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Emergent strength-dependent scale-free mobility edge in a nonreciprocal
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We investigate the properties of the mobility edge in an Aubry-André-Harper model with nonreciprocal long-
range hopping. The results reveal that there can be a type of mobility edge featuring both strength-dependent and
scale-free properties. By calculating the fractal dimension, we find that the positions of mobility edges are robust
to the strength of nonreciprocal long-range hopping. Furthermore, through scale analysis of the observables such
as fractal dimension, eigenenergy, eigenstate, etc., we show that four different specific mobility edges can be
observed in the system. This paper extends the family tree of mobility edges and hopefully it will shed more
light on the related theory and experiment.
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I. INTRODUCTION

In 1958, Anderson first proposed the famous localization
theory. The theory tells us that strong random disorder will
destroy the statistical physical ergodicity of electrons, which
makes the corresponding wave function decay exponentially
with space [1]. Anderson localization theory has drawn great
attention in the past few decades because of not only the
importance of the theory itself but also the fact that many
new devices have been developed based on it. Nowadays, the
study of localization theory has gradually extended from solid
materials to more different systems, such as photonic crystal
[2–4], waveguide array [5,6], circuit system [7], trapped ions
[8], ultracold atomic gases [9–12], etc.

Then in 1970, scaling theory showed that an arbitrarily
small disorder would lead to localization in a low-dimensional
(D < 3) system [13,14]. In the three-dimensional case, the
extended state and the localized state may coexist with an
energy boundary, i.e., a mobility edge (ME), emerging be-
tween the two [15–17]. Past decades have seen great progress
in the research on MEs. Researchers have come to know that
MEs not only appear in random disordered systems but may
also appear in quasiperiodic disordered systems [10,18–57].
Unlike random disordered systems, quasiperiodic systems are
between order and disorder. Because quasiperiodic models are
easy to deal with theoretically (some even have analytical
solutions [18–26]), and easy to be realized experimentally
[10,27–43], nowadays they have gotten ever-increasing at-
tention. One of the most typical quasiperiodic models is
the one-dimensional (1D) Aubry-André-Harper (AAH) chain,
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which possesses the property of self-duality [58]. Before (af-
ter) the critical point of phase transition, the system behaves
as a pure extended phase (localized phase) without the emer-
gence of a ME [58,59]. When the parameters are at the critical
point, self-duality will work to ensure that real and recipro-
cal spaces have the same expression, and the corresponding
eigenstates in the system exhibit the characteristics of multi-
fractal states.

Furthermore, energy-dependent traditional MEs have been
successfully induced in quasiperiodic AAH models by in-
troducing long-range (LR) hopping [20,44,46], dimerized
hopping [47,49], and modulating the quasiperiodic potential
[22,26,41,50–57]], etc. In addition to the traditional ME of
dividing extended states and localized states, new types of
nontraditional MEs have also been explored in recent years.
So far, it has been found that the introduction of p-wave su-
perconductor pairing [60–64], quasiperiodic hopping [65–71],
LR hopping [46,72–74] into the AAH model can induce the
nontraditional ME involving multifractal states.

On the other hand, because of its excellent performance
in describing dissipation or the nonequilibrium process, wide
attention has been paid to the study of non-Hermitian prop-
erties [75–116]. Many new phenomena previously not found
in Hermitian systems have been unveiled one after another
[89,90]. The non-Hermitian skin effect of the nonreciprocal
(NR) model, a typical phenomenon that only exists in non-
Hermitian systems, has been extensively studied in recent
years [91–116]. It has been noticed that the corresponding
eigenstates in systems with the non-Hermitian skin effect are
very sensitive to the boundary conditions [91].

So far, most of the research focuses on the AAH model
with LR hopping or the non-Hermitian LR ordered model.
More precisely, a recent study has reported that AAH models
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FIG. 1. The scheme for implementing strength-dependent scale-
free MEs.

with LR hopping can produce a type of strength-dependent
ME [44], while another study on non-Hermitian systems
pointed out that nonreciprocal long-range (NRLR) hopping
leads to the emergence of scale-free localized states in the sys-
tem [117]. Scale-free localized states behave as skin states in
small-size systems and extended states in large-size systems.
Based on the above studies, it is natural to wonder whether
there can be a ME featuring both strength-dependent and
scale-free properties in an AAH model with NRLR hopping.

To answer this question, this paper is devoted to the study
of the NRLR AAH model, and its results are shown in Fig. 1.

The rest of the paper is structured as follows. In Sec. II, we
give a brief introduction to the theoretical model. In Secs. III
and IV, we discuss properties of the system’s ME with strong
and weak LR hopping, respectively. The results of this paper
and those in the Hermitian case are compared and analyzed
in Sec. V. The experiment realization is discussed in Sec. VI.
The main conclusions are summarized in Sec. VII.

II. MODEL

We start with a NRLR Aubry-André-Harper model. The
corresponding Hamiltonian reads

H = HNRLR + HQP,

HNRLR =
∑

i< j

−JL

|i − j|a c†
i c j +

∑

i> j

−JR

|i − j|a c†
j ci,

HQP =
L∑

j=1

λ cos(2πα j + θ )c†
j c j, (1)

where HNRLR and HQP correspond to the NRLR hopping and
the quasiperiodic potential, respectively. c j (c†

j ) denotes the

fermionic annihilation (creation) operator at site j, JL (JR)
is the leftward (rightward) hopping strength, L is the system
size, and a is the LR parameter, which determines the strength
of LR hopping. The on-site potential is dominated by the
quasiperiodic strength λ and the quasiperiodic parameter α, as
well as the random phase θ . In the computing process, we set
α = limv→∞ Fv−1/Fv = (

√
5 − 1)/2, which can be obtained

from the Fibonacci numbers Fv+1 = Fv + Fv−1, where F0 = 0
and F1 = 1.

Without loss of generality, we fix θ = 0 and set JL = 1 as
the unit of energy. When JR = 1, the Hamiltonian reduces to
the reciprocal Hermitian case [44]. In this case, both strong
(a < 1) and weak (a > 1) LR hopping will cause a steplike
phase transition from the P1 phase to the P4 phase with the
increase of λ [see Figs. 2(a1) and 3(a1)]. The corresponding
position of the ME appears at Ps = αsL, where s = 1, 2, 3,
and 4 [44]. Under the condition of a < 1, the ME serves as a
boundary to separate the extended state from the multifractal
state, while under the condition of a > 1, it will separate the
extended state from the localized state.

III. THE STRENGTH-DEPENDENT SCALE-FREE
MOBILITY EDGE FOR THE CASE OF STRONG

NRLR HOPPING: a < 1

The fractal dimension, as the key observable to judge the
localization properties and phase transition of quasiperodic
systems, is defined as [17,118–124]

�β = − lim
L→∞

ln ξβ

ln L
, (2)

where ξβ =
∑L

j=1 |ψβ, j |4
[
∑L

j=1 |ψβ, j |2]2 is the inverse participation ratio and

ψβ, j is the amplitude at the jth site for the β th eigenstate.
� approaches 1 and 0 for the extended and localized states,
respectively, while 0 < � < 1 for the multifractal states.

First, let us discuss the strong NRLR case (a < 1). By fix-
ing the parameter a = 0.5, we compute the fractal dimensions
� of all eigenstates as a function of λ under the Hermitian
(JR = 1) and the non-Hermitian (JR = 0.5) conditions, re-
spectively [see Fig. 2(a)]. One can see clearly that MEs of
both Hermitian and non-Hermitian cases exhibit a steplike
transition from P1 to P4, resulting in a steplike change in the
localization properties. Note that the fractal dimension � of
the extended state decreases with the introduction of the non-
Hermitian case; further discussion will show that this implies
the emergence of a different type of state, i.e., the scale-free
localized (SFL) state. To further illustrate the trend of the
steplike phase transition, we calculate the average fractal di-
mension � = 1

L

∑L
β=1 �β and plot them in Fig. 2(b). The blue

and red lines correspond to the Hermitian and non-Hermitian
cases, respectively. The results show that for different val-
ues of λ, the fractal dimension � always decreases, and the
gap between different phase regions (P1-P4) also narrows,
which leads to the gradual flattening of the steplike phase
transition.

Furthermore, we analyze the key quantities such as frac-
tal dimensions, eigenvalues, and eigenstates under different
system sizes by scaling theory. We choose λ = 1.26, which
corresponds to the center of the P2 region, to discuss the ME.
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FIG. 2. The fractal dimension � of all eigenstates versus λ with JR = 1 (a1) and JR = 0.5 (a2). (b) The corresponding average fractal
dimension �. The scale effect of � with respect to the level index β/L at λ = 1.26 for JR = 1 (c1) and JR = 0.5 (c2). (d) The eigenenergy in
the complex plane for different sizes with λ = 1.26, where the black diamond corresponds to PBCs with L = 2584. Panels (e1) and (e2) show
the density distribution of the 0.3Lth and 0.8Lth eigenstates in log scale. Panel (f) shows the average fractal dimension � versus L for SFL and
multifractal (MF) regions. The system size is L = 610 in panels (a1), (a2), and (b). Throughout, we set a = 0.5.

In Fig. 2(c), we plot the distribution of the fractal dimension
in systems of different sizes. One can observe that for both
Hermitian and non-Hermitian cases, � decreases abruptly at
the energy index β/L = α2 ≈ 0.382, suggesting that the NR
hopping does not change the position of the ME. On the one
hand, for the Hermitian limit (JR = 1), one can find that, in
the region β/L < α2, � tends to 1 with an increasing system
size, suggesting that the region is extended [17]. Moreover,
in the region β/L > α2, � is independent of system size,
which indicates that the region is multifractal. This means,
MEs of the Hermitian case are the boundary of extended
states and multifractal states. On the other hand, for the NRLR
case (JR = 0.5), while the corresponding fractal dimension
� in the region of β/L < α2 also increases with an increas-
ing system size, the value magnitude of � becomes smaller
than that of the Hermitian case. Through further analysis

one can find that, in the region where β/L > α2, the frac-
tal dimension � remains independent of system size, which
means the corresponding eigenstates are the multifractal
states.

In order to better show the system’s localization proper-
ties and the difference between the open boundary condition
(OBC) and the periodic boundary condition (PBC), we show
the eigenvalues in the complex plane for different system
sizes [see Fig. 2(d)]. One can find that the eigenvalues in the
region of β/L < α2 depend on the system size and gradually
converge to the case of the PBC. This is solid evidence of SFL
states, where the eigenvalues of OBCs gradually converge to
those of PBCs (or L → ∞) [44]. In the region of β/L > α2,
the corresponding eigenvalues, which are independent of the
system size and boundary conditions, are always real. The
scale-free property of the β/L < α2 region is also reflected in

FIG. 3. The fractal dimension � of all eigenstates versus λ with JR = 1 (a1) and JR = 0.5 (a2). (b) The corresponding average fractal
dimension �. The scale effect of � with respect to the level index β/L at λ = 2.08 for JR = 1 (c1) and JR = 0.5 (c2). (d) The eigenenergy
in the complex plane for different sizes with λ = 2.08, where the black diamond corresponds to PBCs with L = 2584. Panels (e1) and (e2)
show the density distribution of the 0.3Lth and 0.8Lth eigenstates in log scale. Panel (f) is the average fractal dimension � versus L for SFL
and localized (Loc.) regions. The system size is L = 610 in panels (a1), (a2), and (b). Throughout, we set a = 1.5.
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the eigenstates [see Figs. 2(e1) and 2(e2)]. Figure 2(e1) shows
the eigenstate corresponding to β = 0.3L. It can be seen that
the corresponding wave function is exponentially localized
at the left boundary in the case of small system size. Then,
as the system size increases, the localization length will be
protected, so that the distribution of the wave function will
gradually be close to the extended state. Since SFL states ex-
hibit an exponential profile |ψ j | ∝ e− jξ/L, where j is the site
index, and ξ/L is the decay strength and is proportional to the
system size L for arbitrary L, the rescaled probability profiles
L|ψ ( j/L)| show the scale-invariant behavior [117]. Therefore,
SFL states behave as skin states in small-size systems and
as extended states in large-size systems. In other words, ξ/L
will be smaller as the system size becomes larger. Although
as shown in Fig. 2(e1), it seems that the larger the size is,
the faster the decay is. However, that is actually not the case,
for we normalize the system size. When the system size is
not normalized, i.e., the horizontal axis directly uses the site
index as shown in the inset in Fig. 2(e1), the distribution of
the 0.3Lth eigenstate has a size-dependent localization length,
and the eigenstate will become more and more extended as the
system size increases, indicating the eigenstates in the region
β/L < α2 are SFL states with size-dependent localization
lengths. By a similar analysis, one can find that the eigenstates
(the 0.8Lth eigenstate) remain multifractal in the multifractal
region.

Since the system has well-defined MEs, one can define the
average fractal dimension as

�R =
∑

R

1

LR
�R (3)

for different regions to fit the thermodynamic limit, where
R = SFL or MF, which correspond to the eigenstates within
the regions of β/L < α2 and β/L > α2, respectively. LR is the
total number of eigenstates in region R. As shown in Fig. 2(f),
we find that the average fractal dimension �R for the SFL
region increases with an increasing L, eventually converging
to about 0.9. While �R does not strictly reach 1, it is sufficient
to illustrate the extended properties of the region. In contrast,
�R in the multifractal region converges to a finite value. There-
fore, the NRLR case for a < 1 exhibits the coexistence of
extended and multifractal states under the condition of the
thermodynamic limit. The MEs between them, which is the
same to the Hermitian case, locate at βc/L = α2 [44].

IV. THE SCALE-FREE MOBILITY EDGE
FOR THE CASE OF WEAK NRLR: a > 1

Let us turn to the weak NRLR case (a > 1). Under such
circumstances, the ME as the boundary separates the extended
and localized states in the Hermitian case (JR = 1) and also
undergoes a transition from the P1 phase to the P4 phase with
an increasing λ [44].

An analysis similar to that in the previous section is as
follows. In Fig. 3(a) we show the fractal dimensions � versus
λ for JR = 1 and JR = 0.5, and both cases exhibit steplike
localization phase transitions. Similar to the case of a = 0.5,
the non-Hermitian version does not change the position of the
MEs. This implies that in the case a > 1 there will be another
scale-free ME that separates SFL and Anderson localized

states. In Fig. 3(b), we show the average fractal dimension
� as a function of λ for different JR values. Compared to the
Hermitian case, � generally decreases, and the phase transi-
tion between different Ps phases becomes smoother.

Then, we fix λ = 2.08 (center of the P2 region) to discuss
the emergent scale-free ME. In Fig. 3(c), we show the �

values of all eigenstates at different system sizes. In both Her-
mitian and non-Hermitian cases, the ME is at β/L = α2 and is
not affected by NR hopping. For JR = 1 [see Fig. 3(c1)], one
can see that, in the region where β/L < α2, as the system size
increases, � approaches 1, corresponding to extended states.
In the region where β/L > α2, as the system size increases, �

approaches 0, corresponding to localized states. This indicates
that the MEs separate the extended and localized states. As
shown in Fig. 3(c2), � increases with system size increasing in
the region where β/L < α2. Similar to the case of a = 0.5, �

remains small for finite sizes. Further scaling analysis reveals
that the corresponding states are SFL states. In the region
where β/L > α2, � approaches 0 as the system size increases,
indicating that it is a localized region.

The scale-free properties of the β/L < α2 region can also
be characterized by the eigenvalue and the distribution of
the eigenstate. As shown in Fig. 3(d), one can see the grad-
ual convergence of the eigenvalues in the β/L < α2 region
to the PBC as the system size increases. The distribution
of the 0.3Lth eigenstate has a size-dependent localization
length [see Fig. 3(e1)], and the eigenstates will become more
and more extended as the system size increases. For the
region β/L > α2, as shown in Figs. 3(d) and 3(e2), both
the eigenvalues and the eigenstates exhibit size-independent
properties.

Finally, in Fig. 3(f) we conduct the scaling analysis of the
average fractal dimension �R of the two regions. The results
reveal that by interpolating to the thermodynamic limit, �R =
0 for the localized region, while �R approaches 1 for the SFL
region, indicating the emergent scale-free ME that separates
SFL states from Anderson localized states.

V. DISCUSSION

The main finding of this paper is a type of ME which
depends on both system size and LR strength. The differences
of MEs between the reciprocal LR case and the NRLR case
are summarized in Table I.

For the Hermitian case, when the LR effect is strong (weak)
a < 1 (a > 1) (see Appendix A), the MEs lie at the energy
index Ps = αsL separating the extended and multifractal (lo-
calized) states. Fortunately, the position formula obtained for
the Hermitian case still holds for the non-Hermitian case. For
the non-Hermitian case, the ME remains at the position of the
energy indicator Ps. However, unlike the Hermitian version,
the extended region will be replaced by the SFL state with
a size-dependent localized length. To be more specific, when
the system size is small, the SFL will localize on the boundary
as a skin localized state. As the size increases the localization
length increases (with a constant proportion of the system
size), and eventually at system size infinity, it will become
an extended state. Therefore, for a < 1 (a > 1), the ME will
separate the SFL state and the multifractal (localized) state.
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TABLE I. Comparison of mobility edges between reciprocal and nonreciprocal long-range AAH models.

Reciprocal long-range AAH [44] NRLR case (present work)

Long-rang parameter: a < 1 a > 1 a < 1 a > 1

System size: Independent of L L � ∞ L → ∞ L � ∞ L → ∞
Extended Extended Skin localized Extended Skin localized Extended

Mobility edge + + + + + +
multifractal localized multifractal multifractal localized localized

VI. EXPERIMENT REALIZATION OF THE
STRENGTH-DEPENDENT SCALE-FREE MOBILITY EDGE

Quantum simulators that can simulate AAH models,
such as ultracold atoms [10,41,42], optical waveguide ar-
rays [28–30], and superconducting circuits [39,43], can be
considered as potential experimental platforms to realize the
phenomena explored in this paper. We propose the experimen-
tal scheme for observing the SDSF mobility edge by taking
the ultracold atomic gas as an example. So far, based on 87Rb
and 39K atomic gases, the standard AAH model has been suc-
cessfully realized in bichromatic optical lattices experiments
[10,41,42]. In concrete terms, the first step is to cool down
and obtain an ensemble of Bose-Einstein condensates in a
harmonic trap. In the second step, the interaction among atoms
is adjusted to 0 through the Feshbach resonance technique.
Finally, the cold atoms are placed into a one-dimensional
bichromatic optical lattice tube. By controlling the depth
and energy ratios of the bichromatic lattice, the quasiperi-
odic potential and the hopping strength can be precisely
adjusted.

In addition to the above experiment, it is also necessary
to induce a long-range power-law hopping to realize the
model in this paper. Experimentally, there are several ways
to achieve long-range hopping in ultracold atomic lattice sys-
tems. For example, in a recent report, the dynamics of a
one-dimensional Bose gas with power-law decaying hopping
amplitudes was studied after an abrupt reduction of the hop-
ping range [125–127]. After obtaining the AAH model with
long-range hopping, the nonreciprocal hopping can be readily
obtained by manipulating the auxiliary laser and, finally, the
quantum simulation of the model discussed in this paper can
be realized [75,76]. As for detection, it is necessary to detect
the density distribution of the wave function under certain
parameters by absorption imaging techniques. The phase of
the system can be determined by the distribution of local-
ized, extended, and skin states, etc., indicated by the density
distribution.

VII. CONCLUSIONS

In conclusion, the ME properties of the 1D NRLR AAH
model are explored in this paper. The rest of the phase diagram
spanned by the exponent a and the hopping strength JR is
discussed in Appendix B. The results show that a type of
scale-free ME can be induced by introducing the full-space
NRLR hopping into the AAH model. In addition, we find
that the NR effect has little effect on the position of the ME,
but has a great effect on the phase segmented by the ME;

i.e., the extended region corresponding to the Hermitian case
can be transformed to the size-dependent SFL region. Since
the SFL state has a size-dependent localization length, the
wave function in the system exhibits properties of the skin
localized state at small sizes but properties of the extended
state at large sizes. This results in four different MEs in the
system, namely, skin localized + multifractal, extended +
multifractal, skin localized + localized, and extended + local-
ized. Finally, several typical observables (such as the fractal
dimension, eigenvalue, and eigen wave function of the sys-
tem) are analyzed by scale theory, so as to show from different
perspectives that the size-dependent ME does appear in the
system.
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APPENDIX A: THE CRITICAL PROPERTIES OF a = 1

The conclusions come from Ref. [44], which provides
a comprehensive exposition of the phase diagram of the
long-range quasiperiodic model by numerical calculations,
showing that a < 1 (a > 1) has mobility edges separating the
extended state and the multifractal critical (localized) state.
To show these conclusions more clearly, we have added cor-
responding descriptions of the critical characteristics of the
system in the case of a = 1. To be more specific, we provide
the energy spectrum to exhibit that the case a = 1 is truly the
critical value (see Fig. 4).

FIG. 4. Energy spectrum for different values of LR parameter a
under PBCs with L = 2584. Throughout, we set λ = 1.8.
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As shown in Fig. 4, in the case of a > 1, the energy
spectrum in the complex plane will have a closed ringlike
structure. That is to say, there will be two points of intersection
with the real axis. In this case, the left intersection point
will move in the negative direction as parameter a decreases.
The position of the left intersection point will tend to −∞
for the case of a = 1, which means there is only one inter-
section point left with the real axis in the energy spectrum
and therefore the abovementioned closed ringlike structure
cannot be produced. Note that, under the condition of a > 1,
the imaginary part of the spectrum remains always a finite
value. Then in the case of a � 1, the spectrum will take on a
half-open structure, and the opening will become larger with
the decrease of a. In this case, the imaginary part of the energy
will gradually diverge rather than stay at a finite value, as
shown in Fig. 4.

APPENDIX B: MORE DETAILS OF DIFFERENT
PARAMETERS a AND JR

We discuss the cases of different parameters a and the
hopping strength JR. As shown in Fig. 5, we exhibit Hermitian
JR = JL in Figs. 5(a1)–5(d1) and non-Hermitian JR �= JL in
Figs. 5(a2)–5(d2).

The results are similar to those discussed in the main text,
in that the introduction of the non-Hermitian case does not
change the position of the mobility edge Ps, but makes the step
transition between different Ps phases smooth. In addition, the
fractal dimension of the eigenstates in the extended region
decreases and transforms into SFL states under OBCs. When
the parameter a < 1 (a > 1), the ME separates the skin states
and multifractal (localized) states in small sizes and sepa-
rates the extended states and multifractal (localized) states in
large sizes.

FIG. 5. (a) The fractal dimension � of all eigenstates versus λ

when a = 0.2, JR = 1 (a1); a = 0.2, JR = 0.8 (a2); a = 0.8, JR = 1
(b1); a = 0.8, JR = 0.2 (b2); a = 1.3, JR = 1 (c1); a = 1.3, JR = 0.8
(c2); a = 2, JR = 1 (d1); and a = 2, JR = 0.2 (d2). Throughout, we
set L = 610.
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