
m + (1 − iγ )σ y

l σ y
m

+�σ z
l σ z

m

] −
N∑

l=1

h′

2
σ z

l , (11)

with periodic boundary condition, � being the strength of
interactions in the z direction, Jlm = J

|l−m|α with α being the
falling rate of the interactions with distance between the spins,
and h′

J = h being the strength of the magnetic field. In the
Hermitian cases, the former model can be realized in photonic
systems [72], while the latter models are found in experi-
ments with trapped ions [73] and superconducting circuits.
Moreover, the long-range Hermitian models typically reveal
novel characteristics like violation of area law [74,75] and
fast transfer of states [76], which cannot be found in models
having SR interactions.

IV. DISTINGUISHING EXCEPTIONAL POINT VIA
LOSCHMIDT RATE IN ANALYTICAL MODELS

A defining property of the non-Hermitian Hamiltonian is
the existence of exceptional points. This is the point that
distinguishes two regions having real and complex energy
spectra, corresponding to the unbroken and the broken phases,
respectively. We first discuss the procedure to find and calcu-
late the exceptional points of all the models considered in this
work. We then present our results on detecting exceptional
points using the dynamical quantifiers described in the previ-
ous section.

A. Exceptional points

The exceptional points of the models discussed in the pre-
vious section have been studied in the literature. The iXY
and the iAT XY models are analytically solvable and the ex-
ceptional points are exactly known [62,63]. After finding the
energy spectrum of the iXY and the iAT XY models, one needs
to solve for two equations, namely, ∂εp(hep)

∂ p = 0 and εp(hep) =
0 to find the momentum value p at which the energy vanishes
with εp being the energy spectrum in terms of momentum
basis and hep being the exceptional point. An exceptional
point can be obtained by solving these two equations simulta-
neously, which collectively imply that when the ground-state
energy becomes zero, the system undergoes a transition from
a broken to an unbroken phase.

The unbroken and broken phases are classified based
on the symmetry followed by the ground-state eigenvector.
For a given Hamiltonian H following RT symmetry, i.e.,
[H,RT ] = 0, and when the ground state has the RT sym-

FIG. 1. Parameters for the iXY and the iAT XY model. The blue
(light) shaded region represents the unbroken phase, and the broken
phase is marked as red (darker), and the red dashed line represents
the exceptional points. Starting with the ground state at magnetic
field strength h0, different quenching scenarios are depicted when
the magnetic field strength is changed to h1 < hep or h1 > hep with
hep being the exceptional point.

metry, H is in the unbroken phase while H is in the broken
phase when the ground state breaks the RT symmetry. Using
the above procedure, one finds that for both the iXY and
the iAT XY models, we have h > hep in the unbroken phase
(nondefective), while h � hep is in the broken phase (defec-
tive) (see Fig. 1 for schematic representation and Appendix B
for the detailed discussions on defective and nondefective
Hamiltonian), with

hiXY
ep =

√
1 + γ 2 and hiAT XY

ep =
√

1 + h2
a + γ 2. (12)

It has recently been shown by some of us that the excep-
tional points in the RT -symmetric Hamiltonian are closely
related to the factorization surface where the ground state
of the Hamiltonian is fully separable with vanishing entan-
glement of the corresponding Hermitian model [63]. This
prescription allows one to find the exceptional point even for
the systems that have no analytical solution. For instance, the
above connection leads to the exceptional point as

hiXY Z
ep =

√
(1 + �)2 + γ 2 (13)

for the iXY Z model in Eq. (10), which does not have an
analytical solution and can be confirmed via numerical diag-
onalization. This procedure also suggests that in the presence
of long-range interactions of the form of Eq. (11), the excep-
tional point satisfies the equation, given by

hiXY ZLR
ep =

√
(1 + �)2 + γ 2

N/2∑
j=1

1

jα
. (14)

B. Dynamics of non-Hermitian models

In order to present our results for the iXY model, let us first
fix the stage. After the preparation of the initial state corre-
sponding to the iXY Hamiltonian at magnetic field strength
h0, whose momentum blocks are denoted by (H0)p

iXY , the
system is evolved by suddenly changing the external mag-
netic field, h from h0 to h1, whose momentum blocks are
denoted by (H1)p

iXY . As mentioned before, the parameters
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involved in the Hamiltonian for the initial state are fixed in the
unbroken phase, while the Hamiltonian corresponding to the
evolution operator is chosen from both the broken and the un-
broken phases, thereby producing the dynamical state which
is the main interest of the paper. Specifically, the initial mag-
netic field is adopted such that h0 > hiXY

ep , while at t > 0,
the quench is performed by changing the external magnetic
field to h1. Notice that the corresponding eigenvalues are
given by ε0,1

p =
√

(h0,1 − cos φp)2 − γ 2 sin2 φp, where ±ε0
p

and ±ε1
p are the eigenvalues obtained from the initial and the

quenched Hamiltonian momentum block respectively. In the
eigenspace of (H0)p

iXY (given in Sec. III A) with the magnetic
field strength h0, which is, equivalently, biorthogonalizing
the vectors, the initial Hamiltonian would be diagonal, i.e.,

(H0)p
iXY = [−ε0

p 0
0 ε0

p
], and the final Hamiltonian, with which

we perform the quench, written in the same basis as of
(H0)p

iXY , reads as

(H1)p
iXY = 1

ε0
p

[−δp ωp

−ωp δp

]
, (15)

where δp = (h0 − cos φp)(h1 − cos φp) − γ 2 sin2 φp and
ωp = γ (h1 − h0) sin φp. Note that (H1)p

iXY is still non-
Hermitian. Therefore, the time-evolution operator in this case
can be represented as [46]

U p
iXY (t ) = e−i(H1 )p

iXY t = cos ε1
pt I − i

sin ε1
pt

ε1
p

(H1)p
iXY . (16)

Since the initial Hamiltonian is diagonal, its ground state is
|ψp(0)〉 = [1 0]T and the evolved state can take the form as

|ψp(t )〉 = U p
iXY (t )|ψp(0)〉

=
⎡
⎣cos ε1

pt − i
δp sin ε1

pt

ε0
pε

1
p

i
ωp sin ε1

pt

ε0
pε

1
p

⎤
⎦ :=

[
up(t )
vp(t )

]
. (17)

We normalize the dynamical state due to the non-Hermiticity
of the quenching Hamiltonian. Finally, for the iXY model, the
expression for the Loschmidt echo reads as

L(t ) =
∏

p

Lp(h0, h1, γ , t ) =
∏

p

( |up(t )|2
|up(t )|2 + |vp(t )|2

)
.

(18)
We now show that by analyzing L(t ), one can distinguish

between broken and unbroken phases, thereby identifying
exceptional points. A general matrix representation of a non-
Hermitian Hamiltonian H can be written in Jordan canonical
form J , with respect to some basis (columns of matrix
S), such that H = SJS−1. These are decomposed in Jor-
dan blocks, J = ⊕

l Jl with complex or real eigenvalues θl .
When the order of degeneracy in the eigenvalue is equal to the
eigenspace dimension, Jordan blocks are diagonal and give
the eigenvectors in the unbroken phase, where the Hamilto-
nian is nondefective. The evolved state by the action of the
evolution operator U (t ) = ⊕

l Ul (t ) on |�(0)〉 is given by

|�(t )〉 = U (t )|�(0)〉 = Se−iJ tS−1|�(0)〉. (19)

On one hand, in the unbroken phase, the Jordan form of each
(H1)p

iXY is diagonal with real eigenvalues ∓ε1
p and complete

eigenbasis, Sp. Therefore, in the eigenbasis Sp, the initial
state reads as |ψp(0)〉 = c1|S p

1 〉 + c2|S p
2 〉, where |S p

1,2〉 are
the first and the second columns of S p, respectively, and
〈ψp(0)| = c∗

1〈S−1
1 | + c∗

2〈S−1
2 | where 〈S−1

1,2 | represent the first
and the second rows of (S p)−1, with |c1|2 + |c2|2 = 1. After
quenching in the unbroken phase, the Jordan form is diagonal
and the Loschimdt echo reduces to

LU
p (t ) = | |c1|2eiε1

pt + |c2|2e−iε1
pt |2

= cos2 ε1
pt + (|c1|2 − |c2|2)2 sin2 ε1

pt, (20)

where ±ε1
p are the real eigenvalues of quenching Hamiltonian.

It indicates that LU
p (t ) is oscillatory for all t and for all mo-

mentum p in the unbroken phase. We will show that this is
indeed the case [see Fig. 2(a) when h > hiXY

ep ].
On the other hand, when we quench in the broken

phase, the Hamiltonian becomes defective with the vanish-
ing degenerate eigenvalue for certain critical momentum φpc .
The defective 2 × 2 traceless Hamiltonian, Hpc , in the Jor-

dan canonical form Jpc becomes Jpc = [0 1
0 0

] ⇒ e−iJpc t =[0 −it
0 0

]
. The Loschmidt echo in this situation reduces to

LB
pc (t ) = |1 − itc2c∗

1|2
|c1|2 + t2|c2|2 − itc∗

1c2 + itc∗
2c1

, (21)

where both the numerator and the denominator are polynomial
in t . With increasing t , the numerator is dominated by the
term t2|c1|2|c2|2 and the denominator by t2|c2|2. Therefore,
limt→∞ LB

pc (t ) = |c1|2 < 1 as the initial and the final Hamil-
tonian are noncommuting and do not share the basis of the
Jordan form. It implies that at the beginning of the evolution,
the Loschimdt echo decays if the quenching Hamiltonian is
defective. Such analysis demonstrates that the difference in
the behavior of a dynamical quantity, namely, L(t ), in two
different phases, broken and unbroken, is capable of predict-
ing the existence of exceptional points, without the explicit
computation of eigenvalues.

In the case of the iAT XY model, exactly solving the
Hamiltonian, H p

iAT XY and finding the eigenvectors for arbitrary
parameters is cumbersome. We numerically diagonalize 4 × 4
block in Eq. (8) to obtain the corresponding metric and vectors
in the momentum space which enable us to compute quantities
for this model with a large system size or in the thermody-
namic limit. By numerically computing Lp(t ), we calculate
the rate function λ(t ), defined in Sec. II. For both iXY (ha = 0)
and iAT XY models, the rate function in the thermodynamic
limit reduces to

λ(h0, h1, γ , ha, t ) = −
∫

dφp

2π
ln[Lp(h0, h1, γ , ha, t )], (22)

which is a function of all the parameters involved in the
system.

Analysis of rate function and time averaged Loschmidt
echos. Let us now analyze the profile of the rate function,
λ(t ) or the Loschimdt echo, L(t ) for different systems starting
from the ground state of H0. We mainly concentrate on two
scenarios: (1) unbroken to broken quench and (2) unbroken to
unbroken quench. Notice that in the iXY and the iAT XY mod-
els, we look at the behavior of λ(t ), since the Loschmidt echo
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FIG. 2. Quench for iXY model with the initial state as the ground state at h0 = 2.0 > hiXY
ep for all γ considered. (a) Rate function λ(t )

(ordinate) is plotted with respect to time (t) (abscissa) for the iXY Hamiltonian in Eq. (4). The sudden quench is performed by changing
the magnetic fields to h1 given in legends. Solid lines represent quenching from unbroken to broken phase, while dotted lines are for the
quenching in the same phase. (b) Distinguishing between the broken and unbroken phases using ηS (vertical axis) defined in Eq. (3) against h1

(horizontal axis) for different values of γ . For calculating ηS , the averaging is performed during t ∈ [20, 200], i.e., τ1 = 20. (c) Derivative of
ηS with respect to h1 (vertical axis) is plotted with postquenched magnetic fields (h1) (horizontal axis). The nonanalyticity of dηS

dh1
signals the

EP marked underneath by a vertical bar which can be obtained analytically with N = 1200 [see Eq. (12)]. All the axes are dimensionless.

L(t ) becomes exponentially small with increasing system size
N , thereby exponentially increasing Hilbert space dimension.

I. Unbroken to broken quench. Since we are interested to
locate the exceptional point of a non-Hermitian model, we
first consider the situation where the initial state is prepared in
the unbroken phase and the system is quenched to the broken
phase of the model.

In the iXY model, the rate function shows a steep rise in
the transient regime (0 to τ0 = 10) [solid lines in Fig. 2(a)
by taking the ground state at h0 = 2.0 > hiXY

ep as the initial
state] when h1 < hep and saturates to a nonvanishing value
near the exceptional point in the steady-state domain (from
τ1 = 20 > τ0 to ∞). In Fig. 2(a) the anisotropy parameter
is chosen to be unity, i.e., γ = 1.0, with the corresponding
exceptional point at hiXY

ep = √
2. We perform the convergence

test for the numerical integration of the rate function and find
that λ(t ) converges at N = 1000 in the iXY model, and hence
we choose N = 1200 for illustration in Fig. 2.

On the other hand, for a fixed γ , ηS decreases uniformly
with increasing h1 (by a step of 0.05), till h1 = 1, and then it
decreases as a concave function, until the exceptional point as
depicted in Fig. 2(b). The change of curvature from concavity
to convexity in ηS leads to a sharp kink in dηS

dh1
at the excep-

tional point which is shown in Fig. 2(c) by small vertical bars
above the horizontal axis as obtained analytically. It clearly
displays that the kink in dynamics is in good agreement with
the exact values of the exceptional points obtained in the
ground state using the Eq. (12) [62].

The similar pattern emerges for the iAT XY model. Specifi-
cally, for γ = 1.0 and with ha = 0.5, hiAT XY

ep = 1.5, and when
the initial state is prepared at h0 = 2.0 > hiAT XY

ep , we observe
the similar monotonic increase of λ(t ) with t in the initial
duration of the dynamics while it converges to a positive value
after a certain time [see dotted lines in Fig. 3(a)]. Interestingly,
we find that the convergence occurs in this case with N = 80,

which is much lower than the iXY model, and hence we carry
out our investigation with N = 100 in Fig. 3. Unlike the iXY
model, the steady-state value, ηS , is not monotonic with h1

in the quench of the iAT XY broken phase, irrespective of the
anisotropy and ha as seen in Fig. 3(b), and decreases sharply
as h1 approaches the exceptional point, thereby discriminating
unbroken phase from the broken one through the dynamics.
The investigations exhibit that the prediction of the excep-
tional points made by the dynamical quantities matches the
exact exceptional points known for the Hamiltonian.

II. Unbroken to unbroken quench. Let us now move to a
different picture in which the parameters of the Hamiltonian
in the evolution operator are also chosen from the unbroken
phase, i.e., both the initial and quenching Hamiltonian belong
to the same phase.

In the iXY model, when h1 > hiXY
ep , we observe that the

rate function shows oscillatory behavior, with oscillations
dying out as the quench parameter h1 is farther away from
hep [see dotted lines in Fig. 2(a)] while in the case of the
iAT XY model, λ(t ) is oscillating with very small amplitude
as depicted by solid lines in Fig. 3(a). It is clear that for
the iXY model, ηS which does decrease initially and then
increases slowly remains concave in the unbroken phase. The
similar feature can also be observed from the behavior of dηS

dh1
,

which keeps on increasing in the unbroken phase, as shown
in Fig. 2(b). In contrast, ηS remains very close to 0 in the
unbroken phase for the iAT XY model [see Fig. 3(b)].

Remark. Although the behavior from oscillatory (in the
case of II) to the polynomial (in the case of I) decay is
continuous, we still observe an abrupt change in long-time
average of the Loschmidt rate (in the steady-state domain).
This corresponds to the fact that the Hamiltonian becomes
nondefective in the unbroken phase from being defective in
the entire broken phase after crossing the exceptional point
suddenly (see Appendix B).
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FIG. 3. Quench for iAT XY model with the initial state as the ground state at ha = 0.5, h0 = 3.0 > hiAT XY
ep . (a) Rate function, λ(t ), (y axis)

as a function of t (x axis). Dotted lines represent quenching from unbroken to broken phase, while solid lines are for the quenching in the same
phase. (b) Rate of average Loschmidt echo (ηS) (ordinate) in the steady-state regime against the postquench magnetic field (h1) (abscissa).
From the analysis, we find that the steady state is reached at t = 100, which is used to compute ηS during τ1 = 100 � t � 500 with N = 100.
The corresponding actual exceptional points are marked underneath by a vertical bar [see Eq. (12)]. (Inset) A magnified view of the oscillations
in the rate function with respect to t due to the quench in the unbroken phase. All the axes are dimensionless.

V. DISTINGUISHING BETWEEN BROKEN
AND UNBROKEN PHASES FROM DYNAMICS

VIA EXACT DIAGONALIZATION

Let us now check whether the prediction made in the pre-
ceding section with the exactly solvable models also holds for
models which cannot be solved analytically. To demonstrate
that, we deal with the iXY Z models having both short- and
long-range interactions given in Eqs. (10) and (11).

To investigate the RT -symmetric iXY Z models, we em-
ploy exact diagonalization to find the corresponding ground
state, which is taken as the initial state, and find the metric.
Since we require the entire spectrum to define the metric of the
Hamiltonian and we further want to study the dynamics, we
cannot go beyond a certain system size, which is N = 12. As
discussed in the previous scenario, the initial state is prepared

in the unbroken phase, i.e., h0 > hep of the corresponding
model.

Short-range iXY Z model. Let us first concentrate on the
short-range iXY Z model. When the system is quenched to the
broken phase, L(t ) decreases sharply at the initial period of
time and then oscillates with a fixed average value during
the steady-state dynamics. In contrast, when the evolution
operator belongs to the unbroken phase, L(t ) always oscillates
with time having a fixed pattern and a fixed average value
[see Fig. 4(a)]. The trends of L(t ) possibly indicates that the
Loschmidt echo in the transient regime, i.e., ηT carries the sig-
nature of exceptional point or the transition between broken
and unbroken phase. As shown in Fig. 4(b), this is indeed the
case. Specifically, for a fixed values of � and γ , we observe
that if ηT changes the curvature from concave to convex, we
can definitely conclude that the initial Hamiltonian and the

FIG. 4. Evolution of the nearest-neighbor iXY Z model with the magnetic field h0 = 3.0 > hiXY Z
ep in which the initial state is prepared,

for different � and γ . (a) Loschidmt echo L(t ), (ordinate) with respect to time (t) (abscissa), for � = 0.1, γ = 0.25 and quenching in the
corresponding broken and unbroken phases. The steady-state dynamics shows irregularity which can be due to finite size. (b) Short-time
average of Loschmidt echo, ηT (ordinate), vs postquenched magnetic field h1(abscissa) for various γ and �. The transient regime is taken
to be t = 0 to τ0 = 30. (c), (d) Behavior of dηT

dh1
(vertical axis) with respect to h1 (horizontal axis) for different � values. The corresponding

exceptional points obtained analytically are marked by a vertical bar [see Eq. (13)]. Here N = 12. All the axes are dimensionless.
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FIG. 5. Predicting EP for the long-range iXY Z with decaying parameter α = 1 and anisotropy parameter γ = 0.25. The ground state is
taken at h0 = 5.0 > hep = 3.003, which is in the unbroken phase for all values of � considered. (a) L(t ) (ordinate) with respect to t (abscissa).
The transient time behavior is steep when the parameters of the initial and final Hamiltonians are chosen from different phases. (b)–(e) ηT

(ordinate) against the quenching magnetic field strength, h1, for different �. To calculate ηT , τ0 = 800 is taken. The corresponding expected
exceptional points are marked by a vertical bar [see Eq. (14)]. All the axes are dimensionless.

final Hamiltonian are chosen from different phases, i.e., it is
quenched from the unbroken phase to a broken phase and vice
versa. In other words, at the exceptional point, dηT /dh1 surely
exhibits a kink and such nonanalytic behavior can also be seen
if the evolution occurs due to the change from the unbroken
phase to the broken phase [see Figs. 4(c)-4(d)].

Long-range models. The situation is much more involved
when we move to the model with long-range interactions. The
behavior of the Loschmidt echo clearly distinguishes two sce-
narios. In particular, the sharp decrease of L(t ) in the transient
regime determines the situation when the initial state is in the
unbroken phase and the Hamiltonian is tuned to the broken
phase at later time. Notice that unlike iXY , iAT XY , and iXY Z
with short-range interactions, the steep decay of L(t ) occurs
in large t . Such a declining trend is absent when both the
initial and the final Hamiltonian are chosen from the unbroken
phase. Therefore, ηT also carries the signature of exceptional
points. As depicted in Figs. 5(b)–5(e), we observe that
when ηT stops fluctuating, we can conclude that the point is
around the exceptional point. Specifically, we observe that for
� � 0.2, the short-time averaged rate function, ηT , displays
a stark difference in behavior around the exceptional point,
although we find that with the increase of �, the dip observed
in ηT is moving far from the exceptional point. We believe
that the conclusive determination of exceptional points in
the long-range case is not possible due to the finite-size
effect.

As shown in Figs. 5(b) and 5(c), this is indeed the case.
Specifically, for fixed values of � and γ , we observe that
if ηT changes the curvature from concave to convex, we
can definitely conclude that the initial Hamiltonian and the
final Hamiltonian are chosen from different phases, i.e., it is
quenched from the unbroken phase to a broken phase and vice
versa. Note that the origin of the nonanalytic behavior of the
ηT can be attributed to the change of L(t ) from oscillatory
to polynomial saturation in addition to the change from being
defective to nondefective. In other words, at the exceptional
point, dηT

dh1
surely exhibits a kink, and such nonanalytic behav-

ior can also be seen if the evolution occurs due to the change
from the unbroken phase to the broken phase.

VI. CONCLUSION

By examining the time profiles of the rate function and
the long-time average of the Loschmidt echo as a function of
the post quench parameters, we detect of an exceptional point
(EP) in non-Hermitian systems. By using biorthogonalization
method, we define a legitimate inner product in these systems.
Specifically, by preparing an initial state in the unbroken
phase of a non-Hermitian nearest-neighbor XY model with
alternating and uniform magnetic fields, sudden quench is
performed in either the broken or in the unbroken phases.
We observed that the trends of rate function clearly signal the
transition point in these models. More precisely, long-time be-
havior of the Loschmidt echo with the postquench parameter
exhibits a sharp change around an exceptional point known,
thereby providing a method to detect EP. The abrupt change
is attributed to the fact that Hamiltonian changes from a com-
pletely defective to a nondefective one around the exceptional
point.

We extended this dynamical strategy for recognizing EP in
the nearest-neighbor and long-range iXY Z model, which can
only be studied by numerical procedures. We observed that
the average Loschmidt echo in the transient domain can signal
the existence of EP, even in the presence of finite-size effects.
The successful detection method based on the dynamics of
quantum phase transition suggests the possibility of executing
specific quantum information processing tasks during dynam-
ics in non-Hermitian models.
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APPENDIX A: DIAGONALIZATION OF iXY MODEL

We now describe the diagonalization procedure for the
Hamiltonian, given by

H̄iXY =
N∑

l=1

J

4

[
(1 + iγ )σ x

l σ x
l+1 + (1 − iγ )σ y

l σ
y
l+1

] − h′

2
σ z

l .

Let us define the spin ladder operators, (σ+
l and σ−

l ), as

σ+
l = σ x

l + iσ y
l

2
, σ−

l = σ x
l − iσ y

l

2
∀l = 1, 2, . . . , N.

(A1)
Thus, the Hamiltonian in terms of raising and lowering oper-
ators reduces to

HiXY = H̄RT
iXY − Nh

2
=

N∑
l=1

[
iγ

2
(σ+

l σ+
l+1 + σ−

l σ−
l+1)

+ 1

2
(σ+

l σ−
l+1 + σ−

l σ+
l+1) − hσ+

l σ−
l

]
. (A2)

Let us now use the highly nonlinear Jordan-Wigner transfor-
mation to represent HiXY in terms of fermionic creation and
annihilation operators, c†

k and ck , respectively, with

ck = e
−iπ

k−1∑
l=1

σ+
l σ−

l
σ−

k , c†
k = σ+

k e
iπ

k−1∑
l=1

σ+
l σ−

l
. (A3)

In the thermodynamic limit (i.e., N → ∞), the boundary term
would have an infinitesimal contribution, and hence ignoring
the boundary term, we obtain

HiXY =
N∑

k=1

[
iγ

2
(c†

kc†
k+1 + ckck+1)

+ 1

2
(c†

kck+1 + ckc†
k+1) − hc†

kck

]
. (A4)

We use the Fourier transform of the fermionic operators (be-
cause of the translation invariance), given by

a†
p = 1√

N

N∑
k=1

e−ikφpc†
k ; ap = 1√

N

N∑
k=1

eikφpck, (A5)

with φp = 2π p
N ∀p = {−N/2,−N/2 + 1, . . . ,−1, 0, 1, . . . ,

N/2 − 1, N/2}. Combining ±p, HiXY is decoupled in the ba-
sis, {|0〉, a†

pa†
−p|0〉, a†

p|0〉, a†
−p|0〉},

H̄iXY =
N/2∑
p=1

I ⊗ I ⊗ · · · ⊗ H̄ p
iXY ⊗ · · · ⊗ I, (A6)

with I being a 4 × 4 identity matrix and

H̄ p
iXY =

⎡
⎢⎢⎣

h −γ sin φp 0 0
γ sin φp 2 cos φp − h 0 0

0 0 cos φp 0
0 0 0 cos φp

⎤
⎥⎥⎦,

(A7)

Now, the block-diagonal form for each mode in momen-
tum phase represented as H̄ p

iXY = Â†
pH p

iXY Âp, where Âp is the

column vector, (â†
−p, ap)T where H p

iXY is a 2 × 2 matrix rep-
resented as

H p
iXY =

[
h − cos φp −γ sin φp

γ sin φp cos φp − h

]
. (A8)

APPENDIX B: DEFECTIVE HAMILTONIAN
IN THE BROKEN PHASE

In the case of the iXY model, let us now show that the
Hamiltonian is always defective in the broken phase. The iXY
Hamiltonian in the momentum space contains at least one
momentum p such that eigenvalues and the corresponding
eigenvectors coalesce in the broken phase. It implies that
the number of linearly independent eigenvectors is less than
the dimension of the Hamiltonian, which we call defective.
The exceptional point in the parameter corresponds to the
boundary between broken and unbroken phases.

For certain values of h and γ , εp ≡ |ε±
p | = 0 Eq. (6)

and the corresponding eigenvectors become the same, i.e.,
1√
2
[1,−1]T [Eq. (7)]. The εp = 0 exists due to the fol-

lowing reason. In the broken phase, ∃ φp ∈ (0, π ), for
which ε2

p < 0, which is the source of complex eigenval-
ues. Note that limφp→π ε2

p = (h + 1)2 > 0 and limφp→0 ε2
p =

(h − 1)2 > 0 for all anisotropy parameter iγ . Also, since
ε2

p is a continuous function of φp, by the intermediate
value theorem, there exist two momenta φ p̃1 ∈ (0, φp), and
φ p̃2 ∈ (φp, π ) such that ε2

p̃1
= ε2

p̃2
= 0. In this case, the ma-

trixes H p̃1
iXY and H p̃2

iXY have only one linearly independent
eigenvector i.e., 1√

2
[1,−1]T . To establish the defectiveness

in the spin Hamiltonian when the Hamiltonian written in
momentum-space becomes defective, we consider the follow-
ing scenario. Let there be four sites in the spin Hamiltonian
and the corresponding momenta Hamiltonian having eigen-
vectors {|v±

p1
〉, |v±

p2
〉, |v±

p3
, |v±

p4
〉} corresponding to p1, p2, p3,

and p4 momentum blocks, respectively, i.e., the columns of
the Pp matrix. Hence, the eigenvectors in the spin Hamil-
tonian are given by |Ei〉 = ⊗ |v±

p1
〉|v±

p2
〉|v±

p3
〉|v±

p4
〉, where i =

{1, . . . , 16}. It immediately implies that when two of the mo-
mentum blocks are defective, e.g., |v+

p1
〉 = |v−

p1
〉 and |v+

p3
〉 =

|v−
p3

〉, the corresponding spin Hamiltonian also becomes de-
fective. This also follows as both the Jordan-Wigner and
Fourier transformations are unitary transformations, they will
not change the number of independent eigenvectors.

APPENDIX C: BIORTHOGONALIZATION METRIC

Eigenvectors, which represent states of the systems, need
to be mutually orthonormal in order to distinguish between
states faithfully and maintain the probability between zero
and one. In case of Hermitian systems, the observables are
represented by Hermitian operators, for which the states are
orthonormal by default.

In order to check orthonormality between two vectors, one
has the inner product metric in the Hilbert space where the
vectors reside. Specifically, how the dual vector is defined
while finding the inner product ensures orthogonality. In the
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case of Hermitian quantum mechanics, the dual is the trans-
pose of a vector after complex conjugation, and orthogonality
is automatically maintained among eigenvectors. It is more
subtle in the case of non-Hermitian systems [78].

Depending on the Hamiltonian, we must define a metric.
Note first that the eigenvectors of the iXY model as shown in
Pp in Eq. (7) of a non-Hermitian matrix are nonorthogonal in
the usual Euclidean norm. In this situation, biorthogonaliza-
tion [79] can, in general, be performed for pseudo-Hermitian
systems having linearly independent and complete set of
eigenvectors. In particular, we define a nonsingular metric
operator �̂ which connects the left eigenvectors to the right
eigenvectors for each eigenvalue, i.e., for all the vectors |ψ〉,
〈ψ |�̂ becomes its dual. This makes the eigensystem of the
pseudo-Hermitian operators H biorthogonal. The metric oper-
ator �̂ should be Hermitian and satisfy H†�̂ = �̂H . We make
the trivial choice of metric operators as

�̂ = (P−1)†P−1, (C1)

where P is the matrix with columns as the eigenvectors. This
shows that P−1 can be treated as the invertible Dyson map
[80]. It allows us to treat the pseudo-Hermitian system as
Hermitian in the metric space where nonorthogonal (in the
Euclidean sense) basis vectors form a complete basis. Note
that the matrix P is invertible only in the unbroken phases,
where the eigenspace is nondefective.

For our analysis, we obtain the eigenspectrum of pseudo-
Hermitian RT -symmetric Hamiltonian H , and obtain �̂ from
the eigenvector matrix P of the corresponding H . This is
used for biorthogonalizing the Hamiltonian in the correspond-
ing model, which makes the initial Hamiltonian Hermitian,
although during the dynamics, the quenched Hamiltonian
still remains non-Hermitian. The entire formalism enables
us to study the dynamical physics of the non-Hermitian
models, similarly as was done for Hermitian models in the
literature [17,46]. We implement such a protocol in our an-
alytical as well as in numerical search of the exceptional
point.
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