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Unmonitored and monitored recurrence in single-photon quantum walks
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Recurrence is an interesting property that describes whether the walker will eventually return to the origin
on infinite lattices in classical random walks. Since measurement collapse affects the wave function of the
walker, in the quantum case, there are two schemes for studying recurrence properties in quantum walks (QWs)
depending on how the measurement process is described. One involves restarting after measurements, known
as unmonitored measurements, while the other entails monitoring after each step, referred to as monitored
measurements. In this paper, we utilize the dependence of recurrence probabilities on the coin parameter
to construct biased-coin QWs on a line and investigate the recurrence properties of both schemes. Based
on the bulk-optics framework and using a single-photon source, we experimentally demonstrate the distinct
recurrence behaviors resulting from the different evolution processes of the walker in the two schemes. This work
showcases diverse recurrence properties in single-particle QW systems, thereby enhancing our understanding of
measurement-induced recurrence.
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I. INTRODUCTION

Classical random walks, or random walks (RWs) for short,
are a widely studied stochastic process [1]. An intriguing
question regarding RWs is whether the particle eventually
returns to the origin. In 1921, Pólya [2] first discussed this
question in the context of RWs on infinite lattices and pro-
vided a definition of the recurrence probability (also known
as the Pólya number), which characterizes the recurrence of
RWs. Pólya pointed out the recurrence properties of unbiased
RWs as being solely related to the dimensionality of the
walk. In one and two dimensions the walk is recurrent (Pólya
number equals 1), indicating that the particle will inevitably
return to its origin. However, in three and higher dimensions
the walk is transient (Pólya number less than 1), and a certain
probability that the particle will return to its origin exists [3].
The mathematical proverb “a drunk man will find his way
home, but a drunk bird may be lost forever” vividly describes
this intriguing phenomenon.

Quantum walks (QWs) were initially proposed by
Aharonov et al. [4]. They have been extensively studied
in various theoretical fields and have also been experimen-
tally demonstrated in a range of physical systems, including
trapped atoms [5], trapped ions [6], nuclear magnetic res-
onance [7], and photic systems [8–11]. As the quantum
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counterpart of RWs, several properties of QWs have been
investigated, such as the first detected return [12–17] and
the recurrence behavior [18–23]. Štefaňák et al. [18] ex-
tended the definition characterizing recurrence properties of
RWs to the quantum domain and provided an alternative
definition for the recurrence probability. In contrast to RWs,
the recurrence behavior and the actual value of the Pólya
number for QWs depend on the topology of the walk, the
choice of the coin operator, and the initial coin state [19].
Since measurement collapse affects the wave function of the
system, studying the recurrence of QWs requires a detailed
description of the measurement process. The above two def-
initions correspond to two different schemes for detecting
recurrence in QWs. One corresponds to the definition by
Štefaňák et al., in which the measurements is performed only
once after t steps, without any monitoring in between, and
then a new walk starts. This scheme is referred to as the
unmonitored-measurement (UMM) scheme [18]. The other
scheme, similar to the Pólya definition, requires continu-
ous monitoring of the walker at the origin after the first
step and is called the monitored-measurement (MM) scheme
[21]. In the classical scenario, the two definitions are con-
sidered equivalent in that the recurrence of one definition
implies the recurrence of the other and vice versa. This stems
from the fact that the recurrence behaviors of both defini-
tions are determined by the asymptote of the probability that
the walker returns to the origin after t steps. However, this
equivalence no longer holds in the measurements-induced
QWs [24,25] as the walker undergoes different evolution
processes due to the effect of measurements on the wave
function.
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Note that a specific example has been examined both the-
oretically [18,21] and experimentally [22] to show the two
schemes are not inequivalent for QWs; e.g., the unbiased QWs
on a line exhibit recurrence in the UMM scheme while being
transient in the MM scheme. However, most previous studies
focused on unbiased walks involving balanced coins and step
lengths. There are theories discussing the effects of biased
coins and unequal step lengths on the recurrence according
to Štefaňák et al.’s definition, as well as the implications of
the coin parameter and initial coin state for Pólya’s definition.
Nevertheless, no study has yet investigated and demonstrated
the effects of the coin parameter and initial coin state on the
recurrence probabilities of both definitions simultaneously.
Therefore, it is essential to consider the implications of the
coin parameter and initial coin state in both schemes when
detecting recurrence in experiments.

In this paper, we simultaneously analyze the coin pa-
rameter’s impact on the recurrence of the two schemes and
demonstrate the disparity in their recurrence probabilities
within a biased-coin QW using a single-photon source based
on a bulk-optics framework. We conduct a numerical inves-
tigation into the recurrence probabilities with varying coin
parameters and initial coin states, revealing that the differ-
ences in recurrence probabilities between the two definitions
are solely determined by the coin parameter. Specifically,
we select a biased-coin parameter capable of illustrating sig-
nificant differences in recurrence probabilities within just
a few steps. Consequently, we utilize this specialized coin
to perform an experimental demonstration, clearly showcas-
ing distinct recurrence behaviors between UMM and MM
schemes resulting from the nature of quantum measurements.

II. RESULTS

Let us consider the coined QWs on a line starting from
the origin, with the Hilbert space being a tensor product of
the position space Hp = {|x〉, x ∈ Z} and the coin space Hc =
{| ↑〉, | ↓〉}. Each step of the QW is given by the evolution
operator

U = S(I ⊗ C), (1)

where I denotes the unit operator acting on the position space.
The shift operator S represents the walker can move to the
right or left in each step on a line. Since the complex phase of
the coin operator C does not affect the probability distribution
as discussed in [26], here we consider a constant coin with the
parameter ρ ∈ [0, 1],

C(ρ) =
( √

ρ
√

1 − ρ
√

1 − ρ −√
ρ

)
. (2)

To examine the recurrence characteristics of the two schemes,
it is necessary to employ distinct evolution operators for
characterizing the measurement procedure and, consequently,
deriving the recurrence probabilities.

A. Unmonitored and monitored recurrence of QWs

Without loss of generality, we define the initial state of
the QW system as |�(0)〉 located at the origin. In the UMM
scheme, the evolution of the unmonitored QWs is described

by the unitary evolution operator U . The state of the walker
after t steps (t is an integer) is given by |�(t )〉 = Ut |�(0)〉.
The return of the walker to the origin, referred to as site
recurrence, can also be interpreted as a subspace recurrence
[27]. Here we focus only on the probability sense of the walker
returning to the origin after t steps,

p(0, t ) = ‖〈0|Ut�(0)〉‖2, (3)

and are not interested in the coin state.
For the MM scheme, after the first step, an absorbing sink

[28] is placed at the origin to monitor the walker. The sink is
modeled by a projection operator �0 = |0〉〈0|, which sets the
amplitude at the origin to zero. The evolution of the monitored
QWs is given by the nonunitary evolution operator

Ũ = (I − �0)U . (4)

Suppose the walker has survived the first t − 1 steps; then the
first return probability at the origin until t steps is obtained
from

q(0, t ) = ‖〈0|UŨt−1�(0)〉‖2. (5)

For more details about the above derivation process of p(0, t )
and q(0, t ), refer to Appendix A.

Two inequivalent definitions for recurrence due to the non-
trivial impact of measurements on the wave function of the
quantum walker exist. To minimize measurement disturbance,
Štefaňák et al. proposed one definition for the recurrence
probability in QWs:

PUMM = 1 −
+∞∏
t=1

[1 − p(0, t )]. (6)

According to this definition, the UMM scheme involves the
free evolution of a walker for a certain number of steps,
followed by a single measurement at the origin after t steps,
and then the walk is restarted. The results indicate that the re-
currence properties of QWs are determined by the asymptotic
behavior of the probability at the origin p(0, t ). The infinite
product

∏+∞
t=1 [1 − p(0, t )] vanishes if and only if the series∑+∞

t=1 p(0, t ) diverges, and then PUMM = 1; otherwise, the
infinite product does not vanish, and PUMM < 1.

Grünbaum et al. [21] proposed an alternative definition
for the recurrence probability of QWs similar to the Pólya
definition for the recurrence of RWs:

PMM =
+∞∑
t=1

q(0, t ). (7)

This definition considers the MM scheme, which requires
one to monitor the origin after each step and in which the
walk ends if the walker is found. In the classical case, the two
definitions are equivalent in the sense that PUMM = 1 if and
only if PMM = 1 and vice versa. This arises from the fact that
there is a relation between the first return probability q(0, t )
and the probability at the origin p(0, t ) in the classical case.
Considering the nature of quantum measurements, however,
the equivalence between these probabilities no longer holds in
the quantum case. For example, the recurrence probability of
Hadamard walks on a line is PUMM = 1, while PMM < 1.
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FIG. 1. The numerical simulation results. (a) The recurrence probability PUMM as a function of the steps t for different coin parameters in
the UMM scheme. (b) The recurrence probability PMM as a function of the steps t for different coin parameters in the MM scheme. (c) The
recurrence probabilities of two schemes varying with the steps t under different coin parameters θ = π/6 and θ = π/8. (d) The recurrence
probabilities of both schemes with different initial coin states. The coin parameter is chosen to be θ = π/6; blue and orange represent the
UMM and MM schemes, respectively.

B. Influence of coin parameters on the recurrence probability

An unbiased QW on a line, also known as a Hadamard
walk, exhibits properties such as unbiased coins and equal step
lengths. The recurrent nature of this phenomenon is evident
in both schemes. Additionally, we also note a class of biased
QWs on a line characterized by biased coins and unequal step
lengths. Consider the biased QWs on a line, where the coin
parameter is denoted as ρ and the walker can move to the
right (with a step length of 1) or the left (with a step length of
r) in each step. A relationship between the coin parameter ρ

and the length of the step r in the unmonitored recurrence of
QWs [20] exists:

ρ(r) =
(

r − 1

r + 1

)2

. (8)

This equation provides the condition for the biased QWs on
a line to exhibit recurrence: e.g., for ρ � ρ(r), the QWs is
recurrent; otherwise, ρ < ρ(r), and the QWs is transient. A
particular example involves equal step lengths when moving
to the left or to the right; i.e., if r = 1, then ρ(1) = 0. Since the
coin parameter satisfies the condition 0 � ρ � 1, then ρ �
ρ(1) always exist. This means that an unmonitored QW on a
line with equal step lengths is always recurrent (PUMM = 1),
independent of the choice of the coin parameter. However,
the value of the coin parameter ρ significantly influences the
decay of the infinite product, thereby affecting the rate at
which PUMM converges to its asymptotic limit. Therefore, it

is necessary to analyze the effect of different coin parameters
on the convergence of the recurrence probability PUMM.

As an example, we simulate the curve of the recurrence
probability PUMM as a function of the steps t for various
values of θ (where ρ = cos2(2θ ), θ ∈ [0, π/4]). As shown in
Fig. 1(a), with the same number of steps t , the convergence
to an asymptotic limit of the recurrence probability is notably
rapid as θ increases. Hence, it is possible to manipulate the
value of the recurrence probability PUMM for unmonitored
QWs on a line with equal step lengths by altering the coin
parameter. Note that when θ = 0, the recurrence probability
constantly remains zero for all steps t , indicating that the
walker will never return to the origin. Furthermore, the re-
currence probability value for monitored QWs on a line with
equal step lengths is also influenced by the coin parameter.
The correlation between the coin parameter ρ and the recur-
rence probability PMM is given by [21,23]

PMM = 2
√

ρ
√

1 − ρ + (1 − 2ρ)arccos(
√

ρ)

π (1 − ρ)
. (9)

We also conduct simulations to analyze the curve of recur-
rence probability PMM as a function of steps t for different
values of θ . As shown in Fig. 1(b), an increase in the value
of θ corresponds to a higher limit value of the recurrence
probability PMM. Moreover, the recurrence-probability con-
vergence to the asymptotic limit is relatively fast as the value
of θ increases. Specifically, when θ = 2π/9, the limit value
PMM = 0.9735, whereas when θ = π/36, the limit value
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FIG. 2. The numerical simulation results. For different coin parameters θ , the recurrence probabilities (PUMM and PMM) of both schemes
are a function of steps t . The black stars indicate the cases where the two recurrence probabilities are equal.

reduces to PMM = 0.1478, and these limit values comply with
Eq. (9).

Therefore, the dependence of unmonitored and monitored
QWs with equal step lengths on a line on the coin parameter
opens up the possibility to design the value of recurrence
probabilities. As an example, we conduct numerical simula-
tions to illustrate the curves of the two recurrence probabilities
as a function of steps t for different coin parameters θ =
π/6 and θ = π/8 simultaneously. As shown in Fig. 1(c),
the simulation results indicate that for both schemes, larger
recurrence probabilities and faster convergence are achieved
when using coin parameter θ = π/6. In particular, for the
UMM scheme, PUMM

t=100(θ = π/8) = 0.8376, while PUMM
t=100(θ =

π/6) = 0.9691. The distance |0.8376 − 1| > |0.9691 − 1|;
then when θ = π/6, the recurrence probability PUMM con-
verges to limit value at a faster rate. For the MM scheme, the
limit value PMM(θ = π/8) = 2/π , while PMM(θ = π/6) =
0.8120. And at t = 64, PMM(θ = π/6) converges to its limit
value 0.8120, while PMM(θ = π/8) requires until t = 68 to
converge to its limit value 2/π . The value of θ = π/8 cor-
responds to the well-known case of Hadamard walks. It is
noteworthy that for both unmonitored and monitored QWs on
a line, the two recurrence probabilities depend solely on the
coin parameter and are independent of the initial coin state.
By selecting θ = π/6, we simulate the influence of different
initial coin states {| ↑〉, | ↓〉, 1/

√
2(| ↑〉 + | ↓〉), 1/

√
2(| ↑

〉 − i| ↓〉)} on the recurrence probabilities of both schemes, as
shown in Fig. 1(d). The results demonstrate that the values
of recurrence probabilities remain unchanged with varying
initial coin states, consistent with the previous findings of
Refs. [21,23].

Considering the two definitions of the recurrence probabil-
ity [Eqs. (6) and (7)], it is easy to see that the two recurrence
probabilities PUMM and PMM are always equal for t = 2. No
matter how the coin parameters θ are chosen, this equivalence
relation is not affected. However, as the number of walk
steps increases, the value of the coin parameter affects the

difference between PUMM and PMM. As shown in Fig. 2,
we focus only on the variation of the two recurrence prob-
abilities within 20 steps where θ ∈ [20◦, 32.5◦]. Note that
both cases θ = 30◦ and θ = 32.5◦ show a clear difference
between PUMM and PMM from t = 4. Nevertheless, when
θ ∈ [20◦, 27.5◦], except for t = 2, PUMM and PMM will be
equal at larger t steps (see the black stars in Fig. 2). In partic-
ular, the case where PUMM � PMM occurs as early as at t = 4
for θ = 27.5◦. That is, for θ � 27.5◦, the difference between
PUMM and PMM is only gradually observed from at least six
steps (t � 6), while for θ > 27.5◦, the difference is clearly ob-
served from t = 4. Therefore, in order to experimentally show
the difference in these two recurrence probabilities within a
finite number of steps, we choose the coin parameter θ = 30◦
for experimental demonstration.

C. Experimental implementation

To illustrate the recurrence behaviors of unmonitored and
monitored QWs with a biased coin (where θ = 30◦) on a line,
we implement a quantum-walk setup based on the bulk-optics
framework. Additionally, we utilize the heralded single-
photon source to showcase distinct single-particle quantum
dynamics in the two measurement schemes.

First, we consider the heralded single-photon source uti-
lized in our experiment. As depicted in Fig. 3(a), a 405-nm
continuous-wave diode laser with a power of 20 mW is em-
ployed to pump a 30-mm-long periodically poled potassium
titanyl phosphate (PPKTP) crystal, resulting in the generation
of photon pairs with a central wavelength of 810 nm. These
photon pairs are produced through the type-II spontaneous
parametric down-conversion process, where the signal and
idler photons exhibit orthogonal polarizations. A half-wave
plate and a polarizing beam splitter (PBS1) are utilized in
tandem to modulate the output power. Two lenses are em-
ployed before and after the PPKTP crystal for beam focusing
and collimation. Subsequently, the pumped laser is filtered
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FIG. 3. Experimental setup for realizing the UMM and MM schemes using the QW system on a line. (a) The heralded single-photon
source is prepared by spontaneous parameter down-conversion of a PPKTP crystal. (b) The second-order signal coherence function g(2)(τ ) is
calculated under the condition of detecting an idler photon. (c) An unmonitored QW setup for implementing the UMM scheme. (d) The QW
setup was monitored to implement the MM scheme, with the blocks representing the sinks placed at the origin position. In both QW setups,
the initial state is prepared by signal photons passing through PBS3 and H3. At each step, a combination of H and BD is used to realize the
coin operator and shift operation. The output signal photons are coupled into a SMF and subsequently detected using APD1, while the idler
photons are detected by APD0. HWP and H: half-wave plate; PBS: polarizing beam splitters; L1 and L2: lenses; PPKTP: periodically poled
potassium titanyl phosphate; LP: lLong-pass filter; FBS: fiber beam splitter; SMF: single-mode fiber; BD: beam displacer; APD: avalanche
photon diode; TCSPC: time-correlated single-photon counting.

out using a long-pass filter, allowing for transmission of
signal and idler photons which are then directed towards
PBS2 for reflection or transmission, followed by coupling into
two single-mode fibers (SMFs). One of the SMFs receiving
idler photons is directly linked to an avalanche photon diode
(APD0) with a dark-count rate of 100 s, while the other
receiving signal photons is connected to a Hanbury Brown–
Twiss (HBT) measurement setup. In the HBT interferometer,
the signal photons are divided by a 50:50 fiber beam split-
ter into two arms (S1 and S2), which are then connected
to APD1 and APD2 to measure the second-order correla-
tion function g(2)(τ ) [29,30], where τ represents the time
delay between APD1 and APD2. All APD clicks are recorded
with 64-ps precision using a time-correlated single-photon-
counting (TCSPC) system. Consequently, the second-order
correlation function g2(0) = 0.0119 can be calculated for the
single-photon light field of the signal following the APD0
trigger, and the result is shown in Fig. 3(b). It should be
noted that the HBT setup in the signal-photon path appears
only when measuring g(2)(τ ). In subsequent experiments, the
signal-photon path will be connected to the QW setup through
a SMF.

The signal photons are then routed into an eight-step QW
setup comprising eight beam displacers (BDs) and several
wave plates. In both unmonitored and monitored QW setups,
the combination of half-wave plate 2 (H2) and PBS3 is uti-
lized to control the number and polarization state of the input
signal photons, as depicted in Figs. 3(c) and 3(d). The initial
state of the QW system is represented by α|H, 0〉 + β|V, 0〉
(|α|2 + |β|2 = 1), where the horizontal (vertical) polarization
of photons indicates the coin state, and 0 signifies that the
walker is initially at the origin. At each step, the coin operator
C is executed by the half-wave plate set at 30◦, while the
shift operation S is performed by the BD. The BD’s func-
tion is to allow |V 〉 to pass through to x − 1 and |H〉 to
be offset by 2.7 mm to x + 1. By executing eight combined
operations of half-wave plates and BDs, an eight-step QW
evolution can be achieved. Following this evolution, signal
photons from the interferometric network are coupled into a
measurement device consisting of H11 and PBS4, both of
which are sufficiently large to permit nine beams of light
to pass through simultaneously. The signal photons from all
positions are sequentially detected by APD1 with a 2-ns time
window. The coincidence signals, monitored via TCSPC, are
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FIG. 4. Probability distributions of the walker over all positions of even steps for the UMM and MM schemes. The initial coin states of the
unmonitored and monitored QW systems set here are |H〉. “The” and “Exp” represent the theoretical predictions and experimental results, and
H and V represent the two measurement bases. Some bars of experimental values and theoretical predictions at positions −8, −6, 6, and 8 are
not shown due to the probability of the bars being less than 0.001.

used to postselect single-photon events. Clicks are recorded
for 1 s, resulting in a total of 1.1 × 105 coincidence counts.

In order to determine the recurrence probabilities, mea-
surements are conducted at regular intervals in both schemes,
specifically at even steps. Figure 3(c) illustrates the unmoni-
tored QW setup utilized for the implementation of the UMM
scheme. In the UMM scheme, measurements are conducted
solely after even time steps without any intermediate oper-
ations. As depicted in Fig. 3(c), after two steps (t = 2), the
measurement of all positions (x = −2, 0, 2) can be achieved
by setting H3 = H4 = 30◦ and adjusting the action of the
remaining wave plates and BDs to states that do not affect
these photons. Subsequently, the photon counts at the three
positions are successively recorded on the final detection port.
The measurements of the remaining time steps can be im-
plemented using similar procedures. Conversely, in the MM
scheme, during the measurement at time step t , it is necessary
to employ sinks for absorbing all photons at x = 0 in front of
them, ensuring that the first arrival of the detected photons at
x = 0 occurs precisely at time step t . The monitored QW setup

used to implement the MM scheme is shown in Fig. 3(d),
where the sinks at the origin positions are represented by
the blocks. For instance, when measuring at t = 2, there is
no need to position absorption sinks upfront as there are no
occurrences of x = 0. However, while measuring at t = 4, it
becomes imperative to block the position x = 0 from t = 2;
similarly, when measuring at t = 6, both positions x = 0 from
t = 2 and t = 4 require blocking. Finally, when measuring
at t = 8, all positions x = 0 from previous steps (t = 2, 4, 6)
necessitate blocking. It should be noted that in both schemes,
we built individual experimental setups for each even step to
collect coincidence counts at all possible positions, which is
necessary to obtain the probability distributions of photons.

The experimental results depicting the probability distribu-
tions of even steps for both schemes are illustrated in Fig. 4.
In the two plots we show the conditional probability distri-
butions of unmonitored and monitored QWs after eight steps
with a biased coin (θ = 30◦). It is evident that the walker
has undergone distinct evolutionary processes in the two
schemes. In particular, the initial coin state was chosen to be
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FIG. 5. Experimental results. (a) The recurrence probability PMM of different initial coin states in the MM scheme. At each step, the
values of the data points are slightly different due to experimental errors. (b) The recurrence probabilities of the UMM and MM schemes of
the eight-step QWs. The data dots denote the experimental results for recurrence probabilities in both schemes. The dashed lines represent the
theoretical values expected from numerical simulations of the experiment. Error bars are derived from photon fluctuations and the accuracy of
half-wave plates.

|H〉 ≡ (1, 0)T , resulting in an asymmetric conditional dis-
tribution in the MM scheme with absorbing sinks at the
origin. In such a case the walker has a higher probability
to be on the left side of the absorbing sink, as shown in
Fig. 4. This result is different from the symmetric condi-
tional probability distribution for Hadamard QWs simulated
in Ref. [28], where the walker in the first step jumps to the
left or to the right with equal probability. Alternatively, we
consider the case with the impact of different initial coin
states on the probability distribution in the MM scheme. The
conditional probability distribution that results for different
initial coin states of the monitored QWs can be found in
Appendix B. Due to the choice of the initial coin state,
the walker has a higher probability of being to the left or
right of the absorbing sink, as well as a possibility of com-
pletely vanishing to either side of the absorbing sink. The
selection of the initial coin state impacts the conditional
probability distribution; however, the recurrence probability
PMM of the MM scheme remains independent of the initial
coin state. As shown in Fig. 5(a), the initial coin states were
{|H〉, |V 〉, 1/

√
2(|H〉 + |V 〉), 1/

√
2(|H〉 − |V 〉)}. Figure 5(a)

shows that different initial coin states result in almost the
same recurrence probability. Moreover, as the number of steps
increases, the recurrence probability converges towards its
theoretical value of 0.8120, which is derived from Eq. (9).

In addition, to quantitatively show the different evolution
processes of the walker in the two schemes, we illustrate
this feature in Appendix C for the case of the probability
distribution over all positions. In the UMM scheme without
sinks, measurements are conducted solely after even steps, re-
sulting in an overall unitary evolution. Conversely, in the MM
scheme, absorbing sinks are introduced at the origin following
the first step and are modeled using a projection operator that
nullifies the amplitude at the origin. Consequently, the overall
evolution becomes nonunitary. Last but not least, we calculate
the recurrence probabilities PUMM and PMM for both schemes
using the resulting probability distributions mentioned above
[refer to Appendix D for detailed information on the calcula-
tion of p(0, t ) and q(0, t )]. As expected, the two measurement
schemes lead to different recurrence probabilities, and the

experimental results are shown in Fig. 5(b). The biased coin
is used in order to reveal the difference between the two
recurrence probabilities in fewer steps, and the difference
between the two schemes can be clearly seen with four steps.
Theoretically, as t increases, the recurrence probability PUMM

of the UMM scheme converges to its limit value of 1, while
the recurrence probability PMM of the MM scheme converges
to its limit value of 0.8120. We conducted a proof-of-principle
experiment with t = 8 solely for the purpose of illustrating
the disparity in their recurrence behavior. It appears that the
recurrence patterns of the two schemes exhibit significant
difference from t = 4, and the empirical findings align with
the theoretical projections.

III. DISCUSSION AND CONCLUSION

The probability that the walker returns to the origin during
the time evolution is called the Pólya number of the walk. For
balanced RWs, the Pólya number is uniquely determined by
its dimensionality. Specifically, when d = 1 and d = 2, the
Pólya number equals 1; for d � 3, it equals 0.3405. Because
the walk space of a man is two-dimensional at most and
a bird’s walk space can be three-dimensional, we have the
saying “a drunk man will find his way home, but a drunk bird
may be lost forever.”

In this paper, we investigated the recurrence properties
of QWs on a line using a biased coin for the UMM and
MM schemes. Utilizing the bulk-optics framework for QWs
with a single-photon source, we demonstrated the distinction
between unitary evolution without sinks and nonunitary evo-
lution with sinks in both schemes within eight-step QWs.
Most significantly, we analyzed the influence of the coin
parameter on the recurrence probability for unmonitored and
monitored QWs on a line. QWs serve as a valuable tool that
can be easily integrated into linear optical systems, allowing
for implementation within various optical frameworks. While
the two schemes for recurrence have been implemented in
a time-multiplexing quantum-walk experiment with coherent
light, single-photon QWs with bulk optical elements as an
alternative tool have no relevant experimental validation. Here
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we successfully implemented QWs using bulk optics and
discussed the different recurrence behaviors of QWs in dif-
ferent measurement schemes. Our research not only expands
the practical applications of QWs but also offers a valuable
approach for investigating measurement-induced recurrence.
Specifically, our focus is on analyzing the site-recurrence
probability of a two-state quantum walk on a line, where
the walker can move right or left with equal step lengths
in each iteration. The implementation of the shift operator
in our quantum-walk setup with bulk optics allows for easy
manipulation based on positions. Looking ahead, we aim to
further explore the recurrence properties of two-state quantum
walks on a line with unequal step lengths.
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APPENDIX A: EVOLUTION OF UNMONITORED
AND MONITORED QWs

We write the initial state of the QW system as

|�(0)〉 = (α| ↑〉 + β| ↓〉) ⊗ |x〉, (A1)

where |α|2 + |β|2 = 1. The evolution of the unmonitored
QWs is given by the unitary evolution operator U , where the
measurement at the origin is performed only once after t steps.
Then the state of the walker after t steps is given by U in the
initial state,

|�(t )〉 = Ut |�(0)〉. (A2)

The probability distribution to find the walker at position x
after t steps generated by the unmonitored QWs is written as

p(x, t ) = ‖〈x|Ut�(0)〉‖2. (A3)

So the probability that the walker returns to the origin x = 0
at t steps is given by

p(0, t ) = ‖〈0|Ut�(0)〉‖2. (A4)

A quantum walk with the sink at the origin corresponds
to the MM scheme for recurrence, in which the return to the
origin is marked by the absorption of the walker. If the walker
returns to the origin, it is absorbed by the sink, and the walk
ends. The sink is modeled by a projection operator which
sets the amplitude at the origin to zero while the states at the
remaining positions are unchanged. Mathematically, the sink
is described by the projection operator I − �0 = I − |0〉〈0|,
which acts on the position state |x〉 as

(I − �0)|x〉 =
{

0 if x = 0,

|x〉 if x �= 0.
(A5)

The evolution of a QW with the absorbing sink at the origin is
described by alternating the projection operator I − �0 with
the unitary operator U before the walker is detected, that is,
Ũ = (I − �0)U . Suppose that the walker is not detected at
the origin until t steps, that is, it has survived the action of

sinks in the previous t − 1 steps; then the state of the walker
after t steps is given by

|�(t )〉sur = U |�(t − 1)〉

= 1√
st−1

UŨt−1|�(0)〉, (A6)

where st−1 is the normalized coefficient, also called the sur-
vival probability, and it is denoted by

st−1 = ‖Ũ t−1|�(0)〉‖2. (A7)

Using |�(t )〉sur, one can determine the probability that the
walker is detected at the origin x = 0 after t steps:

p(0, t )sur = ‖〈0|�(t )sur〉‖2

= 1

st−1
‖〈0|UŨt−1|�(0)〉‖2. (A8)

Then the first return probability of the walker until t steps is
obtained from

q(0, t ) = st−1 p(0, t )sur

= ‖〈0|UŨt−1|�(0)〉‖2. (A9)

APPENDIX B: CONDITIONAL PROBABILITY
DISTRIBUTIONS FOR DIFFERENT INITIAL
COIN STATES OF THE MONITORED QWs

In this Appendix, we present experimental results for the
conditional probability distribution of the monitored QWs
with an absorbing sink positioned at the origin for various
initial coin states. In this example, we examine the identical
coin operations that act on both the origin and the positive or
negative half-line. Thus, the evolutions of the walker on both
the origin and the positive or negative half-line are determined
by

C(θ = 30◦) = 1

2

(
1

√
3

√
3 −1

)
. (B1)

The initial coin states were chosen to be
{|H〉, |V 〉, 1/

√
2(|H〉 + |V 〉), 1/

√
2(|H〉 − |V 〉)}, which

result in different conditional probability distributions. Since
the coin parameters remain constant, the walker exhibits
identical diffusion speeds on both the positive and negative
half-lines. For instance, after eight steps, the walker will
arrive at nine positions: −8,−6,−4,−2, 0, 2, 4, 6, and 8.
Due to the selection of initial coin states |H〉 ≡ (1, 0)T

and 1/
√

2(|H〉 − |V 〉) ≡ 1/
√

2(1,−1)T , the conditional
probability distribution exhibits a bias towards the negative
half-line (i.e., the left side of the absorbing sink), as
illustrated in Figs. 6(a1)–6(a4) and 6(d1)–6(d4). Similarly, as
a result of selecting the initial coin states |V 〉 ≡ (0, 1)T and
1/

√
2(|H〉 + |V 〉) ≡ 1/

√
2(1, 1)T , the conditional probability

distributions demonstrate a bias towards the positive half-line,
as shown in Figs. 6(b1)–6(b4) and 6(c1)–6(c4). Furthermore,
when the polarization state is not taken into account, the
probability distributions of |H〉 and |V 〉 and 1/

√
2(|H〉 + |V 〉)

and 1/
√

2(|H〉 − |V 〉) exhibit symmetric relationships,
respectively. The experimental results demonstrate that the
selection of the initial coin state significantly impacts the
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FIG. 6. Conditional probability distribution of the monitored QWs with an absorbing sink at the origin. The different initial coin states were
chosen as {|H〉, |V 〉, 1/

√
2(|H〉 + |V 〉), 1/

√
2(|H〉 − |V 〉)}. The biased coin has θ = 30◦. Some bars of experimental values and theoretical

predictions at positions −8, −6, 6, and 8 are not shown due to the probability of the bars being less than 0.001.

conditional probability distribution such that the walker has a
higher probability of being to the left or right of the absorbing
sink.

Additionally, we take into account the case in which the
walker transitions to one side of the line with a probability
of 1 during the first step based on the relationship between
the initial coin state and coin operation C(θ = 30◦). Through
theoretical analysis, we find that when the initial coin state is
chosen to be 1/2(1,

√
3)T , the walker can be found only on

the positive half-line. However, when the initial coin state is
1/2(

√
3,−1)T , the walker will only be present in the negative

half-line.

APPENDIX C: PROBABILITY DISTRIBUTIONS OVER
ALL POSITIONS OF THE UNMONITORED

AND MONITORED QWs

In this Appendix, we quantitatively compare the different
evolution processes of the walker in the two schemes by
showing the probability distributions of all time steps. The
initial coin state was chosen to be |H〉, and the coin operator
at each step is C(θ = 30◦). The probability distribution of the
walker across all positions is depicted for both the UMM and
MM schemes, as illustrated in Fig. 7. In the UMM scheme,
we examine the evolution of unmonitored QWs without sinks,

FIG. 7. The probability distribution over all positions of the UMM scheme without sinks and the MM scheme with sinks. Different colors
are used to indicate the number of photons at each position.
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which is characterized by the unitary evolution operator U .
Conversely, in the MM scheme, we investigate the evolution
of monitored QWs with sinks, described by the nonunitary
evolution operator Ũ . The absorption sinks located at the
origin are evident in a region with low photon numbers around
x = 0 in the MM scheme.

APPENDIX D: COINCIDENCE COUNTS
AND PROBABILITIES IN BOTH SCHEMES

In this Appendix, we provide the method for determining
the probability p(0, t ) in the UMM scheme and the probability
q(0, t ) in the MM scheme through coincidence counts of
photons. For the UMM scheme, we measure the coincidence
counts C(x, t ) at all possible positions, and p(0, t ) is given by

p(0, t ) = C(0, t )∑
x C(x, t )

, (D1)

where C(0, t ) is the coincidence counts for position x = 0 at
step t and

∑
x C(x, t ) is the total coincidence counts for all

position at step t .
In the MM scheme, the sinks at x = 0 are achieved by

absorbing all photons at these positions, resulting in a projec-
tion measurement onto the subspace of nonzero positions. As
depicted in Fig. 3(d) in the main text, during measurements
at step t (t = 2, 4, 6, 8), black blocks should be utilized to
absorb all photons at x = 0 ahead of it to ensure that the

photon detected at step t reaches x = 0 for the first time. To
investigate recurrence in the MM scheme, it is essential to
determine the probability q(0, t ) of the first return to the ori-
gin. Like for the UMM scheme, we record coincidence counts
C(x, t )sur at all possible positions at step t . The probability
p(0, t )sur is written as

p(0, t )sur = C(0, t )sur∑
x C(x, t )sur

, (D2)

where C(0, t )sur is the surviving coincidence counts at posi-
tion x = 0 until step t .

∑
x C(x, t )sur is the total coincidence

counts in which the walker has not been absorbed during the
first t − 1 steps and survives until step t . To get the first return
probability q(0, t ) according to Eq. (19) of the main text, we
need to calculate the product of the probability p(0, t )sur and
the survival probability st−1 that the walker was not absorbed
at the origin during the first t − 1 steps and survives until step
t ; the survival probability can be calculated as

st−1 =
∑

x C(x, t )sur∑
x C(x, t )

. (D3)

Hence, the first return probability q(0, t ) can be expressed as

q(0, t ) = C(0, t )sur∑
x C(x, t )

. (D4)
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