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Unbounded sequential multipartite nonlocality via violation of the Mermin inequality
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Quantum nonlocality is a significant feature in quantum information theory, prompting recent investigations
into the potential reuse of postmeasurement states to uncover nonlocality among sequentially measuring ob-
servers. While prior studies primarily focused on bipartite or tripartite systems and observers with one chain,
such as multiple Bobs with a single Alice or multiple Charlies with a single Alice and Bob, our work extends
beyond this framework. We explore sequential nonlocality in systems comprising more parties and observer
chains. Our findings reveal that in n-partite systems, regardless of whether it is a single-chain or double-chain
scenario, there exist unbounded sequential observers capable of detecting nonlocality through violations of the
Mermin inequality. In contrast to the conjecture that sequential Bell nonlocality cannot manifest with multiple
Alices and Bobs in bipartite systems [i.e., the double-chain setting, see S. M. Cheng et al., Phys. Rev. A 104,
L060201 (2021)], our results suggest that increasing the number of subsystems may enable more observer
chains to detect nonlocality alongside single observers. Our study advances research on sequential nonlocality,
providing valuable insights into its detection across diverse scenarios.
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I. INTRODUCTION

Quantum nonlocality stands as a pivotal element of quan-
tum information, often validated through the violation of
Bell inequalities [1]. It constitutes a fundamental aspect of
quantum mechanics and a cornerstone resource in quantum
information science, boasting a lot of applications, such as
proposing nonlocality distillation protocols, making com-
munication complexity trivial [2,3], and providing valuable
insights into the possibility of device-independent scenarios
for quantum key distribution (QKD) [4,5].

Recently, researchers have been exploring the possibility
of violating nonlocality sequentially using a single pair of
entangled qubits. In Ref. [6], the authors considered the se-
quential Clauser-Horne-Shimony-Holt (CHSH) scenario and
demonstrated that multiple Bobs can achieve expected viola-
tion of CHSH inequality with a single Alice. Subsequently, in
Refs. [7,8], the authors demonstrated that multiple Bobs can
achieve expected violation of CHSH inequality with a single
Alice in high dimensions. Additionally, several studies have
explored the recyclability of nonlocal correlations [9–17],
providing evidence that the weak measurement strategy can
be used to achieve an arbitrarily long sequence of Alice-Bob
pairs for any pure entangled state [18,19].

Tripartite settings have also received attention in this do-
main. In Ref. [7], it was demonstrated that based on the
Svetlichny inequality [20], at most two Charlies share gen-
uine nonlocality with Alice and Bob in their measurement.
Meanwhile, researchers in Ref. [21] investigated tripartite
quantum nonlocality using various inequalities such as the
Mermin inequality and nonsignal (NS) inequality, along with
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different initial states like the W state and Greenberger-Horne-
Zeilinger (GHZ) state. They found that in the case of starting
with a GHZ state, tripartite nonlocality can be demonstrated
by any number of Charlies using the Mermin inequality and
NS inequality in their measurement. However, when starting
with a W state, at most two Charlies can detect genuinely
tripartite nonlocality via the violation of the Mermin inequal-
ity in their measurement. Furthermore, experimental studies
[22,23] have shown violations of Mermin inequality in mul-
tiple qubits, such as in a five-qubit quantum computer and a
53-qubit system, providing empirical support for these theo-
retical findings.

Consequently, it is pertinent to investigate whether such
properties persist as the number of parties involved increases.
In this study, we aim to provide affirmative responses regard-
ing single-chain and double-chain scenarios where unbounded
multipartite nonlocality can be established through the viola-
tion of the Mermin inequality.

The structure of this paper is as follows. In Sec. II, we
review the concept of standard nonlocality and the Mermin
inequality, which is instrumental in detecting such nonlocality.
And we have obtained the general formula for the coeffi-
cients of the Mermin polynomials. In Sec. III, we initially
present the single-chain scenario. By employing the Mermin
inequality, we demonstrate the existence of unbounded se-
quential tripartite nonlocality for an initially shared W state,
as well as unbounded sequential n-partite (n � 3) nonlocality
for an initially shared GHZ state. In Sec. IV, we proceed
to introduce the double-chain scenario. Utilizing the Mermin
inequality once again, we reveal the presence of unbounded
sequential n-partite (n � 4) nonlocality for an initially shared
GHZ state. Finally, in Sec. V, we summarize our find-
ings, draw conclusions, and suggest topics that merit further
investigation.
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II. MERMIN POLYNOMIALS AND THE DETECTION OF
STANDARD n-PARTITE NONLOCALITY

VIA MERMIN INEQUALITIES

First, we consider n-partite separated parties, denoted as
A(1), A(2), . . . , A(n), sharing an n-partite physical system ρ. In
the simplest scenario, each party A(i) has two measurements
{M (i)

0|xi
, M (i)

1|xi
}xi∈Z2 (here and in the following, Z2 := {0, 1})

where each Mai|xi � 0 (i.e., a positive semidefinite operator)
and M (i)

0|xi
+ M (i)

1|xi
= I. And we define the observable M (i)

xi

corresponding to the measurement {M (i)
0|xi

, M (i)
1|xi

} by setting

M (i)
xi

:=
∑

ai∈Z2

(−1)ai M (i)
ai|xi

= M (i)
0|xi

− M (i)
1|xi

.

So the outcome is (−1)ai , but will be labeled as ai. Note that
−I � M (i)

xi
� I and the measurement {M (i)

0|xi
, M (i)

1|xi
} can also be

uniquely identified by its observable M (i)
xi

. In fact, provided the
condition −I � M (i)

xi
� I, the following two elements form a

measurement with observable M (i)
xi

:

M (i)
0|xi

= I + M (i)
xi

2
and M (i)

1|xi
= I − M (i)

xi

2
.

The spatially separated parties A(1), A(2), . . . , A(n) randomly
choose their two observables and take the corresponding mea-
surements {M (i)

0|xi
, M (i)

1|xi
}, yielding outcomes ai ∈ {0, 1}. We

define the joint outcome probabilities as P(a1· · ·an|x1· · ·xn).
If these probability correlations can be expressed as

P(a1· · ·an|x1· · ·xn) =
∑

λ

qλ

∏
i

Pλ(ai|xi )

with qλ ∈ [0, 1] and
∑

λ qλ = 1, then they are called fully
local. If they are not fully local, we say P(a1· · ·an|x1· · ·xn)
exhibits standard n-partite nonlocality [21,24].

Second, referring to [25,26], the multipartite Mermin poly-
nomials Mn can be calculated as follows:

Mn = Mn−1
(
M (n)

0 + M (n)
1

)
2

+ M ′
n−1(M (n)

0 − M (n)
1 )

2
,

(1)

M ′
n = Mn−1(M (n)

1 − M (n)
0 )

2
+ M ′

n−1

(
M (n)

0 + M (n)
1

)
2

,

with M1 = M (1)
0 , M ′

1 = M (1)
1 . Specifically, standard nonlocal-

ity can be detected by violation of the Mermin inequality
[23–26], i.e.,

〈Mn〉 := Tr[ρMn] > 1. (2)

Denote v = (v1, v2, . . . , vn) as a vector in Zn
2, and define

|v| := ∑n
i=1 vi. It is found that Mn can be represented by the

following expression:

Mn =
∑
v∈Zn

2

cv

n∏
i=1

M (i)
vi

, (3)

where cv ∈ R. For instance, in a tripartite setting, the co-
efficients of M3 are specified as follows: c(1,0,0) = c(0,1,0) =
c(0,0,1) = 1

2 , c(1,1,1) = − 1
2 , and all other coefficients are zero.

FIG. 1. Sharing the n-partite nonlocality: an entangled quantum
state ρ (1) is initially distributed among A(1), A(2), . . . , A(n−1), A(n,1).
After A(n,1) performs his randomly selected measurement and records
the outcomes, he passes the postmeasurement quantum state to A(n,2).
This sequence of actions is reiterated along the single chain, ulti-
mately reaching A(n,K ).

Therefore,

M3 = 1
2 M (1)

1 M (2)
0 M (3)

0 + 1
2 M (1)

0 M (2)
1 M (3)

0

+ 1
2 M (1)

0 M (2)
0 M (3)

1 − 1
2 M (1)

1 M (2)
1 M (3)

1 .

Furthermore, when considering n-partite systems, the co-
efficients cv of Mn in Eq. (3) can be expressed by (see
Appendix A)

cv = 1

2

[(
1√
2
λ2

)n−1

λ
2|v|
1 +

(
1√
2
λ1

)n−1

λ
2|v|
2

]
, (4)

where λ1 = eπ i/4 and λ2 = e−π i/4.

In this work, we introduce the Mermin values In := 〈Mn〉.
Based on the standard multipartite nonlocality criterion given
by Eq. (2), the standard nonlocality can be detected when

In > 1, (5)

for n-partite systems. In particular, the 〈Mn〉 depends on the
state ρ and the observables {M (i)

xi
}xi∈Z2 , i = 1, 2, . . . , n.

III. SHARING OF NONLOCALITY VIA MERMIN
INEQUALITY IN THE SINGLE-CHAIN SCENARIO

In this section, for any K ∈ N, we introduce the single-
chain scenario where A(1), A(2), . . . , A(n−1) attempt to share
the nonlocal correlation of an entangled pure state ρ (1) with a
chain of K independent agents {A(n,1), . . . , A(n,K )} (see Fig. 1).
Initially, let ρ (1) be an n-partite entangled pure state shared
by A(1), A(2), . . . , A(n−1), and A(n,1). After A(n,1) performs his
randomly selected measurement and records the outcomes,
he passes the postmeasurement quantum state to A(n,2). We
denote the binary input and output of A(i) (A(n, j)) as x(i) (x(n, j))
and a(i) (a(n, j)), respectively, where i ∈ {1, 2, . . . , n − 1}, j ∈
{1, 2, . . . , K}. Assume A(n,1) performs the measurement based
on the input x(n,1) and obtains the outcome a(n,1). The post-
measurement state can be described by the Lüders rule as
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follows:

ρ (2) = 1

2

∑
a(n,1),x(n,1)

(
I⊗(n−1) ⊗

√
M (n,1)

a(n,1)|x(n,1)

)
ρ (1)

×
(
I⊗(n−1) ⊗

√
M (n,1)

a(n,1)|x(n,1)

)
,

where M (n,1)
a(n,1)|x(n,1) represents the positive operator-valued mea-

sure (POVM) effect corresponding to the outcome a(n,1) of
A(n,1)′s observable M (n,1)

x(n,1) . By repeating this process up to
A(n,K ), we can get the state

ρ (k) = 1

2

∑
a(n,k−1),x(n,k−1)

(
I⊗(n−1) ⊗

√
M (n,k−1)

a(n,k−1)|x(n,k−1)

)

× ρ (k−1)
(
I⊗(n−1) ⊗

√
M (n,k−1)

a(n,k−1)|x(n,k−1)

)
,

where 1 � k � K .
We first consider the tripartite nonlocality for an initially

shared W state. Subsequently, we consider n-partite (n � 3)
nonlocality for an initially shared GHZ state.

A. Tripartite nonlocality starting from W state

In this section, we explore tripartite nonlocality involving
an arbitrary number of Charlies, a single Alice, and a single
Bob. Referring to [21], it was demonstrated that with a single
Alice and Bob, any number of Charlies can detect standard
nonlocality by violating the Mermin inequality when they
initially share a generalized GHZ state. However, in their
measurement, it was shown that at most two Charlies can
detect standard nonlocality for an initially shared W state.
Here we establish a more robust result: an arbitrary number
of Charlies can violate the Mermin inequality with a single
Alice and Bob when starting from an initially shared W state.

To detect the nonlocality, it is essential to examine the
Mermin value I(k)

3 , which involves Alice, Bob, and Charlie(k).
Therefore, we need to define a proper measurement strategy
for Alice, Bob, and Charlie(k). In this measurement strategy,
Alice’s observables are defined by

M (1)
0 = sin(θ )σ1 + cos(θ )σ3, M (1)

1 = sin(θ )σ1 − cos(θ )σ3.

Bob’s observables are defined by

M (2)
0 = sin(θ )σ1 + cos(θ )σ3, M (2)

1 = sin(θ )σ1 − cos(θ )σ3.

Charlie(k)′s (1 � k � K) observables are defined by

M (3,k)
0 = σ3, M (3,k)

1 = γk (θ )σ1 [0 < γk (θ ) < 1].

Set |W 〉 = 1√
3
(|100〉 + |010〉 + |001〉) and let ρ (1) =

|W 〉〈W | be the initial state shared by Alice, Bob, and
Charlie(1). After the first (k − 1) Charlies take their measure-
ments, the state ρ (k) shared by Alice, Bob, and Charlie(k) is
given by the recursive relation

ρ (k) = 1

2

∑
c,z

(
I⊗2 ⊗

√
M (3,k−1)

c|z )ρ (k−1)(I⊗2 ⊗
√

M (3,k−1)
c|z

)
.

Given these measurements and the initial state, we can cal-
culate the Mermin value I(k)

3 (θ ) with respect to the state ρ (k)

and the observables {M (1)
x }x∈Z2 , {M (2)

y }y∈Z2 , {M (3,k)
z }z∈Z2 as

follows:

Pk (θ )
[
2 cos2(θ ) + 4 sin2 (θ )

3

]
2k

+ 8 sin(θ ) cos(θ )γk (θ )

3 × 2k
. (6)

Here, Pk (θ ) = ∏k−1
j=1[1 +

√
1 − γ 2

j (θ )] (see Appendix B for
the detailed calculation).

To ensure I(k)
3 (θ ) > 1, we solve for the appropriate γk (θ )

using Eq. (6), which leads to the inequality

γk (θ ) >
2k − Pk (θ )

(
2 − 2 sin2 (θ )

3

)
8 sin(θ ) cos(θ )

3

. (7)

To achieve it, for ∀ε > 0, we propose a specific sequence
{γk (θ )}, defined as

γk (θ ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 + ε)
( tan(θ )

4

)
, k = 1

(1 + ε)
[ 2k−Pk (θ )(2− 2 sin2 (θ )

3 )
8 sin(θ ) cos(θ )

3

]
, 0 � γk−1(θ ) � 1

∞ otherwise.
(8)

We now present the following theorem, which supports our
initial claim that an arbitrary number of Charlies can violate
the Mermin inequality in conjunction with a single Alice and
Bob.

Theorem 1. For ∀ K ∈ N, there exists a sequence
{γk (θ )}K

k=1, θK ∈ (0, 1), and θ ∈ (0, θK ) such that I(k)
3 (θ ) > 1

and γk (θ ) ∈ (0, 1) for k ∈ {1, 2, . . . , K}.
This proof is given in Appendix C. Theorem 1 demon-

strates that unbounded sequential tripartite nonlocality can be
detected for the initially shared W state in the single-chain
setting, which is a significant finding in the study of quantum
correlations.

B. n-partite nonlocality starting
from GHZ state

In this section, we consider n-partite (n � 3) nonlocal-
ity involving A(1), A(2), . . . , A(n−1), and A(n,k) (1 � k � K ).
To detect the nonlocality, it is essential to examine the
Mermin value I(k)

n . Therefore, we need to define a proper
measurement strategy by the following measurement for A(1),
A(2), . . . , A(n−1), and A(n,k). Next, we give the correspond-
ing measurement strategies in two cases. If n ≡ 0 or 1 or 2
mod 4, we take the following measurement strategy, where
the A( j)′s observables are defined by

M ( j)
0 = σ1, M ( j)

1 = σ2, (9)

with j = 1, 2, . . . , n − 2. A(n−1)′s observables are defined by

M (n−1)
0 = θσ1, M (n−1)

1 = θσ2. (10)

A(n,k)′s (1 � k � K ) observables are defined by

M (n,k)
0 = σ1, M (n,k)

1 = γk (θ )σ2 [0 < γk (θ ) < 1]. (11)
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If n ≡ 3 mod 4, we change the A(n−1)′s observables as fol-
lows:

M (n−1)
0 = −θσ2, M (n−1)

1 = θσ1, (12)

while the others are the same.
Set |GHZn〉 = 1√

2
(|00 · · · 0〉 + |11 · · · 1〉), and let ρ (1) =

|GHZn〉〈GHZn| be the initial state shared by A(1), A(2), . . . ,
A(n−1), and A(n,1). Given these measurements and the initial
state, we can calculate the Mermin value I(k)

n (θ ) with re-
spect to the state ρ (k) and the observables {M (i)

xi
}xi∈Z2 for i =

1, 2, . . . , n − 1 and {M (n,k)
xn

}xn∈Z2 as follows (see Appendix D
for the detailed calculation):

I(k)
n (θ ) = Nn

θγk (θ ) + θPk (θ )

2k−1
, (13)

where Pk (θ ) = ∏k−1
j=1[1 +

√
1 − γ 2

j (θ )] and

Nn =
{

(
√

2)n−3(−1)�
n
4 � if n ≡ 1 or 3 mod 4

(
√

2)n−4(−1)�
n
4 � if n ≡ 0 or 2 mod 4.

(14)

For ∀K ∈ N, k ∈ {1, 2, . . . , K}, our goal is to select appro-
priate values for θ and find a sequence {γk (θ )}K

k=1 such that
I(k)

n (θ ) > 1. Hence, we propose the following lemma to solve
this problem.

Lemma 1. Let N be a real number with |N | � 1. For
any K ∈ N, there exist some θ ∈ (−1, 1) and a sequence
{γk (θ )}K

k=1 such that γk (θ ) ∈ (0, 1) and

fk (θ ) = N
θγk (θ ) + θPk (θ )

2k−1
> 1,

for each 1 � k � K , where Pk (θ ) = ∏k−1
j=1[1 +

√
1 − γ 2

j (θ )].
The proof of Lemma 1 is given in Appendix E.
From Eq. (14), it is easy to check that |Nn| � 1 whenever

n � 3. Then, using Lemma 1, we can deduce the following
theorem.

Theorem 2. Let n � 3 be an integer. For ∀ K ∈ N, there
exist some θ ∈ (−1, 1) and a sequence {γk (θ )}K

k=1 such that
γk (θ ) ∈ (0, 1) and I(k)

n (θ ) > 1 for k ∈ {1, 2, . . . , K}. That is,
we can detect unbounded sequential n-partite standard nonlo-
cality starting from the GHZ state in the single-chain setting.

IV. SHARING OF n-PARTITE NONLOCALITY VIA
MERMIN INEQUALITY IN THE DOUBLE-CHAIN

SCENARIO

In this section, for any K ∈ N, we introduce the double-
chain scenario where A(1), A(2), . . . , A(n−2) attempt to share
the nonlocal correlation of an entangled pure state ρ (1) with
two chains of independent agents and each chain has K parties
{A(n−1,1), . . . , A(n−1,K )} and {A(n,1), . . . , A(n,K )}, respectively
(see Fig. 2).

To begin with, let ρ (1) be an n-partite entangled pure state
shared by A(1), A(2), . . . , A(n−2), A(n−1,1), and A(n,1). After
A(n−1,1) and A(n,1) perform their randomly selected measure-
ment and record the outcomes, they pass the postmeasurement
quantum state to A(n−1,2) and A(n,2), respectively. We de-
note the binary input and output of A(i) (A(n−1, j), A(n, j))
as x(i) (x(n−1, j), x(n, j)) and a(i) (a(n−1, j), a(n, j)), respectively,
where i ∈ {1, 2, . . . , n − 2} and j ∈ {1, 2, . . . , K}. Assuming

FIG. 2. Sharing the n-partite nonlocality: a quantum state ρ (1)

is initially distributed among A(1), A(2), . . . , A(n−1), A(n−1,1), A(n,1).
Subsequently, A(n−1,1) and A(n,1) perform their randomly selected
measurement, record the outcomes, and pass the postmeasurement
quantum state to A(n−1,2) and A(n,2), respectively. This sequence of
actions is reiterated along two chains, respectively, ultimately reach-
ing A(n−1,K ) and A(n,K ).

A(n−1,1) and A(n,1) perform measurements based on the inputs
x(n−1,1) and x(n,1), obtain the outcomes a(n−1,1) and a(n,1).
The postmeasurement state is described by the Lüders rule
as follows:

ρ (2) = 1

4

∑(
I⊗(n−2) ⊗

√
M (n−1,1)

a(n−1,1)|x(n−1,1)

⊗
√

M (n,1)
a(n,1)|x(n,1)

)
ρ (1)

(
I⊗(n−2)

⊗
√

M (n−1,1)
a(n−1,1)|x(n−1,1) ⊗

√
M (n,1)

a(n,1)|x(n,1)

)
.

The summation involves the terms a(n−1,1), a(n,1), x(n−1,1),
and x(n,1), each of which can take a value of either 0 or 1.
At the same time, M (n−1,1)

a(n−1,1)|x(n−1,1) and M (n,1)
a(n,1)|x(n,1) represent the

POVM effects corresponding to the outcomes a(n−1,1) and
a(n,1) of A(n−1,1)′s and A(n,1)′s measurements, respectively. By
repeating this process up to A(n−1,K ) and A(n,K ), we obtain the
state

ρ (k) = 1

4

∑(
I⊗(n−2) ⊗

√
M (n−1,k−1)

a(n−1,k−1)|x(n−1,k−1)

⊗
√

M (n,k−1)
a(n,k−1)|x(n,k−1)

)
ρ (k−1)

(
I⊗(n−2)

⊗
√

M (n−1,k−1)
a(n−1,k−1)|x(n−1,k−1) ⊗

√
M (n,k−1)

a(n,k−1)|x(n,k−1)

)
.

The summation involves the terms a(n−1,k−1), a(n,k−1),
x(n−1,k−1), and x(n,k−1) as above, with 1 � k � K .

Then, we consider n-partite (n � 4) nonlocality involving
A(1), A(2), . . . , A(n−2), A(n−1,k), and A(n,k). Following standard
procedures, we aim to calculate the Mermin value I(k)

n among
A(1), A(2), . . . , A(n−2), A(n−1,k), and A(n,k).
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Therefore, we define a detailed measurement strategy for
A(1), A(2), . . . , A(n−2), A(n−1,k), and A(n,k). We also consider
two situations such as a single-chain setting. If n ≡ 0 or 1 or
3 mod 4, we take the following measurement strategy, with
the A(1)′s observables defined by

M (1)
0 = θσ1, M (1)

1 = θσ2. (15)

A( j)′s observables are defined by

M ( j)
0 = σ1, M ( j)

1 = σ2, (16)

where j = 2, . . . , n − 2. A(n−1,k)′s observables (1 � k � K )
are defined by

M (n−1,k)
0 = σ2, M (n−1,k)

1 = σ2. (17)

A(n,k)′s (1 � k � K ) observables are defined by

M (n,k)
0 = σ1, M (n,k)

1 = γk (θ )σ2 [0 < γk (θ ) < 1]. (18)

And if n ≡ 2 mod 4, we change the A(n−1,k)′s (1 � k � K )
observables as follows:

M (n−1,k)
0 = −σ2, M (n−1,k)

1 = σ2, (19)

while the others are the same.
Set |GHZn〉 = 1√

2
(|00 · · · 0〉 + |11 · · · 1〉), and let ρ (1) =

|GHZn〉〈GHZn| be the initial state shared by A(1), A(2), . . . ,
A(n−2), A(n−1,1), and A(n,1). Given these measurements and
the initial state, we can calculate the Mermin value I(k)

n (θ )
with respect to the state ρ (k) and the observables {M (i)

xi
}xi∈Z2

for i = 1, 2, . . . , n − 2 and {M (i,k)
xi

}xi∈Z2 for i = n − 1, n as
follows (see Appendix F for the detailed calculation):

I(k)
n (θ ) = Nn

θγk (θ ) + θPk (θ )

2k−1
,

where

Nn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
√

2)n−4(−1)�
n
4 �+1 if n ≡ 0 mod 4

(
√

2)n−5(−1)�
n
4 � if n ≡ 1 mod 4

(
√

2)n−4(−1)�
n
4 � if n ≡ 2 mod 4

(
√

2)n−5(−1)�
n
4 �+1 if n ≡ 3 mod 4.

(20)

From Eq. (20), it is easy to check that |Nn| � 1 whenever
n � 4. Then, using Lemma 1, we can deduce the following
theorem.

Theorem 3. Let n � 4 be an integer. For ∀ K ∈ N, there
exist some θ ∈ (−1, 1) and a sequence {γk (θ )}K

k=1 such that
γk (θ ) ∈ (0, 1) and I(k)

n (θ ) > 1 for k ∈ {1, 2, . . . , K}. That is,
we can detect unbounded sequential n-partite standard nonlo-
cality starting from the GHZ state in the double-chain setting.

V. CONCLUSIONS AND DISCUSSION

We have designed appropriate measurements that facilitate
the detection of unbounded sequential multipartite nonlocality
through the violation of the Mermin inequality. The choice
of measurement is crucial as it can enhance the degree of
violation. By refining the measurements introduced in [21],

we have shown that an arbitrary number of independent Char-
lies can observe standard tripartite nonlocality with a single
Alice and a single Bob for an initially shared W state. Follow-
ing this, we inferred the existence of unbounded sequential
n-partite nonlocality for the initially shared GHZ state in
the single-chain scenario, as demonstrated by the Mermin
inequality. Furthermore, we introduced the double-chain sce-
nario and we reached the same conclusion in the n-partite
scenario.

Multipartite quantum nonlocality is a vital resource for
both foundational quantum mechanics research and quantum
communication applications. In [27], the authors experi-
mentally illustrate that the multipartite nonlocality is more
ubiquitous than people have realized and would be useful to
study multipartite nonlocality in the scenarios of practically
realizing multipartite quantum communication tasks among
distant parties. Additionally, nonlocality can be explored in
various other scenarios, such as [28], star network scenarios
[29,30], and in a quantum network [31], among others.

It is important to note that several issues remain open
for further investigation. In the single-chain and double-chain
scenarios, it is currently unknown whether a concrete mea-
surement can be identified that would allow an arbitrary
number of independent observers to detect sequential non-
locality in n-partite systems via the Mermin inequality for
an initially shared W state. Another consideration is whether
in an arbitrary chain setting, it can also be used to detect
unbounded sequential n-partite nonlocality. These questions
merit further exploration to deepen our understanding of mul-
tipartite nonlocality and its potential applications.
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APPENDIX A: THE CALCULATION OF THE
COEFFICIENTS OF THE MERMIN POLYNOMIALS cv

IN n-PARTITE SYSTEMS

Using Eq. (3), we know that

Mn =
∑
v∈Zn

2

cv

n∏
i=1

M (i)
vi

=
∑

v∈Zn−1
2

c(v,0)

n−1∏
i=1

M (i)
vi

M (n)
0 +

∑
v∈Zn−1

2

c(v,1)

n−1∏
i=1

M (i)
vi

M (n)
1 ,

M ′
n =

∑
v∈Zn

2

c′
v

n∏
i=1

M (i)
vi

=
∑

v∈Zn−1
2

c′
(v,0)

n−1∏
i=1

M (i)
vi

M (n)
0 +

∑
v∈Zn−1

2

c′
(v,1)

n−1∏
i=1

M (i)
vi

M (n)
1 .

(A1)
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Using Eq. (1), we have

Mn = Mn−1 + M ′
n−1

2
M (n)

0 + Mn−1 − M ′
n−1

2
M (n)

1 ,

M ′
n = M ′

n−1 − Mn−1

2
M (n)

0 + Mn−1 + M ′
n−1

2
M (n)

1 , (A2)

with M1 = M (1)
0 , M ′

1 = M (1)
1 .

Let v = (v1, v2, . . . , vn−1) ∈ Zn−1
2 , vn ∈ Z2; then, through

the four equations above, we can deduce that

c(v,0) = cv + c′
v

2
, c(v,1) = cv − c′

v

2
,

c′
(v,0) = −cv + c′

v

2
, c′

(v,1) = cv + c′
v

2
.

(A3)

Then, we have

(
c(v,0)

c′
(v,0)

)
=
(

1
2

1
2

− 1
2

1
2

)(
cv

c′
v

)
,

(
c(v,1)

c′
(v,1)

)
=
(

1
2 − 1

2
1
2

1
2

)(
cv

c′
v

)
. (A4)

Denoting H = 1√
2
( 1 1
−1 1), we can get

(
c(v,0)

c′
(v,0)

)
= 1√

2
H (−1)0

(
cv

c′
v

)
,

(
c(v,1)

c′
(v,1)

)
= 1√

2
H (−1)1

(
cv

c′
v

)
. (A5)

Hence,

(
c(v,vn )

c′
(v,vn )

)
= 1√

2
H (−1)vn

(
cv

c′
v

)

= · · ·

=
(

1√
2

)n−1

H (−1)vn +···+(−1)v2

(
cv1

c′
v1

)
. (A6)

Since

(
c0

c′
0

)
=
(

1
0

)
= H (−1)0

(
1√
2

1√
2

)
,

(
c1

c′
1

)
=
(

0
1

)
= H (−1)1

(
1√
2

1√
2

)
,

(A7)

we have(
c(v,vn )

c′
(v,vn )

)
= · · · =

(
1√
2

)n−1

H (−1)vn +···+(−1)v2 +(−1)v1

( 1√
2

1√
2

)

=
(

1√
2

)n−1

Hn−2|(v,vn )|
( 1√

2
1√
2

)
. (A8)

That is, for any v = (v1, v2, . . . , vn) ∈ Zn
2, we have

(
cv
c′

v

)
=
(

1√
2

)n−1

Hn−2|v|
( 1√

2
1√
2

)
. (A9)

We can find the eigenvalues and eigenvectors of H . In fact,

H

( −i√
2

1√
2

)
= eπ i/4

( −i√
2

1√
2

)
and

H

( i√
2

1√
2

)
= e−π i/4

( i√
2

1√
2

)
.

Let λ1 = eπ i/4 and λ2 = e−π i/4. As we have the
decomposition( 1√

2
1√
2

)
= 1 − i

2

( i√
2

1√
2

)
+ 1 + i

2

( −i√
2

1√
2

)
,

we therefore obtain that

(
cv
c′

v

)
=
⎛
⎝
(

1√
2

)n−1
λ

n−2|v|
2

1+i
2
√

2
+ (

1√
2

)n−1
λ

n−2|v|
1

1−i
2
√

2(
1√
2

)n−1
λ

n−2|v|
2

1−i
2
√

2
+ (

1√
2

)n−1
λ

n−2|v|
1

1+i
2
√

2

⎞
⎠.

(A10)
Therefore, as λ−1

1 = λ2 = 1−i√
2
, we have

cv =
(

1√
2

)n−1

λ
n−2|v|
2

1 + i

2
√

2
+
(

1√
2

)n−1

λ
n−2|v|
1

1 − i

2
√

2

= 1

2

[(
1√
2
λ2

)n−1

λ
2|v|
1 +

(
1√
2
λ1

)n−1

λ
2|v|
2

]
. (A11)

APPENDIX B: THE CALCULATION OF I(k)
3 (θ) AMONG

ALICE, BOB, AND CHARLIE(k)

In this measurement strategy, Alice’s observables are de-
fined by

M (1)
0 = sin(θ )σ1 + cos(θ )σ3, M (1)

1 = sin(θ )σ1 − cos(θ )σ3.

Bob’s observables are defined by

M (2)
0 = sin(θ )σ1 + cos(θ )σ3, M (2)

1 = sin(θ )σ1 − cos(θ )σ3.

Charlie(k)′s (1 � k � K ) observables are defined by

M (3,k)
0 = σ3, M (3,k)

1 = γk (θ )σ1 [0 < γk (θ ) < 1].

Let ρ (k−1) be shared by Alice, Bob, and Charlie(k−1) prior to
Charlie(k−1)′s measurements, and with an initial state ρ (1) =
|W 〉〈W |, |W 〉 = 1√

3
(|100〉 + |010〉 + |001〉). Using the Lüders
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rule, the state sent to Charlie(k) is

ρ (k) = 1

2

∑
c,z

(
I ⊗ I ⊗

√
M (3,k−1)

c|z ρ (k−1)I ⊗ I ⊗
√

M (3,k−1)
c|z

)

= 1

2

(
I ⊗ I ⊗ I + σ3

2

)
ρ (k−1)

(
I ⊗ I ⊗ I + σ3

2

)
+
(
I ⊗ I ⊗ I − σ3

2

)
ρ (k−1)

(
I ⊗ I ⊗ I − σ3

2

)

+
(
I ⊗ I ⊗

√
I + γk−1(θ )σ1

2

)
ρ (k−1)

(
I ⊗ I ⊗

√
I + γk−1(θ )σ1

2

)

+
(
I ⊗ I ⊗

√
I − γk−1(θ )σ1

2

)
ρ (k−1)

(
I ⊗ I ⊗

√
I − γk−1(θ )σ1

2

)

=
2 +

√
1 − γ 2

k−1(θ )

4
ρ (k−1) + 1

4
(I ⊗ I ⊗ σ3)ρ (k−1)(I ⊗ I ⊗ σ3)

+
1 −

√
1 − γ 2

k−1(θ )

4
(I ⊗ I ⊗ σ1)ρ (k−1)(I ⊗ I ⊗ σ1),

where we use the identity, for the final calculation,√
I ± γk (θ )σ1

2
= (

√
1 + γk (θ ) + √

1 − γk (θ ))I ± (
√

1 + γk (θ ) − √
1 − γk (θ ))σ1

2
√

2
. (B1)

As

Tr
[
ρ (k)(M (1)

1 M (2)
0 M (3,k)

0

)] = Tr[ρ (k)(− cos θσ3 + sin θσ1) ⊗ (cos θσ3 + sin θσ1) ⊗ σ3] = Pk (θ )

2k−1

(
cos2θ + 2sin2θ

3

)
,

Tr
[
ρ (k)

(
M (1)

0 M (2)
1 M (3,k)

0

)] = Tr[ρ (k)(cos θσ3 + sin θσ1) ⊗ (− cos θσ3 + sin θσ1) ⊗ σ3] = Pk (θ )

2k−1

(
cos2θ + 2sin2θ

3

)
,

Tr
[
ρ (k)

(
M (1)

0 M (2)
0 M (3,k)

1

)] = Tr{ρ (k)(cos θσ3 + sin θσ1) ⊗ (cos θσ3 + sin θσ1) ⊗ [γk (θ )σ1]} = γk (θ )

2k−1

(
4 sin θ cos θ

3

)
,

−Tr
[
ρ (k)

(
M (1)

1 M (2)
1 M (3,k)

1

)] = Tr{ρ (k)(− cos θσ3 + sin θσ1) ⊗ (− cos θσ3 + sin θσ1) ⊗ [γk (θ )σ1]} = γk (θ )

2k−1

(
4 sin θ cos θ

3

)
,

(B2)

we could calculate the Mermin value I(k)
3 (θ ) of ρ (k):

I(k)
3 (θ ) = Pk (θ )

2k

(
2cos2θ + 4sin2θ

3

)
+ γk (θ )

2k

(
8 sin θ cos θ

3

)
, (B3)

where Pk (θ ) = ∏k−1
j=1[1 +

√
1 − γ 2

j (θ )]. In particular, I(1)
3 (θ ) = (cos2θ + 2sin2θ

3 ) + ( 4 sin θ cos θγk

3 ).

APPENDIX C: THE PROOF OF THEOREM 1

For the given measurements in Sec. III A, so that I(k)
3 (θ ) > 1 with 1 � k � K , we have to find γk and θ such that

γk (θ ) >
2k − Pk (θ )

(
2 − 2sin2(θ )

3

)
8 sin(θ ) cos(θ )

3

. (C1)

To achieve it, for ∀ε > 0, we define a specific sequence {γk (θ )}K
k=1,

γk (θ ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 + ε)
( tan(θ )

4

)
, k = 1

(1 + ε)
(

[2k−Pk (θ )]
(

2− 2sin2 (θ )
3

)
8 sin(θ ) cos(θ )

3

)
, 0 � γk−1(θ ) � 1

∞ otherwise.

(C2)

Then we can get

γk (θ )

γk−1(θ )
> 2 ⇔ Pk−1(θ )

Pk (θ )
>

1

2
⇔ 0 < γk−1(θ ) � 1. (C3)
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Here, γ1(θ ) = (1 + ε)( tan(θ )
4 ), and limθ→0+ γ1(θ ) = 0. By the induction, we can suppose there exists a θk−1 such that on the

interval (0, θk−1), all γi(θ ) ∈ (0, 1), and limθ→0+ γi(θ ) = 0 for i = 1, 2, . . . , k − 1. Meanwhile, we note that for Pk (θ ) as a
function on the small interval (0, θk−1), the limit of its differential at 0+ could be calculated as

lim
θ→0+

P′
k (θ ) = lim

θ→0+

k−1∑
j=1

⎛
⎜⎝−2γ j (θ )γ ′

j (θ )

2
√

1 − γ 2
j (θ )

⎞
⎟⎠ Pk (θ )

1 +
√

1 − γ 2
j (θ )

= 0.

Then, according to the definition of γk (θ ), we will have

lim
θ→0+

γk (θ ) = lim
θ→0+

(1 + ε)

(
[2k − Pk (θ )]

(
2 − 2sin2(θ )

3

)
8 sin(θ ) cos(θ )

3

)
= lim

θ→0+

−2P′
k (θ ) + 2 sin 2θPk (θ )

3 + 2sin2θP′
k (θ )

3
8 cos 2θ

3

= 0,

where we use the limit limθ→0+ Pk (θ ) = 2k−1 and the L’Hopital rule. So, for ∀K ∈ N, we can find a θK ∈ (0, 1) such that
0 < γ1(θ ) < γ2(θ ) < · · · < γK (θ ) < 1 for all θ ∈ (0, θK ).

APPENDIX D: THE CALCULATION OF I(k)
n (θ) IN SINGLE-CHAIN SCENARIO

In this measurement strategy, A( j)′s observables are defined by

M ( j)
0 = σ1, M ( j)

1 = σ2, (D1)

where j = 1, 2, . . . , n − 2. A(n−1)′s observables are defined by

M (n−1)
0 = θσ1, M (n−1)

1 = θσ2. (D2)

A(n,k)′s (1 � k � K ) observables are defined by

M (n,k)
0 = σ1, M (n,k)

1 = γk (θ )σ2 [0 < γk (θ ) < 1]. (D3)

Let ρ (k−1) be shared by A(1), A(2), . . . , A(n−1), and A(n,k−1) prior to A(n,k−1)′s measurements and with an initial state ρ (1) =
|GHZn〉〈GHZn|, |GHZn〉 = 1√

2
(|00 · · · 0〉 + |11 · · · 1〉). Using the Lüders rule, the state sent to A(n,k) is

ρ (k) = 1

2

∑(
I⊗(n−1) ⊗

√
M (n,k−1)

a(n,k−1)|x(n,k−1)

)
ρ (k−1)(I⊗(n−1) ⊗

√
M (n,k−1)

a(n,k−1)|x(n,k−1)

)
= 1

2

(
I⊗(n−1) ⊗ I + σ1

2

)
ρ (k−1)

(
I⊗(n−1) ⊗ I + σ1

2

)
+
(
I⊗(n−1) ⊗ I − σ1

2
)ρ (k−1)(I⊗(n−1) ⊗ I − σ1

2

)

+
(
I⊗(n−1) ⊗

√
I + γk−1(θ )σ2

2

)
ρ (k−1)

(
I⊗(n−1) ⊗

√
I + γk−1(θ )σ2

2

)

+
(
I⊗(n−1) ⊗

√
I − γk−1(θ )σ2

2

)
ρ (k−1)

(
I⊗(n−1) ⊗

√
I − γk−1(θ )σ2

2

)

=
2 +

√
1 − γ 2

k−1(θ )

4
ρ (k−1) + 1

4
(I⊗(n−1) ⊗ σ1)ρ (k−1)(I⊗(n−1) ⊗ σ1)

+
1 −

√
1 − γ 2

k−1(θ )

4
(I⊗(n−1) ⊗ σ2)ρ (k−1)(I⊗(n−1) ⊗ σ2), (D4)

where we use Eq. (B1).
To calculate I(k)

n (θ ), by definition

I(k)
n (θ ) =

∑
v∈Zn

2

cvTr
[
ρ (k)

(
M (1)

v1
M (2)

v2
· · · M (n,k)

vn

)]
, (D5)

we should calculate out each term Tr[ρ (k)(M (1)
v1

M (2)
v2

· · · M (n,k)
vn

)]. For any vector v = (v1, v2, . . . , vn) ∈ Zn
2, we define ṽ =

(ṽ1, ṽ2, . . . , ṽn) := (v1 + 1, v2 + 1, . . . , vn + 1) ∈ {1, 2}n. Note that

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)|GHZn〉 = 1√
2

(i|v||11 · · · 1〉 + (−i)|v||00 · · · 0〉).
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Therefore,

Tr
[
ρ (1)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)] = (−i)|v| + i|v|

2
=
⎧⎨
⎩

1 if v ≡ 0 mod 4
−1 if v ≡ 2 mod 4
0 otherwise.

For each v = (v1, v2, . . . , vn) ∈ Zn
2, by substituting the ρ (k) with Eq. (D4), one finds that

Tr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)] =
⎧⎨
⎩

1+
√

1−γ 2
k−1(θ )

2 Tr
[
ρ (k−1)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn = 0

1
2 Tr

[
ρ (k−1)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn = 1.

(D6)

Repeating this recursive equation (k − 1) times, one has that

Tr
[
ρ (k)(σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)] =
⎧⎨
⎩

Pk (θ )
2k−1

(−i)|v|+i|v|
2 if vn = 0

1
2k−1

(−i)|v|+i|v|
2 if vn = 1.

(D7)

One finds that

Tr
[
ρ (k)

(
M (1)

v1
M (2)

v2
· · · M (n,k)

vn

)] =
{

θTr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn = 0

θγk (θ )Tr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn = 1.

(D8)

Therefore, by Eqs. (D5), (D7), and (D8), the Mermin value I(k)
n (θ ) of ρ (k) can be written as

I(k)
n (θ ) =

⎛
⎝ ∑

v∈Zn
2,vn=0

cv
(−i)|v| + i|v|

2

⎞
⎠θPk (θ )

2k−1
+
⎛
⎝ ∑

v∈Zn
2,vn=1

cv
(−i)|v| + i|v|

2

⎞
⎠θγk (θ )

2k−1
.

Now we calculate the two coefficients in the above equation (λ2
1 = i and λ2

2 = −i),

∑
v∈Zn

2,vn=0

cv
(−i)|v| + i|v|

2
= 1

4

∑
v∈Zn

2,vn=0

[(
1√
2
λ2

)n−1

λ
2|v|
1 +

(
1√
2
λ1

)n−1

λ
2|v|
2

]
[(−i)|v| + i|v|]

= 1

4

∑
v∈Zn

2,vn=0,|v|=k

[(
1√
2
λ2

)n−1

λ2k
1 +

(
1√
2
λ1

)n−1

λ2k
2

]
[(−i)k + ik]

= 1

4

n−1∑
k=0

(
n − 1

k

)[(
1√
2
λ2

)n−1

λ2k
1 +

(
1√
2
λ1

)n−1

λ2k
2

]
[(−i)k + ik]

= 1

4

n−1∑
k=0

(
n − 1

k

)[(
1√
2
λ2

)n−1

λ2k
1 +

(
1√
2
λ1

)n−1

λ2k
2

]
[(−i)k + ik]

=
(

1√
2
λ2
)n−1

4

n−1∑
k=0

(
n − 1

k

)
λ2k

1 [(−i)k + ik] +
(

1√
2
λ1
)n−1

4

n−1∑
k=0

(
n − 1

k

)
λ2k

2 [(−i)k + ik]

=
(

1√
2
λ2
)n−1

4
{(1 + 1)n−1 + [1 + (−1)]n−1} +

(
1√
2
λ1
)n−1

4
{[1 + (−1)]n−1 + (1 + 1)n−1}

= (
√

2λ1)n−1 + (
√

2λ2)n−1

4
, (D9)

∑
v∈Zn

2,vn=1

cv
(−i)|v| + i|v|

2
= 1

4

∑
v∈Zn

2,vn=1

[(
1√
2
λ2

)n−1

λ
2|v|
1 +

(
1√
2
λ1

)n−1

λ
2|v|
2

]
[(−i)|v| + i|v|]

= 1

4

∑
v∈Zn

2,vn=1,|v|=k

[(
1√
2
λ2

)n−1

λ2k
1 +

(
1√
2
λ1

)n−1

λ2k
2

]
[(−i)k + ik]

= 1

4

n∑
k=1

(
n − 1

k − 1

)[(
1√
2
λ2

)n−1

λ2k
1 +

(
1√
2
λ1

)n−1

λ2k
2

]
[(−i)k + ik]
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BANG-ZHU SHEN AND MAO-SHENG LI PHYSICAL REVIEW A 110, 012217 (2024)

= 1

4

n−1∑
	=0

(
n − 1

	

)[(
1√
2
λ2

)n−1

λ2	
1 i +

(
1√
2
λ1

)n−1

λ2	
2 (−i)

]
[(−i)	+1 + i	+1]

=
i
(

1√
2
λ2
)n−1

4

n−1∑
	=0

(
n − 1

	

)
λ2	

1 [(−i)	+1 + i	+1] +
−i
(

1√
2
λ1
)n−1

4

n−1∑
	=0

(
n − 1

	

)
λ2	

2 [(−i)	+1 + i	+1]

=
(

1√
2
λ2
)n−1

4
{(1 + 1)n−1 − [1 + (−1)]n−1} +

(
1√
2
λ1
)n−1

4
{−[1 + (−1)]n−1 + (1 + 1)n−1}

= (
√

2λ2)n−1 + (
√

2λ1)n−1

4
. (D10)

So we have

I(k)
n (θ ) = (

√
2)n−1

(
λn−1

1 + λn−1
2

)
4

θγk (θ ) + θPk (θ )

2k−1
.

Note that

λn−1
1 + λn−1

2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(−1)m = 2(−1)�
n
4 �, n = 4m + 1√

2(−1)m = √
2(−1)�

n
4 �, n = 4m + 2

0, n = 4m + 3√
2(−1)m+1 = √

2(−1)�
n
4 �, n = 4m + 4.

So,

(
√

2)n−1
(
λn−1

1 + λn−1
2

)
4

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
√

2)n−3(−1)�
n
4 �, n = 4m + 1

(
√

2)n−4(−1)�
n
4 �, n = 4m + 2

0, n = 4m + 3

(
√

2)n−4(−1)�
n
4 �, n = 4m + 4.

As I(k)
n (θ ) = 0 in the setting n ≡ 3 mod 4, we change the A(n−1)′s observables as follows:

M (n−1)
0 = −θσ2, M (n−1)

1 = θσ1, (D11)

while the other are the same. For any vector v = (v1, v2, . . . , vn) ∈ Zn
2, we redefine ṽ = (ṽ1, ṽ2, . . . , ṽn) := (v1 + 1, v2 +

1, . . . , vn−2 + 1, ṽn−1, vn + 1) ∈ {1, 2}n, when vn−1 = 0 then ṽn−1 = 2, and when vn−1 = 1 then ṽn−1 = 1. Note that

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)|GHZn〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
2
[(i)|v|+1|11 · · · 1〉 + (−i)|v|+1|00 · · · 0〉] if vn−1 = 0 and vn = 0

1√
2
[(i)|v|−1|11 · · · 1〉 + (−i)|v|−1|00 · · · 0〉] if vn−1 = 1 and vn = 0

1√
2
[(i)|v|+1|11 · · · 1〉 + (−i)|v|+1|00 · · · 0〉] if vn−1 = 0 and vn = 1

1√
2
[(i)|v|−1|11 · · · 1〉 + (−i)|v|−1|00 · · · 0〉] if vn−1 = 1 and vn = 1.

.

Therefore,

Tr
[
ρ (1)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−i)|v|+1+i|v|+1

2 if vn−1 = 0 and vn = 0

(−i)|v|−1+i|v|−1

2 if vn−1 = 1 and vn = 0

(−i)|v|+1+i|v|+1

2 if vn−1 = 0 and vn = 1

(−i)|v|−1+i|v|−1

2 if vn−1 = 1 and vn = 1.

In this setting, using (D6) and repeating this recursive equation (k − 1) times, one has that

Tr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Pk (θ )
2k−1

(−i)|v|+1+i|v|+1

2 if vn−1 = 0 and vn = 0

Pk (θ )
2k−1

(−i)|v|−1i|v|−1

2 if vn−1 = 1 and vn = 0

1
2k−1

(−i)|v|+1+i|v|+1

2 if vn−1 = 0 and vn = 1

1
2k−1

(−i)|v|−1+i|v|−1

2 if vn−1 = 1 and vn = 1.

(D12)
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Now, using (D12), we have

Tr
[
ρ (k)(M (1)

v1
M (2)

v2
· · · M (n,k)

vn

)] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−θTr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn−1 = 0, vn = 0

θTr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn−1 = 1, vn = 0

−θγk (θ )Tr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn−1 = 0, vn = 1

θγk (θ )Tr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn−1 = 1, vn = 1.

(D13)

Therefore, by Eqs. (D5), (D12), and (D13), the Mermin value I(k)
n (θ ) of ρ (k) can be written as

I(k)
n (θ ) =

⎛
⎝−

∑
v∈Zn

2,vn−1=0,vn=0

cv
(−i)|v|+1 + i|v|+1

2
+

∑
v∈Zn

2,vn−1=1,vn=0

cv
(−i)|v|−1 + i|v|−1

2

⎞
⎠θPk (θ )

2k−1

+
⎛
⎝−

∑
v∈Zn

2,vn−1=0,vn=1

cv
(−i)|v|+1 + i|v|+1

2
+

∑
v∈Zn

2,vn−1=1,vn=1

cv
(−i)|v|−1 + i|v|−1

2

⎞
⎠θγk (θ )

2k−1
. (D14)

Similar to Eqs. (D9) and (D10), one finds that

∑
v∈Zn

2,vn−1=0,vn=0

cv
(−i)|v|+1 + i|v|+1

2
= (

√
2)n−1

[
iλn−1

1 + (−i)λn−1
2

]
8

=
∑

v∈Zn
2,vn−1=0,vn=1

cv
(−i)|v|+1 + i|v|+1

2
,

∑
v∈Zn

2,vn−1=1,vn=0

cv
(−i)|v|−1 + i|v|−1

2
= (

√
2)n−1

[
(−i)λn−1

1 + iλn−1
2

]
8

=
∑

v∈Zn
2,vn−1=1,vn=1

cv
(−i)|v|−1 + i|v|−1

2
.

Therefore, both coefficients in Eq. (D14) before the terms θPk (θ )
2k−1 and θγk (θ )

2k−1 are

(
√

2)n−1
[
(−i)λn−1

1 + (i)λn−1
2

]
4

= (
√

2)n−3(−1)�
n
4 �.

So we have

I(k)
n (θ ) = (

√
2)n−3(−1)�

n
4 � θγk (θ ) + θPk (θ )

2k−1
.

To sum up, we have

I(k)
n (θ ) = Nn

θγk (θ ) + θPk (θ )

2k−1
,

where

Nn =
{

(
√

2)n−3(−1)�
n
4 � if n ≡ 1 or 3 mod 4

(
√

2)n−4(−1)�
n
4 � if n ≡ 0 or 2 mod 4.

(D15)

APPENDIX E: THE PROOF OF LEMMA 1

For any k ∈ {1, 2, . . . , K}, we need to find appropriate γk (θ ) ∈ (0, 1) and θ ∈ (−1, 1) such that fk (θ ) = N θγk (θ )+θPk (θ )
2k−1 > 1.

In the following, θ is chosen according to the sign of N such that θN > 0. Since

fk (θ ) = N
θγk (θ ) + θPk (θ )

2k−1
> 1 ⇔ γk (θ ) >

2k−1

θN
− Pk (θ ),

therefore, for ∀ε > 0, we construct a specific sequence {γk (θ )}K
k=1. If N > 0, for θ ∈ (0, 1), we define

γk (θ ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 + ε)( 1
θN − 1), k = 1

(1 + ε)
[

2k−1

θN − Pk (θ )
]
, 0 � γk−1(θ ) � 1

∞ otherwise.

(E1)

Then we can get

γk (θ )

γk−1(θ )
> 2 ⇔ Pk−1(θ )

Pk (θ )
>

1

2
⇔ 0 < γk−1(θ ) � 1. (E2)
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Here, γ1(θ ) = (1 + ε)( 1
θN − 1), limθ→ 1

N
γ1(θ ) = 0. By the induction, we can suppose there exists a δk−1 such that for each θ on

the interval ( 1
N − δk−1,

1
N ) ∪ ( 1

N , 1
N + δk−1) [if N = 1, we take the interval (1 − δk−1, 1)], all γi(θ ) ∈ (0, 1), and limθ→ 1

N
γi(θ ) =

0 for i = 1, 2, . . . , k − 1. Then, according to the definition of γk (θ ), we will have

lim
θ→ 1

N

γk (θ ) = lim
θ→ 1

N

(1 + ε)

[
2k−1

θN
− Pk (θ )

]
= 0,

where we use the limit limθ→ 1
N

Pk (θ ) = 2k−1. So, for ∀K ∈ N, we can find a δK > 0 such that 0 < γ1(θ ) < γ2(θ ) < · · · <

γK (θ ) < 1 and fk (θ ) > 1 for all θ ∈ ( 1
N − δK , 1

N ) ∪ ( 1
N , 1

N + δK ) and k ∈ {1, 2, . . . , K}. If N < 0, we then let θ ∈ (−1, 0), which
leads to the same conclusion.

APPENDIX F: THE CALCULATION OF I(k)
n (θ) IN DOUBLE-CHAIN SCENARIO

In this measurement strategy, A(1)′s observables are defined by

M (1)
0 = θσ1, M (1)

1 = θσ2. (F1)

A( j)′s observables are defined by

M ( j)
0 = σ1, M ( j)

1 = σ2. (F2)

where j = 2, . . . , n − 2. A(n−1,k)′s (1 � k � K ) observables are defined by

M (n−1,k)
0 = σ2, M (n−1,k)

1 = σ2. (F3)

A(n,k)′s (1 � k � K ) observables are defined by

M (n,k)
0 = σ1, M (n,k)

1 = γk (θ )σ2 [0 < γk (θ ) < 1]. (F4)

Let ρ (k−1) shared by A(1), A(2), . . . , A(n−1,k−1), and A(n,k−1) prior to A(n−1,k−1)’s and A(n,k−1)’s measurements and with an initial
state ρ (1) = |GHZn〉〈GHZn|, |GHZn〉 = 1√

2
(|00 · · · 0〉 + |11 · · · 1〉). Using the Lüders rule, the state sent to A(n,k) is

ρ (k) = 1

4

∑(
I⊗(n−2) ⊗

√
M (n−1,k−1)

a(n−1,k−1)|x(n−1,k−1) ⊗
√

M (n,k−1)
a(n,k−1)|x(n,k−1) )ρ

(k−1)(I⊗(n−2) ⊗
√

M (n−1,k−1)
a(n−1,k−1)|x(n−1,k−1) ⊗

√
M (n,k−1)

a(n,k−1)|x(n,k−1)

)

=
2 +

√
1 − γ 2

k−1(θ )

8
ρ (k−1) +

2 +
√

1 − γ 2
k−1(θ )

8
(I⊗(n−2) ⊗ σ2 ⊗ I)ρ (k−1)(I⊗(n−2) ⊗ σ2 ⊗ I)

+ 1

8
(I⊗(n−1) ⊗ σ1)ρ (k−1)(I⊗(n−1) ⊗ σ1) + 1

8
(I⊗(n−2) ⊗ σ2 ⊗ σ1)ρ (k−1)(I⊗(n−2) ⊗ σ2 ⊗ σ1)

+
1 −

√
1 − γ 2

k−1(θ )

8
(I⊗(n−1) ⊗ σ2)ρ (k−1)(I⊗(n−1) ⊗ σ2) +

1 −
√

1 − γ 2
k−1(θ )

8
(I⊗(n−2) ⊗ σ2 ⊗ σ2)

× ρ (k−1)(I⊗(n−2) ⊗ σ2 ⊗ σ2), (F5)

where we use Eq. (B1).
To calculate I(k)

n (θ ) by definition,

I(k)
n (θ ) =

∑
v∈Zn

2

cvTr
[
ρ (k)

(
M (1)

v1
M (2)

v2
· · · M (n,k)

vn

)]
, (F6)

we should calculate out each term Tr[ρ (k)(M (1)
v1

M (2)
v2

· · · M (n,k)
vn

)]. For any vector v = (v1, v2, . . . , vn) ∈ Zn
2, we define ṽ =

(ṽ1, ṽ2, . . . , ṽn) := (v1 + 1, v2 + 1, . . . , vn−2 + 1, ṽn−1, vn + 1) ∈ {1, 2}n, with ṽn−1 = 2. Note that

(σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn )|GHZn〉 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
2
(i|v|+1|11 · · · 1〉 + (−i)|v|+1|00 · · · 0〉) if vn−1 = 0 and vn = 0

1√
2
(i|v||11 · · · 1〉 + (−i)|v||00 · · · 0〉) if vn−1 = 1 and vn = 0

1√
2
(i|v|+1|11 · · · 1〉 + (−i)|v|+1|00 · · · 0〉) if vn−1 = 0 and vn = 1

1√
2
(i|v||11 · · · 1〉 + (−i)|v||00 · · · 0〉) if vn−1 = 1 and vn = 1.
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Therefore,

Tr
[
ρ (1)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−i)|v|+1+i|v|+1

2 if vn−1 = 0 and vn = 0

(−i)|v|+i|v|
2 if vn−1 = 1 and vn = 0

(−i)|v|+1+i|v|+1

2 if vn−1 = 0 and vn = 1

(−i)|v|+i|v|
2 if vn−1 = 1 and vn = 1.

For each v = (v1, v2, . . . , vn) ∈ Zn
2, by substituting the ρ (k) with Eq. (F5), one finds that

Tr[ρ (k)(σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn )] =
⎧⎨
⎩

1+
√

1−γ 2
k−1(θ )

2 Tr
[
ρ (k−1)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn = 0

1
2 Tr

[
ρ (k−1)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn = 1.

(F7)

Repeating this recursive equation (k − 1) times, one has that

Tr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Pk (θ )
2k−1

(−i)|v|+1+i|v|+1

2 if vn−1 = 0 and vn = 0

Pk (θ )
2k−1

(−i)|v|+i|v|
2 if vn−1 = 1 and vn = 0

1
2k−1

(−i)|v|+1+i|v|+1

2 if vn−1 = 0 and vn = 1

1
2k−1

(−i)|v|+i|v|
2 if vn−1 = 1 and vn = 1.

(F8)

One finds that

Tr
[
ρ (k)

(
M (1)

v1
M (2)

v2
· · · M (n,k)

vn

)] =
{

θTr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn = 0

θγk (θ )Tr
[
ρ (k)

(
σṽ1 ⊗ σṽ2 ⊗ · · · ⊗ σṽn

)]
if vn = 1.

(F9)

Therefore, by Eqs. (F6), (F8), and (F9), the Mermin value I(k)
n (θ ) of ρ (k) can be written as

I(k)
n (θ ) =

⎛
⎝ ∑

v∈Zn
2,vn−1=0,vn=0

cv
(−i)|v|+1 + i|v|+1

2
+

∑
v∈Zn

2,vn−1=1,vn=0

cv
(−i)|v| + i|v|

2

⎞
⎠θPk (θ )

2k−1

+
⎛
⎝ ∑

v∈Zn
2,vn−1=0,vn=1

cv
(−i)|v|+1 + i|v|+1

2
+

∑
v∈Zn

2,vn−1=1,vn=1

cv
(−i)|v| + i|v|

2

⎞
⎠θγk (θ )

2k−1
. (F10)

Now we calculate the two coefficients in the above equation (λ2
1 = i and λ2

2 = −i),

∑
v∈Zn

2,vn−1=0,vn=0

cv
(−i)|v|+1 + i|v|+1

2
= 1

4

∑
v∈Zn

2,vn−1=0,vn=0

[(
1√
2
λ2

)n−1

λ
2|v|
1 +

(
1√
2
λ1

)n−1

λ
2|v|
2

]
[(−i)|v|+1 + i|v|+1]

= 1

4

∑
v∈Zn

2,vn−1=0,vn=0,|v|=k

[(
1√
2
λ2

)n−1

λ2k
1 +

(
1√
2
λ1

)n−1

λ2k
2

]
[(−i)k+1 + ik+1]

= 1

4

n−2∑
k=0

(
n − 2

k

)[(
1√
2
λ2

)n−1

λ2k
1 +

(
1√
2
λ1

)n−1

λ2k
2

]
[(−i)k+1 + ik+1]

=
(

1√
2
λ2
)n−1

4

n−2∑
k=0

(
n − 2

k

)
λ2k

1 [(−i)k+1 + ik+1]

+
(

1√
2
λ1
)n−1

4

n−2∑
k=0

(
n − 2

k

)
λ2k

2 [(−i)k+1 + ik+1]

=
(

1√
2
λ2
)n−1

4
{(−i)(1 + 1)n−2 + i[1 + (−1)]n−2}
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+
(

1√
2
λ1
)n−2

4
{(−i)[1 + (−1)]n−2 + i(1 + 1)n−2}

= (
√

2)n−1
[
iλn−1

1 + (−i)λn−1
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Similar to Eqs. (F11) and (F12), one finds that
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As I(k)
n (θ ) = 0 in the setting n ≡ 2 mod 4, we change the A(n−1,k)′s (1 � k � K ) observables as follows:
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0 = −σ2, M (n−1,k)

1 = σ2, (F13)

while the others are the same. In this setting, we also have Eqs. (F6)–(F8), while Eq. (F9) is replaced by the following equation:
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Therefore, by Eqs. (F6), (F8), and (F14), the Mermin value I(k)
n (θ ) of ρ (k) can be written as
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Similar to Eqs. (F11) and (F12), one finds that both coefficients in Eq. (F15) before the terms θPk (θ )
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