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Violation of the two-time Leggett-Garg inequalities for a harmonic oscillator
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We investigate the violation of the Leggett-Garg inequalities for a harmonic oscillator in various quantum
states and with various choices of a projection operator for a dichotomic variable. We focus on the two-time
quasiprobability distribution function with a dichotomic variable constructed with the position or momentum
operator of a harmonic oscillator. Our results are the generalization of the previous work by Mawby and Halliwell
[Phys. Rev. A 107, 032216 (2023)], but the new points are the following. We first obtain the explicit expression
for the two-time quasiprobability distribution function for the (thermal) squeezed coherent state. Second, we
find the two-time quasiprobability distribution function with the dichotomic variable and the projection operator
constructed in terms of the momentum operator. Third, we demonstrate that the violation of the Leggett-Garg
inequalities can be boosted by adopting the dichotomic variable and the projection operator defined by a finite
range of the position/momentum, in which a larger violation appears for the ground state and the squeezed state.
We give an intuitive interpretation when the violation of the Leggett-Garg inequalities appears. We also present a
mathematical formula to compute the quasiprobability distribution function by using the integral representation
of the Heaviside function, which is useful to generalize it to a quantum field theory.

DOI: 10.1103/PhysRevA.110.012223

I. INTRODUCTION

Testing quantum coherence in macroscopic systems is
one of the fundamental problems in modern physics to ex-
plore the boundary between the quantum world and the
classical world. The Leggett-Garg inequalities are the rela-
tions that must be satisfied from two intuitive principles in
the macroscopic world [1–3]: macrorealism and noninvasive
measurability. Macroscopic realism means that the physical
quantity is a predetermined value regardless of the measure-
ments. Noninvasive measurements imply that we can measure
this predetermined value without disturbing the system’s state.
In contrast to classical mechanics, quantum mechanics breaks
these two principles because of quantum superpositions and
state-collapse disturbance. Experiments to verify the violation

of the Leggett-Garg inequalities have been performed on spin
operators in qubit systems and superconducting circuits [4–8].
Recently, they were also applied to neutron interferometers
to test how far the prediction of quantum mechanics holds
against macrorealism [9]. The coherence of the neutrino os-
cillation was tested using the violation of the Leggett-Garg
inequalities [10]. These are the frontiers of testing quan-
tum mechanics in the macroscopic world. There are further
proposals, e.g., testing the quantum nature of macroscopic
systems with the Leggett-Garg inequalities including gravity
[11]. Theoretical research on the Leggett-Garg inequalities
themselves is under debate (e.g., [12–16]).

The authors of Ref. [17] demonstrated that the Leggett-
Garg inequalities can be violated in a harmonic oscillator in
coherent states (see also [18,19]). Furthermore, Halliwell’s
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group has investigated the violation of the Leggett-Garg in-
equalities in harmonic oscillators in thermal coherent state
[20–24]. The optomechanical oscillator system is a promis-
ing method for preparing the quantum states of a massive
object as tabletop experiments [25–28]. Continuous measure-
ment cooling technology has been developed to realize such
a quantum state [29–31]. Feasibility tests have demonstrated
that the quantum states of a macroscopic pendulum will be
realized in the near future [32–34]. As a first step toward
a test of the macrorealism with a macroscopic oscillator,
we investigate the violation of the two-time Leggett-Garg
inequalities with a harmonic oscillator in various quan-
tum states. The results in this paper contain generalizations
of previous studies in the Ref. [24], but the new results
of this paper are as follows: We investigate the violation of
the two-time Leggett-Garg inequalities for one-dimensional
harmonic oscillators in various quantum states using two dif-
ferent types of dichotomic measurement. One is the simplest
choice of a continuous variable, where the boundary is chosen
as a constant of the eigenvalue of the position/momentum.
The other is the case that the dichotomic variable is de-
fined by a finite range of the position/momentum. We show
that the latter choice boosts the violation of the Leggett-
Garg inequalities, which appear for the ground state and
the squeezed states. We explain when the violation of the
Leggett-Garg inequalities occurs, which is useful to under-
stand the violation of the Leggett-Garg inequalities in an
intuitive manner. We show the result with a dichotomic vari-
able of the momentum operator, which demonstrates the
dual property between the position and momentum. We also
develop a formulation to calculate the quasiprobability distri-
bution function using the integral formula of the Heaviside
function.

The present paper is organized as follows: In Sec. II we
briefly review the basic formulas of the two-time quasiprob-
ability distribution function for the two-time Leggett-Garg
inequalities. In Sec. III there are three subsections. Each
subsection describes a generalization of the previous work
in Ref. [24]. The first subsection III A shows the explicit
expression for the two-time quasiprobability distribution func-
tion for the squeezed coherent state, which is obtained by
extending the formulas developed in Ref. [24], where we
also investigate the behaviors of the maximum violation
of Leggett-Garg inequalities. Here we explain the intuitive
understanding when the Leggett-Garg inequalities occur. In
the second subsection III B, we explain the expression of the
quasiprobability distribution function with momentum as the
observed quantity. In the third subsection III C, we develop a
formula to compute the quasiprobability distribution function,
which is useful for quantum continuous variables by using the
integral representation of the Heaviside function. We compare
the results with these two different formulas. In Sec. IV we
demonstrate the result with another dichotomic variable and
the projection operator, in which we consider a finite region
of position/momentum to construct the dichotomic variable.
This leads to the violation of the Leggett-Garg inequalities
in the ground state as well as the squeezed state, which
even boosts the violation. Section V is devoted to summary
and conclusions. In Appendix A a brief review of deriv-
ing the quasiprobability distribution function for the thermal

squeezed coherent state based on the method made by Mawby
and Halliwell [24] is presented. In Appendix B we present
a detailed derivation of the expression (21). Throughout this
paper, we use the unit h̄ = 1.

II. LEGGETT-GARG INEQUALITIES
AND QUASIPROBABILITY DISTRIBUTION FUNCTION

In the first part of this section, we review the two-time
Leggett-Garg inequalities with the two-time quasiprobability
distribution function. We introduce a dichotomic variable Q,
which gives ±1 as a result of measurement. We define Q1 and
Q2 to be the results of measurements at the time t1 and t2,
respectively. Further, we introduce s1 and s2, which are to be
chosen ±1 for the measurement at the time t1 and t2. Under
these assumptions, the inequalities (1 + s1Q1)(1 + s2Q2) � 0
hold for the four combination of s1 and s2.

Within a framework of macrorealism, there exists a proba-
bility function p(Q1, Q2), which gives

〈Q1〉 =
∑

Q1,Q2

p(Q1, Q2)Q1, 〈Q2〉 =
∑

Q1,Q2

p(Q1, Q2)Q2,

〈Q1Q2〉 =
∑

Q1,Q2

p(Q1, Q2)Q1Q2. (1)

The probability function takes values of the range between
0 and 1, and the expectation value of (1 + s1Q1)(1 + s2Q2)
must be non-negative,

〈(1 + s1Q1)(1 + s2Q2)〉 � 0, (2)

which is regarded as the Leggett-Garg inequalities of two-
time.

On the basis of the framework of quantum mechan-
ics, introducing the dichotomic quantum variable Q̂, the
corresponding variables Q̂1 and Q̂2 are defined by Q̂1 =
Q̂(t1) = eiĤt1 Q̂e−iĤt1 and Q̂2 = Q̂(t2) = eiĤt2 Q̂e−iĤt2 , respec-
tively, where we assume the unitary evolution of the system
described by the Hamiltonian operator Ĥ . Then the quasiprob-
ability is defined by

qs1,s2 (t1, t2) = 1
8 Tr[(1 + s1Q̂1)(1 + s2Q̂2)ρ0] + (1 ↔ 2), (3)

where ρ0 is the density matrix of the initial state. Introducing
the Heisenberg operator by

Ps(t ) = eiĤt Pse
−iĤt = 1

2 eiĤt (1 + sQ̂)e−iĤt , (4)

where Ps = (1 + sQ̂)/2 is regarded as a projection operator,
the quasiprobability is written as

qs1,s2 (t1, t2) = 1
2 Tr[Ps1 (t1)Ps2 (t2)ρ0] + (1 ↔ 2)

= ReTr[Ps2 (t2)Ps1 (t1)ρ0]. (5)

We note that qs1,s2 (t1, t2) satisfies the relations of the
probability [21]

〈Q̂(t1)〉 = Tr[Q̂(t1)ρ0] =
∑

s1,s2=±1

s1qs1,s2 (t1, t2), (6)

〈Q̂(t2)〉 = Tr[Q̂(t2)ρ0] =
∑

s1,s2=±1

s2qs1,s2 (t1, t2), (7)
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FIG. 1. Schematic explanation of how to define the dichotomic
measurement in Sec. III A, Eq. (10)

1

2
〈{Q̂(t1), Q̂(t2)}〉 = 1

2
Tr[{Q̂(t1), Q̂(t2)}ρ0]

=
∑

s1,s2=±1

s1s2qs1,s2 (t1, t2), (8)

1 =
∑

s1,s2=±1

qs1,s2 (t1, t2), (9)

where {Q̂(t1), Q̂(t2)} = Q̂(t1)Q̂(t2) + Q̂(t2)Q̂(t1). However, it
may have negative values in quantum theory, and then we call
qs1,s2 (t1, t2) quasiprobability.

III. TWO-TIME QUASIPROBABILITY DISTRIBUTION
FUNCTION OF THE DICHOTOMIC MEASUREMENT

In this section we evaluate the quasiprobability distribution
function with dichotomic measurements, which is defined by
a measurement value Q as shown by Fig. 1. The dichotomic
measurement means that when the observable is larger than
the threshold w, Q = +1, and when it is smaller than w,
Q = −1, where w is a parameter. For this assumption, the

measurement operator Q̂ can be written by a sign function and
the projection operator can be written by a Heaviside function:

Q̂ = sgn(x̂ − w), Psi = θ (si(x̂ − w)). (10)

Using the Heisenberg picture, the time-dependent operator is
written as

Q̂(ti ) = eiĤti sgn(x̂ − w)e−iĤti ,

Psi (ti ) = eiĤtiθ (si(x̂ − w))e−iĤti . (11)

In subsection III A, we first consider the two-time quasiprob-
ability distribution function for the thermal squeezed coherent
state, which is obtained by extending the formulas developed
in Ref. [24]. In the second subsection III B, the expression of
the quasiprobability distribution function with the dichotomic
variable with the momentum operator. In the third subsection
III C, we develop a formula to compute the quasiprobability
distribution function, which is used to prove the validity of
both the formulas.

A. Two-time quasiprobability distribution function
with the dichotomic variable of position operator

First, we evaluate the quasiprobability distribution function
following the method developed in the paper by Mawby and
Halliwell [24]. We first consider the squeezed coherent state,
which is written as

ρ0 = D(ξ )S(ζ ) |0〉 〈0| S†(ζ )D†(ξ ) (12)

with the squeezing operator S(ζ ) defined by S(ζ ) =
e

1
2 (ζ â†2−ζ ∗â2 ) and the coherent operator D(ξ ) defined by

D(ξ ) = eξ â†−ξ∗â, where we also use ξ = (x0 + ip0)/
√

2 and
ζ = reiθ0 , and x0 and p0 are the dimensionless initial
position/momentum expected values. Then the quasiprobabil-
ity distribution function is given by

qs1,s2 (t1, t2) = Re Tr[Ps2 (t2)Ps1 (t1)ρ0]

= Re〈0|S†(ζ )D†(ξ )θ (s2(x̂(t2) − w))θ (s1(x̂(t1) − w))D(ξ )S(ζ )|0〉

= 1

4

[
1 + s1erf

(
xξ (t1 ) − w

λ(t1)

)
+ s2erf

(
xξ (t2 ) − w

λ(t2)

)
+ s1s2erf

(
xξ (t1 ) − w

λ(t1)

)
erf

(
xξ (t2 ) − w

λ(t2)

)]

+ s1s2Re
∞∑

n=1

e−inω(t2−t1+β(t2 )−β(t1 ))J0n

(
−xξ (t1 ) − w

λ(t1)
,∞

)
Jn0

(
−xξ (t2 ) − w

λ(t2)
,∞

)
, (13)

where we defined xξ (t ) = √
2Re[ξ (t )] = √

2Re[ξe−iωt ],
λ(t ) = √

sinh(2r) cos(θ0 − 2ωt ) + cosh(2r) , β(t ) is defined
by Eq. (A12), and Jmn(x1, x2) is defined as the matrix element
in Ref. [23] [see also Eq. (A21) for Jmn(x1,∞)], and erf (z) is
the error function.

We have also found the explicit expression for the
quasiprobability for the thermal squeezed coherent state,
Eq. (A16), as described in Appendix A. We define the pa-
rameter for the initial state of the coherent state by x0 =√

2Re[ξ ] = √
2|ξ | cos 	, p0 = √

2Im[ξ ]=√
2|ξ | sin 	. Here

we note that x0 and p0 are understood as the initial values

of the position and momentum of coherent oscillating motion,
normalized by the factors 1/

√
2mω and

√
mω/2, respectively.

Figure 2 plots the minimum value q1,−1(0, t2) on the plane of
x0 and p0, where we found the minimum value of q1,−1(0, t2)
by varying t2 for each x0 and p0. Here we fixed w = 0 and the
squeezed parameter r = 1/2 and θ0 = 0 with the temperature
T = 0. As is predicted in Ref. [24], qs1,s2 (0, t2) achieves the
minimum value qs1,s2 (0, t2) = −0.0284, which is the same as
that for the coherent state with r = 0. As is demonstrated
in [24] for the coherent state, the minimum value of the
quasiprobability distribution function becomes larger as the
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FIG. 2. Contour plot of the minimum values of qs1=+1,s2=−1(t1 =
0, t2), on the plane of x0 and p0. We fixed w = 0 and the squeezing
parameters r = 1/2 and θ0 = 0. x0 and p0 are the dimensionless
initial position and momentum values, respectively.

temperature T is increased. This property is the same for
the squeezed coherent state, and this can be understood from
the fact that the quasiprobability distribution function of the
squeezed coherent state is obtained by that of the coherent
state with an appropriate variable transformation, which is
explicitly shown in Appendix A. Hereafter in this section, we
fix w = 0, for simplicity.

The left panel of Fig. 3 exemplifies the quasiprobability
distribution function, qs1,s2 (0, t2), as a function of ωt2, where
the left panel assumes s1 = 1, s2 = −1. Figure 3 adopted the
parameters x0 and p0 noted in Table I, which are chosen so
that the quasiprobability distribution function achieves the
maximum violation, qs1,s2 (0, t2) = −0.0284. With the use of
Fig. 3, we explain how to understand the violation of the
Leggett-Garg inequalities in an intuitive way. The violation
of the Leggett-Garg inequalities appears when the position
measurements give the opposite value against the expectation
value. The initial values of x0 and p0 for the curves in this
figure are roughly −1.5 < x0 < −0.5 and 0.7 < p0 < 2. This

TABLE I. Parameters adopted for the curves in Fig. 3.

s1 s2 r x0 p0

1 −1 0 −0.554 1.95
1 −1 0.5 −0.896 1.18
1 −1 0.6 −0.991 1.07
1 −1 0.7 −1.09 0.968
1 −1 0.8 −1.21 0.875
1 −1 0.9 −1.34 0.792
1 −1 1.0 −1.48 0.717

means that the initial expectation value of the coherent oscil-
lation motion starts from the left x0 < 0 with the right moving
momentum p0 > 0. q1,−1(0, t2) computes the quasiprobability
that the result of the position measurement at t1 = 0 gives
x > 0 and the result of the position measurement at t2 gives
x < 0. However, the initial value of x0 < 0 at t1 is opposite to
the condition x > 0 at t1 = 0. The right panel of Fig. 3 plots
the expectation value of 〈ψ0|x̂(t )|ψ0〉/2|ξ | = cos(ωt − 	),
where the curve of the left panel assumes the same parameters
adopted for the same type of curve in Fig. 3. From the right
panel of Fig. 3, the expectation value of the position becomes
positive after a short time. The quasiprobability distribution
function q1,−1(0, t2) takes the minimum negative values at
the time t2 when it becomes 〈ψ0|x̂(t2)|ψ0〉 > 0. This is op-
posite to the condition that q1,−1(0, t2) means at t2. Namely,
q1,−1(0, t2) computes the quasiprobability that the result of the
position measurement at t2 gives x < 0. Thus, the violation of
the Leggett-Garg inequalities appears when the measurements
give opposite values against the expectation values. This prop-
erty is maintained even for other s1, s2 pairs and can be said
to be general.

B. Two-time quasiprobability distribution function
with the dichotomic variable of momentum operator

In this subsection we consider the quasiprobability distri-
bution function with the dichotomic variable constructed with
the momentum operator for the squeezed coherent state. Here
the dichotomic variable and the measurement operator can be
written by a sign function, and the projection operator can be

FIG. 3. The left panel shows the quasiprobability distribution function as a function of ωt adopted s1 = 1, s2 = −1, where we fixed t1 = 0
and θ0 = 0, and the other parameters are noted in Table I. The right panel shows as the expectation values of position 〈ψ0|x̂(t )|ψ0〉/2|ξ | =
cos(ωt − arctan[p0/x0]) as a function of ωt . The same-type curves in the left panel and in the right panel of Fig. 3 assume the same parameters
for each, as described in Table I. qs1,s2 (0, t2) achieves the minimum value qs1,s2 (0, t2) = −0.0284.
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FIG. 4. Schematic explanation of how to define the dichotomic
measurement in Sec. III B, Eq. (14).

written by a Heaviside function (see Fig. 4):

Q̂ = sgn( p̂ − w), Psi = θ (si( p̂ − w)). (14)

For the Heisenberg operators x̂(t ) and p̂(t ), which unitarily
evolve through Ĥ ,

p̂(t ) = x̂(t + π/2ω), (15)

then the quasiprobability distribution function is written as

qs1,s2 (t1, t2) = Re Tr[Ps2 (t2)Ps1 (t1)ρ0]

= Re〈0|S†(ζ )D†(ξ )θ (s2( p̂(t2) − w))

× θ (s1( p̂(t1) − w))D(ξ )S(ζ )|0〉
= Re〈0|S†(ζ )D†(ξ )θ

(
s2

(
x̂
(

t2 + π

2ω

)
− w

))
× θ

(
s1

(
x̂
(

t1 + π

2ω

)
− w

))
D(ξ )S(ζ )|0〉,

(16)

where ρ0 = D(ξ )S(ζ )|0〉〈0|S†(ζ )D†(ξ ). From the second line
to the third line, we used Eq. (15). The derivation is shown in
Appendix A, and we have

qs1,s2 (t1, t2) = 1

4

[
1 + s1erf

(
xξ (t1+π/2ω) − w

λ
(
t1 + π

2ω

)
)

+ s2erf

(
xξ (t2+π/2ω) − w

λ
(
t2 + π

2ω

)
)

+ s1s2erf

(
xξ (t1+π/2ω) − w

λ
(
t1 + π

2ω

)
)

erf

(
xξ (t2+π/2ω) − w

λ
(
t2 + π

2ω

)
)]

+ s1s2Re
∞∑

n=1

e−inω[t2−t1+β(t2+π/2ω)−β(t1+π/2ω)]J0n

(
−xξ (t1+π/2ω) − w

λ
(
t1 + π

2ω

) ,∞
)

Jn0

(
−xξ (t2+π/2ω) − w

λ
(
t2 + π

2ω

) ,∞
)

. (17)

Also note that xξ (t+π/ω2) is equivalent to pξ (t ) which appears
when the coherent operator acts on the momentum operator
as D†(ξ (t )) p̂D(ξ (t )) = p̂ + pξ (t ), where we defined pξ (t ) =√

2Im[ξ (t )] = √
2Im[ξe−iωt ]. Thus, Eq. (15) is useful to find

the quasiprobability distribution function with the dichotomic
variable with the measurement of momentum.

The panels of Fig. 5 demonstrate the contour of the min-
imum value of q1,−1(0, t2) on the plane x0 and p0. The left
panel assumes w = 0, r = 1/2, and θ0 = 0, while the right
panel assumes w = 0, r = 1/2, and θ0 = π . The minimum

value of q1,−1(0, t2) in Fig. 5 is −0.0284, which is the same
as that in Fig. 2. One can see that the right panel of Fig. 5 is
given by rotating Fig. 2 by the factor π/2 around the origin.
This can be understood by the relation (15), and the projection
operators and the squeezed coherent states of these two mod-
els are related by the rotation in phase space. The period of the
rotation of the squeezed state in phase space is π/ω, and the
period of the rotation of the coherent motion in phase space
is 2π/ω. The result in this subsection might be useful from
the perspective of testing the violation of the Leggett-Garg

FIG. 5. The contour of the minimum value of the Leggett-Garg violation q1,−1(t1 = 0, t2) with Eq. (17) on the plane of x0 and p0. t2 takes
different values at each point. t2 is a variable parameter to minimize q1,−1(t1 = 0, t2). In these panels we fixed w = 0, r = 1/2, and θ0 = 0
(θ0 = π ) in the left (right) panel.
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FIG. 6. Comparison of the numerical results of Eq. (21) and
Eq. (13). In the numerical evaluation of Eq. (13), we increased the
maximum number of the sum with respect to n up to n = 5 (blue
dashed curve), n = 50 (orange solid curve), n = 500 (red dashed
curve), where the red dashed curve is not seen. The black solid
curve plots the numerical integration of Eq. (21), which overlaps
the red dashed curve, i.e., Eq. (13) with n = 500. Thus, the two
formulas (21) and (13) coincide as long as the sum with respect to
n is taken sufficiently large. Here we fixed x0 = 0.550, p0 = 1.925,
r = 1, θ0 = π/3, s1 = 1, and s2 = −1.

inequality for a harmonic oscillator with measurements of
momentum.

C. Another calculation method of quasiprobability distribution
function and its applicability

In this subsection we develop a different prescription for
computing the quasiprobability distribution function, which
can be useful to generalize it to a system of quantum field
theory as demonstrated in the accompanying paper [35]. We
restart from the expression of the quasiprobability distri-
bution function, qs1,s2 (t1, t2) = ReTr[Ps2 (t2)Ps1 (t1)ρ0], where
we consider the initial state as a coherent squeezed
state, ρ0 = D(ξ )S(ζ ) |0〉 〈0| S†(ζ )D†(ξ ). Using the mathe-
matical formula θ ′(x − α) = −dθ (x − α)/dα = δ(x − α) =

1
2π

∫ ∞
−∞ d p e−ip(x−α), we have

θ (x − α) =
∫ ∞

α

dc
1

2π

∫ ∞

−∞
d p e−ip(x−c). (18)

Further, using the creation and annihilation operators,
â† and â, the position operator of x is written as x̂ =
(â + â†)/

√
2mω, and we have

Ps(t ) = eiĤtθ (sx̂)e−iĤt

=
∫ ∞

0
dc

∫ ∞

−∞

d p

2π
exp

[
ip

(
−s

âe−iωt + â†eiωt

√
2mω

+ c

)]
.

(19)

Hence, the quasiprobability is expressed as

qs1,s2 (t1, t2) = Re Tr

[ ∫∫ ∞

0
dc1dc2

∫∫ ∞

−∞

d p1d p2

(2π )2

× e−ip2s2(âe−iωt2 +â†eiωt2 )+ip2c2

× e−ip1s1(âe−iωt1 +â†eiωt1 )+ip1c1ρ0

]
, (20)

which leads to

qs1,s2 (t1, t2) = Re

{
1

2π

e−δ/2

√
B

∫ π/2

0
du

[
1

σ
−

√
2πbeβ2/2σ

2σ 3/2

× erfc

(
β√
2σ

)]}
, (21)

where we defined as follows:

γ = ξ cosh |ζ | − ξ ∗eiθ0 sinh |ζ |, (22)

E (t ) = e−iωt cosh r + eiωt e−iθ0 sinh r, (23)

E (t ) = E (t )γ + E∗(t )γ ∗, (24)

B = |E (t1)|2|E (t2)|2 − [E∗(t1)E (t2)]2, (25)

σ = 1

B
[|E (t2)|2 cos2 u + |E (t1)|2 sin2 u

− 2s1s2E (t2)E∗(t1) sin u cos u], (26)

β = 1

B
(−|E (t2)|2s1E (t1) cos u − |E (t1)|2s2E (t2) sin u

+ E (t2)E∗(t1)[s2E (t1) sin u + s1E (t2) cos u]), (27)

δ = 1

B
(|E (t2)|2E (t1)2 + |E (t1)|2E (t2)2

− 2E (t2)E∗(t1)E (t1)E (t2)). (28)

FIG. 7. The left panel shows how the dichotomic variable Q is defined in the phase space in Sec. IV A, Eq. (29). The right panel does the
same in Sec. IV B, Eq. (33).
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FIG. 8. The left panel is the contour of the minimum value of q1,1(t1 = 0, t2) of Eq. (32) on the plane of the coherent parameters x0 and p0,
where we fixed r = 0, θ0 = 0, and L = 1, and t2 is is a free parameter to the minimum value of quasiprobability distribution function for each
set of x0 and p0. The right panel is the contour of q1,1(t1 = 0, t2) on the plane of r and ωt2, where we fixed L = 1, x0 = 0, and p0 = 0. Each
panel assumes θ0 = 0, s1 = 1, and s2 = 1.

The derivation of Eq. (21) is described in Appendix B, where
we performed the Gaussian integration for the quasiprobabil-
ity distribution function (20). The numerical calculation of
Eq. (21) gives the same result as that in Sec. III A, as long
as the calculation guarantees convergence. Figure 6 demon-
strates that the numerical sum of Eq. (13) reproduces the
numerical integration of Eq. (21) as the maximum value of
the sum with respect to n in Eq. (13) increases. Thus, Fig. 6
demonstrates that the same result is obtained from the two
different formulas (21) and (13). This method can be extended
to a quantum scalar field theory by replacing x in Eq. (18)
with a coarse-grained field operator, as demonstrated in the
accompanying paper [35].

IV. LARGER VIOLATION OF LEGGETT-GARG
INEQUALITIES WITH EXTENDED

DICHOTOMIC VARIABLE

A. Extended dichotomic variable with the position operator

In this subsection we investigate a larger violation of
the Leggett-Garg inequalities by introducing the dichotomic

variables and measurement operators defined as follows:

Q̂ = sgn(x̂ − L) + sgn(−x̂ − L) + 1, (29)

where L(> 0) is the parameter, which determines the region
at which the measurement value switches. Following the defi-
nition Psi = (1 + siQ̂)/2, the projection operator is written as

Psi = θ (si(x̂ − L)) + θ (−si(x̂ + L)) + 1
2 (si − 1). (30)

The dichotomic variable defined by the above projection
operator is understood as follows. When the result of a mea-
surement of the position of a harmonic oscillator is |x| > L,
we assign Q = 1. On the other hand, when the result of a
measurement of the position is |x| � L, we assign Q = −1.
Therefore, the projection operator Ps with s = 1 gives the
projection of the region |x| > L, while Ps with s = −1 does
the projection of the region |x| � L. In the phase space, we
can understand the definition of the dichotomic variable and
the projection operator as shown by the left panel of Fig. 7.

We consider the squeezed coherent state as the initial
state, ρ0 = |ξ, ζ 〉 〈ξ, ζ |, where |ξ, ζ 〉 is defined by |ζ 〉 =
D(ξ )S(ζ ) |0〉. In this case, we evaluate the following formula
as the quasiprobability distribution function:

qs1,s2 (t1, t2) = Re
[〈0| S†(ζ )D†(ξ )eiHt2

{
θ (s2(x̂ − L)) + θ (−s2(x̂ + L)) + 1

2 (s2 − 1)
}
e−iHt2

× eiHt1
{
θ (s1(x̂ − L)) + θ (−s1(x̂ + L)) + 1

2 (s1 − 1)
}
e−iHt1 D(ξ )S(ζ ) |0〉]. (31)

Using the method developed in the previous section, we have

qs1,s2 (t1, t2) = 1

4

{
1 + s1

[
1 + erf

(
xξ (t1 ) − L

λ(t1)

)
− erf

(
xξ (t1 ) + L

λ(t1)

)]}{
1 + s2

[
1 + erf

(
xξ (t2 ) − L

λ(t2)

)
− erf

(
xξ (t2 ) + L

λ(t2)

)]}

+ s1s2Re

{ ∞∑
n=1

e−inω(t2−t1+β(t2 )−β(t1 ))

[
J0n

(
xξ (t1 ) − L

λ(t1)
,∞

)
Jn0

(
xξ (t2 ) − L

λ(t2)
,∞

)
− J0n

(
xξ (t1 ) − L

λ(t1)
,∞

)
Jn0

×
(

xξ (t2 ) + L

λ(t2)
,∞

)
− J0n

(
xξ (t1 ) + L

λ(t1)
,∞

)
Jn0

(
xξ (t2 ) − L

λ(t2)
,∞

)
+ J0n

(
xξ (t1 ) + L

λ(t1)
,∞

)
Jn0

(
xξ (t2 ) + L

λ(t2)
,∞

)]}
.

(32)
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FIG. 9. The left panel is the contour of the minimum value of q1,1(t1 = 0, t2) of Eq. (32) on the plane of L and ωt2, where we fixed θ0 = 0.
L is a dimensionless threshold value. The right panel is the plot of the quasiprobability q1,1(t1 = 0, t2) of Eq. (32) as function of ωt2, where we
fixed x0 = 0, p0 = 0, r = 0, θ0 = 0, and L = 1.02, which achieves the minimum value of q1,1(t1 = 0, t2) in the left panel.

The left panel of Fig. 8 plots the contour of the minimum value
of the quasiprobability q1,1(0, t2) of Eq. (32) on the plane of x0

and p0 with fixed r = 0 and θ0 = 0. The right plane of Fig. 8
plots the contour on the plane of r and ωt2 with fixed L = 1,
x0 = 0, and p0 = 0. In these panels, we fixed θ0 = 0 and
s1 = s2 = 1. Thus, for the coherent state, the Leggett-Garg
inequality is clearly violated for s1 = 1 and s2 = 1, and we
also found a very small violation for s1 = −1 and s2 = 1 with
a nonzero value of r, which is not explicitly shown here.

We note that the quasiprobability distribution function
takes the negative values smaller than −0.05 for x0 � 0.5
and p0 � 0.5 in the left panel of Fig. 8. We also note that
the quasiprobability distribution function takes the negative
values smaller than −0.05 for and r � 0.5 at ωt2 ∼ π/2 in the
right panel of Fig. 8. The minimum value of the quasiprob-
ability distribution function appears when x0 = p0 = r = 0,
i.e., the ground state within the squeezed coherent states ρ0 =
D(ξ )S(ζ ) |0〉 〈0| S†(ζ )D†(ξ ). This means that the Leggett-
Garg inequality is violated when the initial state is in the
ground state ρ0 = |0〉 〈0|. These values of the quasiprobability
are smaller than those of the previous section. Thus, the vio-
lation is boosted by the choice of the projection operator (29).
The clear violation for the dichotomic variable with Eq. (29)
appears only for s1 = s2 = 1 when the measurements at t1 and
t2 give |x| > L. This will be explained in an intuitive way that
the violation of the Leggett-Garg inequality appears when the
position measurement gives the opposite value against the ex-
pectation value, which comes from the broadening feature of
the wave function on the basis of the superposition principle.

The left panel of Fig. 9 shows the minimum value of the
quasiprobability q1,1(t1 = 0, t2) on the plane of L and t2. Here
we fixed s1 = s2 = 1 and θ0 = 0. The right panel of Fig. 9
plots the quasiprobability q1,1(t1 = 0, t2) as a function of ωt2,
which achieves the minimum value of the quasiprobability
in the left panel of Fig. 9. We note that the period of the
quasiprobability of Eq. (32) is π/ω. Figure 10 shows the
minimum value of the quasiprobability distribution function
q1,1(t1 = 0, t2) on the plane of L and r, where t2 is the free
parameter. Here we fixed s1 = s2 = 1 and θ0 = 0. Figure 10
shows that the relatively strong violation of the Leggett-Garg
inequality appears for 0.8 � L � 1.2 and r � 0.5. Under the

condition θ0 = 0, the minimum value of the quasiprobability
distribution function is −0.0538, which is 43% of the Lüders
bound, −1/8 (see Refs. [21,36]). The minimum value appears
for r = 0 and L = 1.03 at ωt2 = 1.55. Thus, the choice of the
dichotomic variable using the rectangular measurement en-
ables us to detect the violation of the Leggett-Garg inequality
in the ground state and the squeezed state, which even boosts
the violation of the amplitude. From Fig. 10, it can be seen that
under the condition of L � 0.6, no violation appears for any
r. This can be explained by the fact that the distribution of the
expectation value of the position is in the region −L < x < L
at the time of measurements, and there are no surprises in the
results of measurements.

B. Extended dichomotic variable with the momentum operator

In this subsection, we investigate the violation of the
Leggett-Garg inequalities by introducing a similar dichotomic
variable and measurement operators with the momentum

FIG. 10. Contour plot of the quasiprobability distribution func-
tion q1,1(t1 = 0, t2) on plane of r and L, which t2 is free parameter.
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FIG. 11. Same as Fig. 8 but for the dichotomic variable and the projection operator for Eq. (33), where we fixed L = 1.02. In the left panel,
we fixed r = θ0 = 0. In the right panel, we fixed x0 = p0 = θ0 = 0.

operator,

Q̂ = sgn( p̂ − L) + sgn(−p̂ − L) + 1,

Psi = θ (si( p̂ − L)) + θ (−si( p̂ + L)) + 1
2 (si − 1), (33)

with a dimensionless threshold value L(> 0). The right panel
of Fig. 7 shows the definition of the dichotomic variable. The
expression of the quasiprobability distribution function can be
evaluated in a similar way to the previous subsection, and we
have

qs1,s2 (t1, t2) = 1

4

{
1 + s1

[
1 + erf

(
xξ (t1+π/2ω) − L

λ
(
t1 + π

2ω

)
)

− erf

(
xξ (t1+π/2ω) + L

λ
(
t1 + π

2ω

)
)]}

×
{

1 + s2

[
1 + erf

(
xξ (t2+π/2ω) − L

λ
(
t2 + π

2ω

)
)

− erf

(
xξ (t2+π/2ω) + L

λ
(
t2 + π

2ω

)
)]}

+ s1s2Re

{ ∞∑
n=1

e−inω[t2−t1+β(t2+π/2ω)−β(t1+π/2ω)]

×
[

J0n

(
xξ (t1+π/2ω) − L

λ
(
t1 + π

2ω

) ,∞
)

Jn0

(
xξ (t2+π/2ω) − L

λ
(
t2 + π

2ω

) ,∞
)

− J0n

(
xξ (t1+π/2ω) − L

λ
(
t1 + π

2ω

) ,∞
)

Jn0

(
xξ (t2+π/2ω) + L

λ
(
t2 + π

2ω

) ,∞
)

− J0n

(
xξ (t1+π/2ω) + L

λ
(
t1 + π

2ω

) ,∞
)

Jn0

(
xξ (t2+π/2ω) − L

λ
(
t2 + π

2ω

) ,∞
)

+ J0n

(
xξ (t1+π/2) + L

λ
(
t1 + π

2ω

) ,∞
)

Jn0

(
xξ (t2+π/2ω) + L

λ
(
t2 + π

2ω

) ,∞
)]}

,

(34)

where we adopted the initial state ρ0 =
D(ξ )S(ζ ) |0〉 〈0| S†(ζ )D†(ξ ). Equation (34) is obtained
from Eq. (32) by replacing p̂(t ) with x̂(t + π

2ω
) following the

relation (15). The left panel of Fig. 11 is given by rotating
the left panel of Fig. 8 by the factor π/2, but the right panel
of Fig. 11 is very different from that of Fig. 8. In the right
panel of Fig. 11, the maximum violation occurs at t2 = π/2ω

and r = 0, which is the same property as that of Fig. 8.
If we choose the squeezing parameter θ0 = π in the right
panel of Fig. 11, the contour plot on the plane of r and ωt2
perfectly matches the right panel of Fig. 8. These behaviors
can be understood by the relation (15), and the projection
operators and the squeezed coherent states of these two
models are related by the rotation in phase space, as discussed
in Sec. III B.

V. SUMMARY AND CONCLUSION

In the present paper, we have investigated the violation
of the two-time Leggett-Garg inequalities for testing the

quantum nature of a harmonic oscillator in the various quan-
tum states. The new points are the following. (i) We first
obtained the explicit expression for the two-time quasiprob-
ability distribution function for the thermal squeezed coherent
state as a generalization of the work by Mawby and Halliwell
[24], with which we have explicitly shown that the squeezed
coherent thermal states do not increase the violation of the
Leggett-Garg inequalities as predicted in the previous paper
in Ref. [24]. (ii) We also extended the result to the two-time
quasiprobability distribution function with the dichotomic
variable and the projection operator defined by the momentum
operator. (iii) We found that the violation of the Leggett-
Garg inequalities can be boosted by adopting the dichotomic
variable and the projection operator with a finite range of
position/momentum measurements, in which the larger vi-
olation appears for the ground state or the squeezed state.1

1We note that larger violations of the Leggett-Garg inequalities
close to the Lüders bound are discussed in [37].

012223-9



KOSEI HATAKEYAMA et al. PHYSICAL REVIEW A 110, 012223 (2024)

(iv) We developed a formula to compute the quasiprobability
distribution function, which is useful for quantum continuous
variables by using the integral representation of the Heaviside
function, which can be generalized to a formulation with a
field theory, as reported in the accompanying paper [35]. The
numerical results of these two formulas are used to demon-
strate the consistency.

It is known that the two-time Leggett-Garg inequalities
and the three-time Leggett-Garg inequalities are necessary
and sufficient to prove macrorealism [20]. Therefore, it might
be useful to investigate the three-time Leggett-Garg inequal-
ities. Application of the Leggett-Garg inequalities to realistic
optomechanical experiments [29,30] should be investigated
in the future. To this end, we further need to extend the
formulation for the system taking the impacts of noises of

environments, feedback control, and quantum filtering process
into account. The method to realize the projection opera-
tors assumed in the present paper is also left as a future
investigation.
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APPENDIX A: TWO-TIME QUASIPROBABILITY FOR THE THERMAL SQUEEZED COHERENT STATE

Here we derive the expression for the quasiprobability distribution when the initial state is the thermal squeezed coherent
state, whose density matrix is written as

ρ0 = 1

1 + Nth

∞∑
m=0

(
Nth

1 + Nth

)m

D(ξ )S(ζ )|m〉〈m|S(ζ )†D(ξ )†, (A1)

where Nth = [exp(h̄ω/kBT ) − 1]−1, and T is the temperature. In this case, the two-time quasiprobability is given by

qs1,s2 (t1, t2) = 1

1 + Nth

∞∑
m=0

(
Nth

1 + Nth

)m

Re
[〈m|S†(ζ )D†(ξ )eiĤt2θ (s2x̂)e−iĤ (t2−t1 )θ (s1x̂)e−iĤt1 D(ξ )S(ζ )|m〉]. (A2)

Using the formula

e−iĤt D(ξ )S(ζ ) = D(ξ (t ))S(ζ (t ))e−iĤt (A3)

with defined ξ (t ) = ξe−iωt and ζ (t ) = ζe−2iωt , the right-hand side of Eq. (A2) is written as

qs1,s2 (t1, t2) = 1

1 + Nth

∞∑
m=0

(
Nth

1 + Nth

)m

Re
[
ei(t2−t1 )/2〈m|S†(ζ (t2))D†(ξ (t2))θ (s2x̂)e−iĤ (t2−t1 )θ (s1x̂)D(ξ (t1))S(ζ (t1))|m〉]. (A4)

Further, since we can write

θ (sx̂)D(ξ (t )) = D(ξ (t ))θ (s(x̂ + xξ (t ) )), (A5)

S(ζ (t2))†e−iĤ (t2−t1 )S(ζ (t1)) = S(ζ (t2))†S(ζ (t2))e−iĤ (t2−t1 ) = e−iĤ (t2−t1 ), (A6)

D(ξ (t2))†e−iĤ (t2−t1 )D(ξ (t1)) = D(ξ (t2))†D(ξ (t2))e−iĤ (t2−t1 ) = e−iĤ (t2−t1 ), (A7)

where xξ (t ) = √
2Re[ξ (t )], we have

qs1,s2 (t1, t2) = 1

1 + Nth

∞∑
m=0

(
Nth

1 + Nth

)m

Re
[
eiω(t2−t1 )/2〈m|S†(ζ (t2))θ (s2(x̂ + xξ (t2 ) ))e−iĤ (t2−t1 )θ (s1(x̂ + xξ (t1 ) ))S(ζ (t1))|m〉].

(A8)

Using the properties of the unitary operator S(ζ ) and the Bogoliubov transformation, we have

θ (s(x̂ + xξ (t ) ))S(ζ (t )) = S(ζ (t ))S†(ζ (t ))θ (s(x̂ + xξ (t ) ))S(ζ (t ))

= S(ζ (t ))S†(ζ (t ))θ
(

s

(
â + â†

√
2mω

+ xξ (t )

))
S(ζ (t ))

= S(ζ (t ))θ
(

s

(
â cosh r + â†ei(θ0−2ωt ) sinh r + â† cosh r + âe−i(θ0−2ωt ) sinh r√

2mω
+ xξ (t )

))

= S(ζ (t )θ

(
s

(
A(t )x̂ + B(t )

p̂

mω
+ xξ (t )

))
, (A9)
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where we defined

A(t ) = cosh r + cos (θ0 − 2ωt ) sinh r, B(t ) = sin (θ0 − 2ωt ) sinh r, (A10)

and ζ = reiθ0 . Next, consider a polar coordinate transformation of the linear combination of the position and momentum
operators in phase space. We defined λ(t ) =

√
A(t )2 + B(t )2 = √

sinh(2r) cos(θ0 − 2ωt ) + cosh(2r), A(t ) and B(t ) can be
rewritten as

A(t ) = λ(t ) cos β(t ), B(t ) = λ(t ) sin β(t ), (A11)

β(t ) = arctan

(
B(t )

A(t )

)
= arctan

[
sin (θ0 − 2ωt ) sinh r

cosh r + cos (θ0 − 2ωt ) sinh r

]
. (A12)

Then, using

A(t )x̂ + B(t )
p̂

mω
= λ(t )

[
x̂ cos β(t ) + p̂

mω
sin β(t )

]
= λ(t )

âe−iβ(t ) + â†eiβ(t )

√
2mω

= λ(t )eiĤβ(t )/ωx̂e−iĤβ(t )/ω = λ(t )x̂(β(t )),

(A13)

and θ (s(λ(t )eiĤβ(t )/ωx̂e−iĤβ(t )/ω + xξ (t ) )) = eiĤβ(t )/ωθ (s(λ(t )x̂ + xξ (t ) ))e−iĤβ(t )/ω, we have the quasiprobability

qs1,s2 (t1, t2) = 1

1 + Nth

∞∑
m=0

(
Nth

1 + Nth

)m

Re
[
eiω(t2−t1 )/2〈m|θ (s2(λ(t2)eiĤ β(t2 )

ω x̂

× e−iĤ β(t2 )
ω + xξ (t2 )))e−iĤ (t2−t1 )θ (s1(λ(t1)eiĤ β(t1 )

ω x̂e−iĤ β(t1 )
ω + xξ (t1 )))|m〉]

= 1

1 + Nth

∞∑
m=0

∞∑
n=0

(
Nth

1 + Nth

)m

Re

[
e−inω(t2−t1 )e−in(β(t2 )−β(t1 ))〈m|θ

(
s2

(
x̂ + xξ (t2 )

λ(t2)

))
|n〉〈n|θ

(
s1

(
x̂ + xξ (t1 )

λ(t1)

))
|m〉

]
.

(A14)

By separating the term m = 0 from the other terms of m 
= 0 in the sum of m, we have

qs1,s2 (t1, t2) = 1

1 + Nth
Re

[
〈0|θ

(
s2

(
x̂ + xξ (t2 )

λ(t2)

))
|0〉〈0|θ

(
s1

(
x̂ + xξ (t1 )

λ(t1)

))
|0〉

+
∞∑

m=1

(
Nth

1 + Nth

)m

eim(ω(t2−t1 )+β(t2 )−β(t1 ))〈m|θ
(

s2

(
x̂ + xξ (t2 )

λ(t2)

))
|0〉〈0|θ

(
s1

(
x̂ + xξ (t1 )

λ(t1)

))
|m〉

+
∞∑

n=1

e−in(ω(t2−t1 )+β(t2 )−β(t1 ))〈0|θ
(

s2

(
x̂ + xξ (t2 )

λ(t2)

))
|n〉〈n|θ

(
s1

(
x̂ + xξ (t1 )

λ(t1)

))
|0〉

+
∞∑

m=1

∞∑
n=1

(
Nth

1 + Nth

)m

ei(m−n)(ω(t2−t1 )+β(t2 )−β(t1 ))〈m|θ
(

s2

(
x̂ + xξ (t2 )

λ(t2)

))
|n〉〈n|θ

(
s1

(
x̂ + xξ (t1 )

λ(t1)

))
|m〉

]
.

(A15)

Calculating the final term of Eq. (A15), we have to separate the term m = n from the other terms of m 
= n, we have

qs1,s2 (t1, t2) = 1

1 + Nth
Re

{
1

4

(
1 + s1erf

(
xξ (t1 ) − w

λ(t1)

)
+ s2erf

(
xξ (t2 ) − w

λ(t2)

)
+ s1s2erf

(
xξ (t1 ) − w

λ(t1)

)
erf

(
xξ (t2 ) − w

λ(t2)

))

+ s1s2

{ ∞∑
m=1

(
Nth

1 + Nth

)m

eimω(t2−t1 )+im(β(t2 )−β(t1 ))Jm0

(
−xξ (t2 ) − w

λ(t2)
,∞

)
J0m

(
−xξ (t1 ) − w

λ(t1)
,∞

)

+
∞∑

n=1

e−inω(t2−t1 )−in(β(t2 )−β(t1 ))J0n

(
−xξ (t2 ) − w

λ(t2)
,∞

)
Jn0

(
−xξ (t1 ) − w

λ(t1)
,∞

)

+
∞∑

m=1

∞∑
n=1,m 
=n

(
Nth

1 + Nth

)m

Jmn

(
−xξ (t2 ) − w

λ(t2)
,∞

)
Jnm

(
−xξ (t1 ) − w

λ(t1)
,∞

)}}
+ ee(s1, s2, t1, t2), (A16)
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where the last term ee(s1, s2, t1, t2) is defined depending on the values of s1 and s2, as follows:

ee(s1 = +1, s2 = +1, t1, t2) =
∫ ∞

−(xξ (t2 )−ω)/λ(t2 )
dx

∞∑
n=1

(
Nth

1 + Nth

)n

ψ†
n (x)ψn(x)

∫ ∞

−(xξ (t1 )−ω)/λ(t1 )
dyψ†

n (y)ψn(y), (A17)

ee(s1 = +1, s2 = −1, t1, t2) =
∫ −(xξ (t2 )−ω)/λ(t2 )

−∞
dx

∞∑
n=1

(
Nth

1 + Nth

)n

ψ†
n (x)ψn(x)

∫ ∞

−(xξ (t1 )−ω)/λ(t1 )
dyψ†

n (y)ψn(y), (A18)

ee(s1 = −1, s2 = +1, t1, t2) =
∫ ∞

−(xξ (t2 )−ω)/λ(t2 )
dx

∞∑
n=1

(
Nth

1 + Nth

)n

ψ†
n (x)ψn(x)

∫ −xξ (t1 )/λ(t1 )

−∞
dyψ†

n (y)ψn(y), (A19)

ee(s1 = −1, s2 = −1, t1, t2) =
∫ −(xξ (t2 )−ω)/λ(t2 )

−∞
dx

∞∑
n=1

(
Nth

1 + Nth

)n

ψ†
n (x)ψn(x)

∫ −(xξ (t1 )−ω)/λ(t1 )

−∞
dyψ†

n (y)ψn(y). (A20)

Here we defined xξ (t ) = √
2Re[ξ (t )] = √

2Re[ξe−iωt ], λ(t ) = √
sinh(2r) cos(θ0 − 2ωt ) + cosh(2r) , β(t ) is defined by

Eq. (A12), and Jmn(x1, x2) is defined as the matrix element in Ref. [23] as

Jmn(x1,∞) =
∫ ∞

x1

dx 〈m|x〉 〈x|n〉 =
{

1
2(εn−εm ) [−ψ ′

m(x)ψn(x) + ψ ′
n(x)ψm(x)] (m 
= n)

1
2 [1 − erf (x)] (m = n = 0)

, (A21)

where |m〉 and |n〉 are the energy eigenstates of the harmonic oscillator with the non-negative integers m and n, and (z) is
the error function. Now we consider the case of x1 = x and x2 = ∞, and ψ j (x) and ε j with j = 0, 1, 2, . . . are the energy
eigenfunction ψ j (x) = 〈x| j〉 and the corresponding energy eigenvalue, respectively, and the prime denotes the differentiation
w.r.t the argument, i.e., ψ ′(x) = dψ (x)/dx.

The temperature dependence of the quasiprobability distribution function was shown in Ref. [24], which demonstrated that the
violation becomes weak as the temperature increases. At kBT/h̄ω ∼ 1, the minimum value of the quasiprobability distribution
function reaches zero. We find the same behavior for the thermal squeezed coherent state. This is also explained by the fact that
the quasiprobability distribution function of the squeezed coherent state can be obtained by replacing a parameter of the coherent
state Ref. [24] and that it is true for the case including the thermality.

The quasiprobability distribution function of the coherent squeezing state can be expressed with that for the coherent state
with replacing the parameters with those at the different measurement time, which was first pointed out in [24]. It is useful to
show the relationship by finding the explicit expression of β(t ). Finally, we clarify the relationship between the parameters of the
squeezed coherent state and the coherent state mentioned in Ref. [24]. Here we show an explicit expression of that relationship.
The quasiprobability distribution function for a coherent state is written as [24]

qs1,s2 (t1, t2) = 1

4

[
1 + s1erf

(
xξ (t1 )

) + s2erf
(
xξ (t2 )

) + s1s2erf
(
xξ (t1 )

)
erf

(
xξ (t2 )

)]

+ s1s2Re

[ ∞∑
n=1

e−inω(t2−t1 )J0n
(
xξ (t1 ),∞

)
Jn0

(
xξ (t2 ),∞

)]
. (A22)

Comparing Eq. (A16) for the squeezed coherent state and Eq. (A22) for the coherent state, the following relation between the
two expressions holds. Namely, Eq. (A16) can be written using the quasiprobability for the coherent state (A22) with replacing
ωti by ωti + β(ti ), where i = 1, 2 and β(t ) is defined by Eq. (A12). This can be read from

xξ (ti+β(ti )/ω) = Re
[√

2ξe−iωti−iβ(ti )
] = Re[(x0 + ip0)(cos(ωti + β(ti )) − i sin (ωti + β(ti )))] = x′

0 cos ωti + p′
0 sin ωti

λ(ti)
, (A23)

where we defined λ(ti ) = √
sinh(2r) cos(2ωti − θ0) + cosh(2r), x′

0 = x0(cosh r + sinh r cos θ0) + p0 sinh r sin θ0, p′
0 =

x0 sinh r sin θ0 + p0(cosh r − sinh r cos θ0). Further, by defining ξ ′ = (x′
0 + ip′

0)/
√

2 we have

xξ (ti+β(ti )/ω) = Re

[√
2
ξ ′e−iωti

λ(ti )

]
= xξ ′(ti )/λ(ti ). (A24)

Thus, the quasiprobability distribution function for the squeezed coherent state is given by the quasiprobability distribution
function for the coherent state with the replacement ti → ti + β(ti )/ω and ξ → ξ ′. This explains that the maximum violation for
the coherent state and the squeezed coherent state becomes equivalent when t2, x0, and p0 are taken as free movable parameters.
Such a relation was shown by using the identity (B5) in Ref. [24]. This same relation also holds for the thermal squeezed coherent
state and the thermal coherent state.
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APPENDIX B: QUASIPROBABILITY DISTRIBUTION FUNCTION USING A GAUSSIAN INTEGRAL FORMULA

Using Gaussian integration, we start the expression of quasiprobability distribution function,

qs1,s2 (t1, t2) = ReTr
[
Ps2 (t2)Ps1 (t1)ρ

]
(B1)

= Re Tr

[ ∫∫ ∞

0
dc1dc2

∫∫ ∞

−∞

d p1d p2

(2π )2
e−ip2s2(âe−iωt2 +â†eiωt2 )+ip2c2 e−ip1s1(âe−iωt1 +â†eiωt1 )+ip1c1ρ0

]
. (B2)

The initial state and projection operator are defined as follows:

ρ0 = D(ξ )S(ζ ) |0〉 〈0| S†(ζ )D†(ξ ), (B3)

Ps(t ) = eiĤtθ (sx̂)e−iĤt =
∫ ∞

0
dc

∫ ∞

−∞

d p

2π
exp

[
ip

(
−s

âe−iωt + â†eiωt

√
2mω

+ c

)]
, (B4)

respectively, where we redefined the integral variables as pi/
√

2mω → pi and ci

√
2mω → ci with i = 1, 2. By using the formula

D(ξ )S(ζ ) = S(ζ )D(γ ), (B5)

where γ = ξ cosh |ζ | − ξ ∗eiθ0 sinh |ζ | with ζ = |ζ |eiθ0 , the quasiprobability distribution function is written as

qs1,s2 (t1, t2) = Re[〈0|D†(γ )S†(ζ )eiĤt2θ (s2x̂)e−iĤt2 eiĤt1θ (s1x̂)e−iĤt1 S(ζ )D(γ )|0〉]

=
∫ ∞

0
dc1

∫ ∞

0
dc2

∫ ∞

−∞

d p1

2π

∫ ∞

−∞

d p2

2π
ei(p1c1+p2c2 )〈0|D†(γ )e−ip2s2(E (t2 )â+E∗(t2 )â† )e−ip1s1(E (t1 )â+E∗(t1 )â† )D(γ )|0〉 (B6)

with defined E (t ) = e−iωt cosh r + eiωt e−iθ0 sinh r.
Repeatedly using the BCH formula, eA+B = eAeBe−[A,B]/2 and eAeB = e[A,B]eBeA, which hold for the operators A and B

satisfying [A, B] = const, we have

qs1,s2 (t1, t2) = Re
∫ ∞

0
dc1

∫ ∞

0
dc2

∫ ∞

−∞

d p1

2π

∫ ∞

−∞

d p2

2π
eip1c1 eip2c2 e−ip1s1(E (t1 )γ+E∗(t1 )γ ∗ )−ip2s2(E (t2 )γ+E∗(t2 )γ ∗ )

× exp

[
−1

2

[|E (t2)|2 p2
2 + |E (t1)|2 p2

1 + 2p1 p2s1s2E (t2)E∗(t1)
]]

. (B7)

The integration in Eq. (B7) with respect to p1 and p2 can be performed as∫ ∞

−∞
d p1

∫ ∞

−∞
d p2 exp

[
−1

2
pTAp + ρT · p

]
= 2π√

detA
exp

[
1

2
ρT A−1ρ

]
, (B8)

where A and ρ are read

A =
( |E (t1)|2 s1s2E (t2)E∗(t1)

s1s2E (t2)E∗(t1) |E (t2)|2
)

, (B9)

ρT = (ic1 − is1[E (t1)γ + E∗(t1)γ ∗], ic2 − is2[E (t2)γ + E∗(t2)γ ∗]). (B10)

Further, the integration with respect to c1 and c2 can be written by setting c1 = c cos u and c2 = c sin u, and we have

qs1,s2 (t1, t2) = Re
1

2π

∫ π/2

0
du

∫ ∞

0
dcc

c√
B

e− C
2 , (B11)

where we defined

B = det A = |E (t1)|2|E (t2)|2 − [E∗(t1)E (t2)]2, (B12)

C = 1

B
(|E (t2)|2[c cos u + s1E (t1)]2 + |E (t1)|2[c sin u + s2E (t2)]2 − 2s1s2E∗(t1)E (t2)[c cos u − s1E (t1)][c sin u − s2E (t2)]),

(B13)

E (t ) = E (t )γ + E∗(t )γ ∗. (B14)

By introducing the quantities

σ = 1

B
(|E (t2)|2 cos2 u + |E (t1)|2 sin2 u − 2s1s2E (t2)E∗(t1) sin u cos u), (B15)
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β = 1

B
(−|E (t2)|2s1E (t1) cos u − |E (t1)|2s2E (t2) sin u + E (t2)E∗(t1)(s2E (t1) sin u + s1E (t2) cos u)), (B16)

δ = 1

B
(|E (t2)|2E (t1)2 + |E (t1)|2E (t2)2 − 2E (t2)E∗(t1)E (t1)E (t2), ), (B17)

C can be written as C = σc2 + 2βc + δ, and we finally have

qs1,s2 (t1, t2) = Re
[〈0|D†(γ )S†(ζ )eiHt2θ (s2x̂)e−iHt2 eiHt1θ (s1x̂)e−iHt1 S(ζ )D(γ )|0〉]

= Re

{
1

2π

e−δ/2

√
B

∫ π/2

0
du

[
1

σ
−

√
2πbeβ2/2σ

2σ 3/2
erfc

(
β√
2σ

)]}
, (B18)

where we used the mathematical formula∫ ∞

0
dc ce−(σc2+2βσ+δ)/2 = e−δ/2

[
1

σ
−

√
π/2βeβ2/2σ

2σ 3/2
erfc

(
β√
2σ

)]
, (B19)

where erfc(z) is the complementary error function. As we will show in the next section, the integration can be evaluated
numerically using the software Mathematica.

At the end of this section, we remark on a useful generalization of the above formula. We may adopt the following projection
operator by constructing the dichotomic variable as Q = sgn(x̂ − x̄(t )) instead of Q = sgn(x̂):

Ps = 1

2
(1 + s × sgn(x̂ − x̄(t ))) = θ (s(x̂ − x̄(t ))) =

∫ ∞

0
dc

∫ ∞

−∞

d p

2π
eip[−s(x̂−x̄(t ))+c], (B20)

where x̄(t ) is an arbitrary function of time. In this case, we have

〈0|D†(γ )S†(ζ )eiHt2θ (s2(x − x̄(t2)))e−iHt2 eiHt1θ (s1(x̂ − x̄(t1)))e−iHt1 S(ζ )D(γ )|0〉

=
∫ ∞

0
dc1

∫ ∞

0
dc2

∫ ∞

−∞

d p1

2π

∫ ∞

−∞

d p2

2π
eip1c1 eip2c2 e−ip1s1(E (t1 )γ+E∗(t1 )γ ∗−x̄(t1 ))−ip2s2 (E (t2 )γ+E∗(t2 )γ ∗−x̄(t2 ))

× exp

[
−1

2

[|E (t2)|2 p2
2 + |E (t1)|2 p2

1 + 2p1 p2s1s2E (t2)E∗(t1)
]]

. (B21)

Comparing this expression (B21) and Eq. (B7), we find that (B21) is reproduced from (B7) with replacing E (t )γ + E∗(t )γ ∗ with
E (t )γ + E∗(t )γ ∗ − x̄(t ). This leads to an important implication. For example, when the state of the harmonic oscillator is in the
coherent state, i.e., ζ = 0, we have E (t )γ + E∗(t )γ ∗ = 2|ξ | cos(ωt − 	), where we assumed ξ = |ξ |ei	. Therefore, the same
quasiprobability distribution function is predicted between the case taking the coherent state with ξ = |ξ |ei	 and x̄(t ) = 0 and
the case taking the ground state but with x̄(t ) = −2|ξ | cos(ωt − 	). This means that it is possible to observe the violation of the
Leggett-Garg inequalities in the system of a harmonic oscillator in the ground state by choosing x̄(t ) properly. This also makes
it possible to observe a similar violation of the inequalities in a harmonic oscillator in a squeezed state, although there appears
no violation for the harmonic oscillator in the ground state or the squeezed state when we adopt Q̂ = sgn(x̂), i.e., x̄(t ) = 0 in the
above formulas.
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