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Zero-fluctuation quantum work extraction
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We study the possibility of deterministic protocols for extracting work from quantum systems. Focusing on
the two-point measurement work extraction scenario, we prove that, with enough copies of the system, such
zero-fluctuation protocols always exist if the Hamiltonian has a rational spectrum. Leveraging this result, we
show that for any Hamiltonian, it is possible to construct a unitary driving protocol on sufficiently many copies of
the system with work fluctuations strictly bounded within an arbitrary interval ±δ, albeit requiring exponentially
many copies in 1/δ.
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I. INTRODUCTION

The definition of thermodynamic work in quantum systems
has been a longstanding question [1–7]: at microscopic scales,
the work that can be extracted from a system acquires a
stochastic nature, due to thermal [8,9] and quantum fluctua-
tions [10–13]. A prominent paradigm for defining quantum
work is the two-point measurement (TPM) scheme [14–17],
which provides a conceptually simple operational paradigm
for defining fluctuating work in the quantum regime and forms
the basis for various quantum fluctuation theorems [18–21].
The TPM protocol operates as follows: first, a projective en-
ergy measurement is performed on the system, collapsing its
state into an energy eigenstate |εi〉. Next, the system evolves
unitarily under the action of an external agent. Finally, a
second energy measurement reveals the final energy state |ε j〉
after evolution. By comparing the initial and final energies εi

and ε j , one can define the stochastic work performed on the
system as w = εi − ε j . Repeating this TPM procedure many
times generates a work probability distribution P(w).

A key optimization goal is to extract the maximum process
average work 〈W 〉 by suitably choosing the driving unitary Û .
A fundamental bounds on 〈W 〉 is provided by the ergotropy
[22,23]—the energy difference between the initial state of the
quantum system and its corresponding passive state [24,25].
More sophisticated protocols have been conceived in literature
and employ nonlocal operations to suppress the fluctuations of
the extracted work w around its average value 〈W 〉 [26–30].
In particular, Ref. [31] showed that by collectively processing
n copies of a quantum system, the probability P(|w − 〈W 〉| >

δ) of getting work fluctuations larger than a threshold δ > 0
can be made to decay exponentially in n. The concept of
“ε-deterministic” work extraction has also been proposed,
to indicate protocols that completely suppress fluctuations,
except for a small failure probability [11,32]. Other studies
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investigated the maximization of risk-averse utility functions
of the work probability distribution [33,34].

Our work goes beyond [31] to construct explicit protocols
where the work fluctuations can be completely eliminated,
such that the extracted work takes a single deterministic value
W (det). In other word, we find unitary evolution transforma-
tions with the property that the final energy of the system at
the end of the TPM process is completely determined by the
result of the first measurement, and the second measurement is
inconsequential. We prove that such protocols always exist for
systems with rational spectra: if we collectively process multi-
ple copies, then a finite W (det) > 0 can be extracted with zero
fluctuations. For irrational spectra, for which a deterministic
work extraction protocol may not be possible, we prove that
with a sufficiently large number of copies we can always find
a TPM work extraction protocol whose fluctuations can be
strictly bound by an arbitrarily small constant [i.e., such that
P(|w − 〈W 〉| > δ) = 0]. By using the TPM framework for
defining the work extracted from a system, we are assuming
that it is possible to perform operationally ideal projective
measurements of the energy of the system. Although, in
practice, every measurement carries an energy cost (and a
perfectly ideal projective measurement would carry an infinite
energy cost [35], from the third law of thermodynamics), in
this work we assume that the energetic cost to perform a
sufficiently precise measurement is negligible compared with
the energy scale of the quantum system.

Compared with the results of Ref. [31], our zero-
fluctuation protocols apply to a narrower regime of parameter
space, but provide the strongest possible guarantee on work
fluctuations by eliminating them completely. We identify
permutations of energy levels between multiple copies that en-
able zero-fluctuation work extraction. For general spectra, we
provide a stronger constraints on fluctuations than Ref. [31]—
ensuring that the extracted work w from its expected value can
be strictly bounded in a narrow band. The concept of work
extraction with bounded fluctuations was first introduced in
Ref. [36], in which the authors show the existence of ther-
modynamic cycles with bounded fluctuation in some qubit
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and qutrit quantum systems; in this work, we generalize their
results by providing a way to construct a bounded-fluctuations
work extraction protocol for any system Hamiltonian Ĥ . Our
zero-fluctuation protocols could find applications in quantum
heat engines or batteries, where reliable work output is criti-
cal. The concept may also extend to bounding fluctuations of
other quantities through global quantum operations, and help
to introduce designs for stable quantum devices functioning in
the finite copy regime.

The rest of paper is organized as follows: In Sec. II we
define the notation. In Sec. III we review the structure of
TPM measurements and formally introduce the problem of
finding the maximum amount of work W (det)

max (ρ̂; Ĥ ) that can be
extracted deterministically from a quantum system described
by a Hamiltonian Ĥ initialized in the state ρ̂. In Sec. IV we
present some basic properties of the functional W (det)

max (ρ̂; Ĥ ),
showing that it only depends on the spectrum of the Hamil-
tonian, and on the occupancy levels of the input state ρ̂.
In Sec. V we show that W (det)

max (ρ̂; Ĥ ) is superadditive in the
number n of copies of the system and define the asymptotic
maximum deterministic work-extraction rate R(A, Ĥ ), which
quantifies how much can be deterministically retrieved from a
large n → ∞ number of copies of the system. In Sec. V, some
upper bounds for R(A, Ĥ ) are presented. Section VI is de-
voted to the presentation of same simple examples which are
useful to shed light on the problem. In Sec. VII, we show that
if the eigenvalues of the system Hamiltonian Ĥ are commen-
surable, then it is always possible to extract deterministically
a nonzero amount of work for a sufficiently large number
of copies of the system [i.e., R(A, Ĥ ) > 0]. Our proof is
constructive, meaning that we provide an explicit protocol for
deterministic work extraction for any Hamiltonian Ĥ with a
commensurable spectrum.

Building upon this result, in Sec. VIII we show that, by
approximating a generic Hamiltonian Ĥ to a δ-close Hamil-
tonian Ĥ ′ with commensurable eigenvalues, we can construct
(for a sufficiently large number of copies) a work extraction
protocol whose fluctuations can be strictly bounded by an
arbitrarily small constant 2δ. In Sec. IX we provide another
estimation of the asymptotic rate R(A, Ĥ ) using the local
asymptotic normality of the distribution of energy eigenstates.
This is not an upper bound neither a lower bound, but we
heuristically expect it to be “close” to the actual value of
R(A, Ĥ ) in most cases. Conclusions are drawn in Sec. X. The
paper also contains a couple of technical Appendixes.

II. NOTATION

Consider a quantum system described by a d-dimensional
Hilbert space H, whose Hamiltonian

Ĥ :=
M−1∑
i=0

εi�̂i (1)

is characterized by M (�d) distinct eigenvalues
{ε0, ε1, . . . , εM−1} of degeneracies {d0, d1, . . . , dM−1},∑M−1

i=1 di = d . In the above expression the operators
�̂0, �̂1, . . . , �̂M−1 form a complete set of orthonormal
projectors (

∑M−1
i=0 �̂i = 1̂, �̂i�̂i′ = δi,i′�̂i) associated

with the energy eigenspaces H0,H1, . . . ,HM−1 of Ĥ

(H = ⊕M−1
i=0 Hi, dimHi = di). Without loss of generality we

set equal to zero the ground energy of the model and assume
the following ordering for the spectral elements of Ĥ :

ε0 = 0,

ε j < ε j+1 ∀ j ∈ {0, . . . , M − 2}.
We also define the linear, completely positive trace preserving
(LCPTP) channel

�(· · · ) :=
M−1∑
i=0

�̂i · · · �̂i, (2)

which induces full decoherence with respect to the energy
eigenspaces of the system.

Given hence ρ̂ an arbitrary quantum state of the system, we
define

P(i|ρ̂) := Tr[�̂iρ̂], (3)

as the population it assigns to the ith energy eigenspace Hi

and call nonzero energy level set S[ρ̂] the set of energy levels
which have a nonzero population, i.e.,

S[ρ̂] := {i : P(i|ρ̂) > 0}. (4)

The energy diagonal counterpart of ρ̂ obtained by the applica-
tion of the transformation �, can be expressed as

�(ρ̂ ) :=
∑

i∈S[ρ̂]

�̂iρ̂�̂i =
∑

i∈S[ρ̂]

P(i|ρ̂)ρ̂i, (5)

where for i ∈ S[ρ̂],

ρ̂i := �̂iρ̂�̂i/P(i|ρ̂) =
ri−1∑
k=0

pi,k|εi,k〉〈εi,k| (6)

is the projected component of ρ̂ on Hi. In this expression
ri represents the rank of the matrix ρ̂i, pi,k > 0 its nonzero
eigenvalues, and |εi,k〉 ∈ Hi the corresponding eigenvector.
Notice that by construction one has

P(i|ρ̂) = P(i|�(ρ̂ )), S[ρ̂] = S[�(ρ̂)], (7)

and that the support space of �(ρ̂)

Supp[�(ρ̂ )] := {|ψ〉 : �(ρ̂ )|ψ〉 
= 0}, (8)

is a proper subset of the direct sum of the energy eigenspaces
of the model over the elements of S[ρ̂]. More precisely we
can write

Supp[�(ρ̂ )] =
⊕

i∈S[ρ̂]

Hi[�(ρ̂ )], (9)

where for i ∈ S[ρ̂],

Hi[�(ρ̂ )] := Span{|εi,k〉; k = 1, . . . , ri} ⊆ Hi, (10)

represents the ri-dimensional subset of Hi where �(ρ̂) has no
zero population [see Eq. (6)]. In case Ĥ is not degenerate (i.e.,
when M = d) then the inclusion in the last (9) can be replaced
by an identity implying that Supp[�(ρ̂)] is fully characterized
by the nonempty population index subset of ρ̂. For degener-
ate Hamiltonians such correspondence breaks since, while it
still true that states ρ̂ and �̂ whose diagonal ensembles have
the same support share the same nonempty population index
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subset, the opposite implication can be false [i.e., we can have
S[ρ̂] = S[�̂] but Supp[�(ρ̂)] 
= Supp[�(�̂)]].

As will be clear in the next sections, the support space (9)
of the diagonal ensemble of a state plays a central role in our
analysis. For this reason given A a (nonempty) linear subset
of H, we find it convenient to define SA the set of density
matrices ρ̂ whose energy diagonal ensemble has support that
corresponds to such space, i.e.,

SA := {ρ̂ : Supp[�(ρ̂ )] = A}. (11)

By a closed inspection of Eq. (9) it turns out that only non-
trivial (i.e., not empty) examples of SA are those where A is
a direct sum of a collection {A0,A1, . . . ,AM−1} of (possibly
empty) linear subsets of the energy eigenspaces of the system
Hamiltonian Ĥ , i.e.,

A :=
M−1⊕
i=0

Ai, Ai ⊆ Hi. (12)

Notice also that while in general the elements of SA could
have different spectral decompositions, from Eq. (9) it follows
that given

S := {i : dim[Ai] > 0}, (13)

the set which identifies the nonempty elements of
{A0,A1, . . . ,AM−1}, we must have

∀ ρ̂ ∈ SA �⇒
{
S[ρ̂] = S,

Hi[�(ρ̂ )] = Ai ∀ i ∈ S.
(14)

Special instances of the sums (12) are provided by the Hilbert
space itself H :=⊕M−1

i=0 Hi (in this case SH includes all the
states of the model) and by the single-state elements A[1, j] :=
⊕M−1

i=1 A[1, j]
i characterized by the fact that their only nontrivial

term is the jth one which corresponds to a single non-null
vector of the jth energy eigenspace H j , so that the associated
nonempty elements set is S = { j} and

dim
[
A[1, j]

i

] = δ j,i. (15)

Important examples of density matrices which can be found in
SA are represented by the Gibbs-like states ω̂A(β ) obtained
by taking a thermal state of inverse temperature β � 0 and
filtering out the energy levels which are not in A, i.e.,

ω̂A(β ) := �̂Ae−βĤ

ZA(β )
=
∑

i∈S �̂Ai e
−βεi

ZA(β )
, (16)

with �̂Ai being the projector on the ith block Ai of A and
with

ZA(β ) := Tr[�̂Ae−βĤ ] =
∑
i∈S

e−βεi Tr[�̂Ai ], (17)

where �̂A =∑i∈S �̂Ai is the projector on A. We stress that,
by construction, the states ω̂A(β ) are invariant under �, i.e.,

ω̂A(β ) = �(ω̂A(β )). (18)

Notice also that in the high-temperature limit β = 0, Eq. (16)
reduces to the fully mixed state on A, i.e.,

ω̂A(0) := �̂A

Tr[�̂A]
, (19)

which is still a proper element of SA. On the contrary, in the
zero-temperature limit β → ∞ of ω̂A(β ), Eq. (16) converges
to a state which typically is not in SA. Indeed the latter
corresponds to the density matrix

lim
β→∞

ω̂A(β ) = ω̂Amin (0) = �̂Amin

Tr[�̂Amin ]
, (20)

which has support on the restricted subspace Amin := Amini∈S
identified by the nonempty block term of A that has the
smallest energy eigenvalue, i.e.,

εmin(A) := min
i∈S

εi = εmini∈S . (21)

We finally introduce a partial ordering on the subspaces (12):
Definition 1. Given two direct sums of linear subsets of the

energy eigenspace of the system, A :=⊕M−1
i=0 Ai and A′ :=⊕M−1

i=0 A′
i, we say that the former is not dominated by the

latter (in formulas A�A′) if there exists a energy-preserving
unitary mapping V̂ that maps each component of A into the
corresponding element of A′, i.e.,

A � A′ ⇐⇒ ∃V̂ unitary, [Ĥ , V̂ ] = 0 s.t.

V [Ai] ⊆ A′
i, ∀i ∈ {0, . . . , M − 1}, (22)

with V [Ai] representing the image of Ai under the action of
V̂ . In case the relation can also be inverted (i.e., if we also
have A′�A) we say that the two sums are equivalent (in
formula A≈A′). Clearly a necessary and sufficient condition
to have that A is not dominated by A′ is that the sub-blocks
of the former have dimensions which are not larger than the
corresponding ones of the latter,

A�A′ ⇐⇒ dim[Ai] � dim[A′
i] ∀ i ∈ {0, . . . , M − 1}. (23)

Similarly a necessary and sufficient condition to ensure that A
and A′ are equivalent is instead given by

A∼A′ ⇐⇒ dim[Ai] = dim[A′
i] ∀ i ∈ {0, . . . , M − 1}. (24)

Observe also that for all not trivial A we can write

A[1, j]�A�Ā�H ∀ j ∈ S, (25)

where S is the nonempty elements set of A, A[1, j] is the single
state subset defined in Eq. (15), and finally Ā is the direct sum
obtained by replacing all nonempty elements of A with the
associated energy eigenspaces of Ĥ , i.e.,

Ā :=
M−1⊕
i=1

Āi, Āi :=
{
Hi ∀ i ∈ S,

∅ ∀ i /∈ S.
(26)

III. DETERMINISTIC WORK EXTRACTION

In the two-point measurement (TPM) formalism [14–17]
the work we can extract from the state ρ̂ of the system through
the application of a unitary transformation Û is determined
through the following process: At time tin, before the ap-
plication of Û , a projective measurement is performed with
respect to to the energy projectors {�̂0, �̂1, . . . }: following
the formalism introduced in the previous section, for each
i ∈ S[ρ̂] there is a nonzero probability P(i|ρ̂) that the system
will be projected into the density matrix ρ̂i of Eq. (6), hence
setting the input energy of the model at Ein = εi. The system
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is hence evolved through Û and a second energy measurement
is performed at time tout obtaining the energy value Eout = ε j

with probability

PÛ ( j|ρ̂i ) := Tr[�̂ jÛ ρ̂iÛ
†]

=
ri∑

k=1

p(k)
i 〈εi,k|Û †�̂ jÛ |εi,k〉. (27)

The extracted work is described by the quantity

w = Ein − Eout, (28)

which happens to be a random variable that can take the
discrete values (εi − ε j ) with probabilities

Pρ̂;Û ( j, i) := P(i|ρ̂)PÛ ( j|ρ̂i ) = Tr[�̂ jÛ�̂iρ̂�̂iÛ
†], (29)

the corresponding distribution being formally described by the
formula

P(Ĥ )
ρ̂;Û

(w) :=
∑

j,i

Pρ̂;Û ( j, i)δ(w − (εi − ε j )). (30)

It is important to stress that in the TPM protocol the unitary is
fixed a priori and cannot be modified after the acquisition of
the first measurement outcome. It is clear that if we do allow
for the possibility of adapting the unitary transformation to the
measurement outcome we can recover much more energy than
we get in the TPM protocol (indeed, at least for models where
the Hamiltonian in not degenerate, we can recover the full
amount of the energy stored into the system by simply using
unitaries Ûj which maps |ε j〉 into the ground state). However
in this way we are basically pumping entropy output of the
system, which is equivalent to put the system in thermal con-
tact with a zero-temperature bath. Notice also that replacing ρ̂

with its energy diagonal part (5) in the left-hand side (l.h.s.)
of Eq. (29) the quantity does not change [i.e., Pρ̂;Û ( j, i) =
P�(ρ̂ );Û ( j, i)]: this implies that for what it concerns the work
we can extract from the system via TPM protocols, the states
ρ̂ and �(ρ̂) exhibit the same statistical properties, i.e.,

P(Ĥ )
ρ̂;Û

(w) = P(Ĥ )
�(ρ̂);Û

(w). (31)

Our focus is on the first moment of this distribution, i.e., the
quantity

〈WÛ (ρ̂; Ĥ )〉 :=
∫

dwP(Ĥ )
ρ̂;Û

(w)w =
∑

j,i

Pρ̂;Û ( j, i)(εi − ε j )

= Tr[Ĥ ρ̂] − Tr[ĤÛ�(ρ̂ )Û †]

= Tr[Ĥ�(ρ̂)] − Tr[ĤÛ�(ρ̂ )Û †], (32)

which represents the mean work we can extract from ρ̂ [i.e.,
�(ρ̂)] when employing the unitary Û . Its maximum value
corresponds to the ergotropy E (�(ρ̂); Ĥ ) of �(ρ̂) [22,23], i.e.,

〈Wmax(ρ̂; Ĥ )〉 := max
Û

〈WÛ (ρ̂; Ĥ )〉 = E (�(ρ̂); Ĥ ), (33)

with the optimal Û which saturates the maximum being the
transformation Û� which transforms �(ρ̂) into its passive
counterpart �(ρ̂)↓ [24,25] [by the same token the minimum
of 〈WÛ (ρ̂; Ĥ )〉 corresponds to the anti-ergotropy EA(�(ρ̂); Ĥ )
of the diagonal ensemble state]. Notice that since the passive

state energy is a Schur-concave functional [37] it follows that
E (�(ρ̂); Ĥ ) is always not larger than E (ρ̂; Ĥ ), so that

〈WÛ (ρ̂; Ĥ )〉 � E (�(ρ̂); Ĥ ) � E (ρ̂; Ĥ ) ∀ Û , (34)

meaning that the TPM process is less efficient than the er-
gotropy protocol in extracting energy from the state. We also
consider the variance of the extracted work, i.e., the quantity

〈�2WÛ (ρ̂; Ĥ )〉 =
∫

dwP(Ĥ )
ρ̂;Û

(w)[w − 〈WÛ (ρ̂; Ĥ )〉]2

=
∑

j,i

Pρ̂;Û ( j, i)[(εi − ε j ) − 〈WÛ (ρ̂; Ĥ )〉]2

= 〈W 2
Û (ρ̂; Ĥ )〉 − 〈WÛ (ρ̂; Ĥ )〉2. (35)

First notice that for each system there exists always at least
a choice of Û such that 〈�2WÛ (ρ̂; Ĥ )〉 = 0 (for instance,
Û = Î). If the associated mean value W = 〈WÛ (ρ̂; Ĥ )〉 is non-
negative (of course this not the case for Û = Î), we say that
for such unitaries the TPM protocol allows one to extract the
work W deterministically, i.e., with zero fluctuations:

Definition 2. A work value W � 0 is said to be determinis-
tically extractable from the state ρ̂ of the system if there exists
a Û unitary such that

P(Ĥ )
ρ̂;Û

(w) = δ(w − W ), (36)

or, equivalently, if and only if

〈WÛ (ρ̂; Ĥ )〉 = W,

〈�2WÛ (ρ̂; Ĥ )〉 = 0. (37)

By looking carefully at the definitions we have introduced so
far, it is clear the only possible values W that fulfill Eq. (37)
are those associated with the non-negative energy gaps of
the spectrum of Ĥ . More specifically we can claim that a
certain value of work W � 0 can be extracted deterministi-
cally from ρ̂ if and only if there exists a mapping μ : S[ρ̂] �→
{0, 1, . . . , M − 1} and a unitary evolution Û such that

∀ i ∈ S[ρ̂]

{
εi − εμ(i) = W,

PÛ (μ(i)|ρ̂i ) = 1.
(38)

Furthermore invoking Eq. (27) we can recast the second con-
dition in Eq. (38) as

ri∑
k=1

p(k)
i 〈εi,k|Û †�̂μ(i)Û |εi,k〉 = 1 (39)

⇐⇒ 〈εi,k|Û †�̂μ(i)Û |εi,k〉 = 1 ∀ k ∈ {1, . . . , ri},
where the second line follows from the fact that the proba-
bilities p(k)

i are all strictly positive. Observe that the resulting
expression is equivalent to say that the energy subspace Hμ(i)

must be sufficiently large to contain the full image of the
set Hi[�(ρ̂)] defined in Eq. (10). We can hence equivalently
write Eq. (38) by saying that W � 0 can be extracted de-
terministically from ρ̂ if and only if there exists a mapping
μ : S[ρ̂] �→ {0, 1, . . . , M − 1} and a unitary evolution Û such
that

∀ i ∈ S[ρ̂]

{
εi − εμ(i) = W,

U [Hi[�(ρ̂ )]] = Hμ(i),
(40)
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with U [Hi[�(ρ̂)]] being the image of Hi[�(ρ̂)] under the ac-
tion of Û . The above expression can now be used to establish
the following general rules:

Lemma 1. Let Û be a unitary transformation which allows
for the deterministic extraction of a work value W � 0 from
the state ρ̂. Then such unitary will lead the same outcome
when applied to any other density matrix �̂ whose diagonal
ensemble �(�̂) has the same support of �(ρ̂), i.e.,

Supp[�(�̂)] = Supp[�(ρ̂)] �⇒
{

〈WÛ (�̂; Ĥ )〉 = W,

〈�2WÛ (�̂; Ĥ )〉 = 0.

(41)

Proof. Since the diagonal ensembles �(�̂) and �(ρ̂) have
the same support it follows that S[�̂] = S[ρ̂] and Hi[�(�̂)] =
Hi[�(ρ̂)] for all i ∈ S[ρ̂]. Accordingly, if the condition (40)
applies to ρ̂ then it also applies to �̂. �

It is worth stressing that Lemma 1 does not requires �(ρ̂)
and �(�̂) to have the same spectrum, it only matters that they
have the same support.

Lemma 2. Let ρ̂ and ρ̂ ′ be two density matrices such that
the support of �(ρ̂ ′) can be mapped into the support of �(ρ̂)
via an energy preserving unitary operation. Then for each
Û unitary transformation which allows for the deterministic
extraction of a work value W � 0 from the state ρ̂, there exists
a new unitary Û ′ which allows us to do the same from ρ̂ ′.

Proof. Let V̂ be the energy preserving unitary transforma-
tion that sends Supp[�(ρ̂ ′)] into Supp[�(ρ̂)]. Recalling (9)
this implies that for all i ∈ S[ρ̂ ′] we must have

V [Hi[�(ρ̂ ′)]] = Hi[�(ρ̂)], (42)

where as usual we used V [Hi[�(ρ̂ ′)]] to indicate the image of
Hi[�(ρ̂ ′)] under V̂ . The thesis hence follows by observing
that if Û fulfils the deterministic work extraction condi-
tion (40) for ρ̂, then the unitary Û ′ := ÛV̂ does the same
for ρ̂ ′. �

In the remaining of the present paper we focus on the
characterization of the maximum work that can be determin-
istically extracted from a given input state:

Definition 3. The maximum deterministic extractable work
(MDEW) of a state ρ̂ is the maximum value of the values W
which fulfill the condition (37), i.e., the quantity

W (det)
max (ρ̂; Ĥ ) := max

Û
{〈WÛ (ρ̂; Ĥ )〉 : 〈�2WÛ (ρ̂; Ĥ )〉 = 0}.

(43)

Clearly the configurations for which one expects MDEW
to be strictly positive correspond to rare events: this is a con-
sequence of the fact that even the smallest perturbation in the
spectrum of Ĥ or in the support of ρ̂ will tend to assign a posi-
tive value to the TPM work variance functional 〈�2WÛ (ρ̂; Ĥ )〉
[for instance in the case of the example of Eq. (46) discussed
below, it is sufficient to take ε1 = E , ε2 = 2E (1 + δ) with
δ > 0, or to add a small but nonzero population to the ground
state of ρ̂, to get W (det)

max (ρ̂; Ĥ ) = 0]. Nonetheless the study of
W (det)

max (ρ̂; Ĥ ) can give us some hint on the efficiency of work
extraction procedures in many cases of practical interests
where geometrical or symmetry properties bound the system
to assume assigned spectral characteristic.

IV. PRELIMINARY OBSERVATIONS

It also goes without mentioning that W (det)
max (ρ̂; Ĥ ) coincides

with W (det)
max (�(ρ̂); Ĥ ) and that, thanks to (33), it is upper

bounded by E (�(ρ̂); Ĥ ), i.e.,

W (det)
max (ρ̂; Ĥ ) = W (det)

max (�(ρ̂); Ĥ ) � E (�(ρ̂); Ĥ ). (44)

As a direct consequence of this fact, it follows that if �(ρ̂) is a
passive state, then 〈Wmax(ρ̂; Ĥ )〉 = 0 with the optimal unitary
Û� being the identity operator; accordingly we have that the
maximum of the deterministic work of these states is simply
zero, i.e.,

W (det)
max (ρ̂; Ĥ ) = 0 ∀ �(ρ̂) passive. (45)

Another case in which the MDEW can be easily computed is
when �(ρ̂) is pure, i.e., when such a state, and hence ρ̂, corre-
sponds to the an eigenvector of Ĥ : under this circumstance the
maximum deterministic work we can get corresponds to the
ergotropy which incidentally corresponds to the mean energy
of the state, i.e.,

W (det)
max (ρ̂; Ĥ ) = Tr[Ĥ ρ̂] ∀ �(ρ̂) pure. (46)

A less trivial example is provided by the following configura-
tion: let Ĥ = ε2|ε2〉〈ε2| + ε1|ε1〉〈ε1| be a nondegenerate, three
level Hamiltonian with uniforms energy gaps, i.e., ε1 = E ,
ε2 = 2E . For any rank-2 density matrix �(ρ̂) with support
space Span{|ε1〉, |ε2〉} we can then write

W (det)
max (ρ̂; Ĥ ) = E . (47)

The same holds if the matrix has rank-1 with nonzero popu-
lation on |ε1〉, while if it has rank-1 but nonzero population
on |ε2〉 we get W (det)

max (ρ̂; Ĥ ) = 2E . To see this observe using
the unitary Û := |ε1〉〈ε2| + |ε0〉〈ε1| + |ε2〉〈ε0| we can induce
the transitions |ε1〉 �→ |ε0〉 and |ε2〉 �→ |ε1〉 which both yield
exactly the work value �. To get more than this one would
need necessarily to couple |ε2〉 with |ε0〉: such amount of
work however cannot be matched by any transitions that
involves |ε1〉 as input state. As a result these type of opera-
tions will involve random outcomes leading to nonzero values
of 〈�2WÛ (ρ̂; Ĥ )〉. Notice finally that, as a consequence of
Lemma 1, (46) holds true irrespectively from the specific
values of the populations of the level |ε2〉 and |ε1〉. This is
a general rule that, recalling the definitions of A and SA
introduced in Sec. II, can be summarized as follows:

Corollary 1. All inputs states ρ̂ of the set SA share the
same MDEW value, i.e.,

W (det)
max (ρ̂; Ĥ ) = W (det)

max (A; Ĥ ) ∀ ρ̂ ∈ SA, (48)

where recalling that ω̂A(0) of Eq. (19) belongs to SA we can
identify the constant W (det)

max (A; Ĥ ) as

W (det)
max (A; Ĥ ) := W (det)

max (ω̂A(0); Ĥ ). (49)

Furthermore, irrespectively from the selected input state, such
optimal value can be obtained using the same optimal unitary
transformation Û�, i.e.,

〈WÛ�
(ρ̂; Ĥ )〉 = W (det)

max (A; Ĥ ),
〈�2WÛ�

(ρ̂; Ĥ )〉 = 0,
∀ ρ̂ ∈ SA. (50)

Proof. Use Lemma 1 and the fact that the elements of SA
share the same support space A. �

012213-5



RAFFAELE SALVIA AND VITTORIO GIOVANNETTI PHYSICAL REVIEW A 110, 012213 (2024)

In a similar way follows Corollary 2:
Corollary 2. Let A and A′ be two equivalent (nontriv-

ial) direct sums of linear subset of the energy eigenspaces
of the system. Then the MDEW values W (det)

max (A; Ĥ ) and
W (det)

max (A′; Ĥ ) associated with the states of the sets SA and
SA′ coincide, i.e.,

A∼A′ �⇒ W (det)
max (A; Ĥ ) = W (det)

max (A′; Ĥ ). (51)

Proof. Use Lemma 2 and the fact that, according to Defi-
nition 1, the support spaces A and A′ of the density matrices
of SA and SA′ are connected by energy preserving unitary
transformations that maps the first into the second and vice
versa. �

The above results imply that, a part from the energy
eigenvalues of Ĥ , the MDEW value W (det)

max (A; Ĥ ) can only
depend on the dimensions of the sub-blocks of A. Accord-
ingly we can always express W (det)

max (A; Ĥ ) as a function
W (�r(A), �ε ) of the vectors �ε := (ε0, . . . , εM−1) and �r(A) :=
(dim[A0], . . . , dim[AM−1]). As a special example note that in
the case of the single-state elements (15) from Eq. (46) we get

W (det)
max (A[1, j]; Ĥ ) = W (�r[A[1, j]], �ε) = �r[A[1, j]] · �ε = εi,

(52)
while, recalling that all passive states have maximum rank and
hence belong to SH we can rewrite (45) as

W (�r(H), �ε ) = 0. (53)

We next observe that the partial ordering (22) introduced in
Definition 1 can be used to rank the values of the function
W (det)

max (A; Ĥ ):
Lemma 3. Let A and A′ be two (nontrivial) direct sums of

linear subset of the energy eigenspaces of the system. If A is
not dominated by A′ then the MDEW value W (det)

max (A; Ĥ ) is
larger than or equal to W (det)

max (A′; Ĥ ), i.e.,

A�A′ �⇒ W (det)
max (A; Ĥ ) � W (det)

max (A′; Ĥ ). (54)

Proof. According to (22) there exists an energy-preserving
unitary transformation V̂ that maps the ith subspace of A
into the corresponding one of A′. Let now Û ′

� be the optimal
unitary map which applied to a generic states of SA′ enable us
to extract the work value W (det)

max (A′; Ĥ ) from the system. The
thesis then follows by observing that the unitary Û ′

�V̂ applied
to the elements of SA enable the deterministic extraction of
the work level W (det)

max (A′; Ĥ ), which hence, by construction is
a lower bound of the MDEW we can get from SA. �

In particular from (25) we get the following bounds

εi � W (det)
max (A; Ĥ ) � W (det)

max (Ā; Ĥ ) � 0 ∀ i ∈ S, (55)

where in writing the leftmost and rightmost terms we used the
identities (52) and (53) respectively.

The dependence of W (det)
max (A; Ĥ ) with respect to the spec-

trum of Ĥ for fixed choices of A is slightly more involved and,
as will be discussed in Sec. VI, can lead to unexpected results.

V. SUPERADDITIVITY PROPERTIES AND THE
ASYMPTOTIC MAXIMUM DETERMINISTIC

EXTRACTABLE WORK RATIO

Consider next the case where we have n copies of the
input state ρ̂ for a system where the global Hamiltonian is

composed by a sum Ĥ (n) :=∑n
k=1 Ĥk of homogeneous local

terms (Ĥk being the local Hamiltonian of the kth copy). We
are interested in determining how the n-copies MDEW, i.e.,
the quantity W (det)

max (ρ̂⊗n; Ĥ (n) ), scales with n. Let us start with
some preliminary observations. First of all, notice that, due
to the absence of interaction among the various copies of the
system, the n-uses energy decoherence LCPTP map of the
model correspond to the n copies of the map � of Eq. (2),
i.e., �(n) = �⊗n. From this it hence follows that if A is the
support space of �(ρ̂) then A⊗n is the support of �(n)(ρ̂⊗n) =
�(ρ̂)⊗n, i.e.,

ρ̂ ∈ SA �⇒ ρ̂⊗n ∈ SA⊗n . (56)

From Eqs. (48) and (49) we can thus conclude that

W (det)
max (ρ̂⊗n; Ĥ (n) ) = W (det)

max (A⊗n; Ĥ (n) ) ∀ ρ̂ ∈ SA, (57)

with

W (det)
max (A⊗n; Ĥ (n) ) = W (det)

max (ω̂A⊗n (0); Ĥ (n) )

= W (det)
max

(
ω̂⊗n
A (0); Ĥ (n)

)
, (58)

where in the second line we used the identity ω̂A⊗n (0) =
ω̂⊗n
A (0). We can then arrive to the following inequality:

W (det)
max (A⊗n; Ĥ (n) ) � nW (det)

max (A; Ĥ ), (59)

by observing that if there exists a unitary procedure that
extracts deterministic work W (det)

max (A; Ĥ ) from a single copy
of a state [say ω̂A(0)] we can simply reiterate it to extract n
times such quantity from n copy of the same density matrix
[i.e., from ω̂⊗n

A (0)]. On the contrary, there are examples which
show that the gap in Eq. (59) is nonzero. For instance adding
an extra energy level | − 1〉 with energy −δ to the example
of Eq. (46), it turns out that as long as δ is positive and 
= �,
from ρ̂⊗2 we can extract energy 2� + δ > 2� which is larger
than twice the max value we can get from a single copy of ρ̂.
Using the same argument we can also conclude that for all n,
k integers the following superadditivity rule holds:

W (det)
max (A⊗(n+k); Ĥ (n+k) ) �W (det)

max (A⊗n; Ĥ (n) )

+ W (det)
max (A⊗k; Ĥ (k) ). (60)

A slightly less trivial observation is that there exist models for
which, even though W (det)

max (A; Ĥ ) = 0, for sufficiently large n
one has W (det)

max (A⊗n; Ĥ (n) ) > 0. From now on we call this the
strong superadditivity property of the maximum determinis-
tic TPM work. Motivated by this observation we define the
asymptotic MDEW ratio as

R(A; Ĥ ) := lim sup
n→∞

Rn(A; Ĥ ), (61)

with

Rn(A; Ĥ ) := W (det)
max (A⊗n; Ĥ (n) )

n

= W (det)
max (A⊗n; Ĥ (n)/n). (62)

From Eq. (60) it follows that Rn(A; Ĥ ) while not necessarily
monotonically increasing is weakly increasing [38], meaning
that, even if oscillating it still admits a proper → ∞ limit, i.e.,

lim
n→∞Rn(A; Ĥ ) = lim sup

n→∞
Rn(A; Ĥ )

= R(A; Ĥ ) := max
n

Rn(A; Ĥ ). (63)
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Upper bounds

A natural upper bound for R(A; Ĥ ) [and hence for all
Rn(A; Ĥ )] is provided by the minimal energy eigenvalue
εmin(A) of Eq. (21) associated with A, i.e.,

R(A; Ĥ ) � εmin(A). (64)

This formally follows from Eq. (55) by taking the minimum
with respect to all possible choices of εi. More intuitively the
bound (64) can be explained by that fact that (i) for all n,
�̂⊗n

A has a nonzero overlap with the n-fold copy of such level,
and (ii) we cannot extract more than nεmin(A) energy from
such configuration. Equation (61) establishes that the results
of Ref. [31] cannot be used to provide a full characterization of
R(A; Ĥ ). Notice also that, as a consequence of (64) it follows
that if S[A] contains the ground-state energy level then the
associated asymptotic ratio is zero, i.e.,

0 ∈ S �⇒ R(A; Ĥ ) = Rn(A; Ĥ ) = 0. (65)

An improvement with respect to (64) can be obtained in-
voking (44), which for ρ̂ ∈ SA allows us to write

Rn(A; Ĥ ) = W (det)
max (ρ̂⊗n; Ĥ (n) )

n
� E (�(ρ̂)⊗n; Ĥ (n) )

n

� lim sup
n→∞

E (�(ρ̂)⊗n; Ĥ (n) )

n
=: Etot (�(ρ̂); Ĥ ),

(66)

where Etot(�(ρ̂); Ĥ ) is the total ergotropy of the state �(ρ̂)
[22,23]. Taking the minimum of the last term over all possible
choices of ρ̂, and taking the n → ∞ limit, finally allows us to
write

Rn(A; Ĥ ) � min
ρ̂∈SA

Etot(�(ρ̂ ); Ĥ ). (67)

Recall next that the Gibbs-like states (16) are special instance
of elements of SA: therefore a simplified yet in principle less
performant version of (67) is given by

R(A; Ĥ ) � min
β>0

Etot(ω̂A(β ); Ĥ ). (68)

Written in this form it is now easy to verify that (68) [and
hence (67)] implies (64): indeed taking the limit for β → ∞
and invoking Eq. (20) we can claim that R(A; Ĥ ) is upper
bounded by the total ergotropy of ω̂Amin (0) which in turns
cannot be larger than mean energy εmin(A) of such a state.
Most importantly, as shown in Appendix A, at least in the
case in which Ĥ has no degenerate spectrum on A (i.e., when
for all i ∈ S the projectors �̂Ai are rank-one operators), it is
possible to show that the right-hand side (r.h.s.) of (67) and
(68) coincide. Furthermore, in Appendix B we show that the
value of β that realizes the minimum (68) satisfies the special
property

S(ω̂A(β )) = S(τ̂β ), τ̂β := e−βĤ

Tr[e−βĤ ]
, (69)

where S(· · · ) := Tr[(· · · ) ln(· · · )] is the von Neumann en-
tropy functional and τ̂β is the thermal Gibbs state of the model
with inverse temperature β. A comparison between Rn(A; Ĥ )
and the upper bound (67) is presented in Fig. 1 for the family
of three-level systems (which is unique up to rescaling), and

FIG. 1. Values of Rn(A; Ĥ )/εd−1 for a three-level Hamiltonian
Ĥ = ε1 |1〉 〈1| + ε2 |2〉 〈2|, for A = Span{|1〉 , |2〉} as a function of
the (rational) value of the energy ratio ε2/ε1 > 1 (shown every 0.1).
Fixing n = 100, the finite-size rates Rn(A; Ĥ ) are compared with
the upper bound (67) and with the heuristic estimation (163) based
on the central limit theorem presented in Sec. IX.

in Figs. 2 and 3 for two distinct families of four-level systems.
We remark that the rate of convergence of Rn(A; Ĥ ) to its
asymptotic value R(A; Ĥ ) [which we conjecture to coincide
with (67)] does depend on the complexity of the fraction, with
a simple fraction converging more quickly.

VI. EXAMPLES

In this section we present some simple (yet nontrivial)
examples: these configurations serve as an ideal setting to
explore the superadditivity effect outlined in Sec. V, while
also facilitating the development of a deeper physical intuition
for the problem at hand.

FIG. 2. Values of Rn(A; Ĥ )/εd−1 for a four-level Hamiltonian
Ĥ = ε1 |1〉 〈1| + 3

2 ε1 |2〉 〈2| + ε ′ |3〉 〈3|, for A = Span{|1〉 , |2〉 , |3〉}
as a function of the rational value of the energy ratio ε′/ε1 > 1
(shown every 0.1). Fixing n = 100, the finite-size rates Rn(A; Ĥ )
are compared with the upper bound (67) and with the heuristic esti-
mation (163) based on the central limit theorem presented in Sec. IX.
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FIG. 3. Values of Rn(A; Ĥ )/εd−1 for a four-level Hamiltonian
Ĥ = ε1 |1〉 〈1| + ε2 |2〉 〈2|, for A = Span{|1〉 , |2〉} as a function of
the (rational) value of the second energy level ε2 > 1 (shown every
0.1). Fixing n = 100, the finite-size rates Rn(A; Ĥ ) are compared
with the upper bound (67) and with the heuristic estimation (163)
based on the central limit theorem presented in Sec. IX.

A. Nondegenerate three-level systems

The simplest nontrivial model we can think of is a nonde-
generate three-level system Hamiltonian

Ĥ =
2∑

i=0

εi|εi〉〈εi|, (70)

with input states ρ̂ ∈ SA which assign nonzero population to
just the two top-most energy levels, i.e.,

A = Span{|ε1〉, |ε2〉} = H1 ⊕ H2, S = {1, 2}, (71)

so that

ω̂A(0) = 1
2 (|ε1〉〈ε1| + |ε2〉〈ε2|). (72)

A first example of strong-superadditivity of the MDEW is
obtained by setting

ε2 = 3E , ε1 = 2E , ε0 = 0, (73)

E > 0 being a fixed constant [see Fig. 4(a)]. It is easy to check
that under this condition the maximum deterministic work we
can get from a single copy of ω̂A(0) is zero, i.e.,

W (det)
max (ω̂A(0); Ĥ ) = 0 �⇒ R1(A; Ĥ ) = 0. (74)

Indeed, the only value of W which fulfils (40) for i = 1 is 2E ,
which is not acceptable for i = 2. Nonetheless it turns out that
already for n = 2 one has

W (det)
max

(
ω⊗2
A (0); Ĥ (2)) = 2E �⇒ R2(A, Ĥ ) = E . (75)

This result can be obtained employing a nonlocal unitary Û (2)

that induces the following transitions on the populated energy

(c) (d)

(a) (b)

FIG. 4. Schematic representation of the examples analyzed in
Sec. VI. Panels (a) and (b) describe the nondegenerate three-level
models of Eqs. (73) and (78). Panel (c) describes two-level model
of Eqs. (86) with nontrivial degeneracy associated with ε1. Finally,
panel (d) describe a three-level model with nontrivial degeneracies
for both ε1 and ε2, in which however the highest one is not occupied.
In all the examples the green band indicate that the associated level
is initially occupied by the input state.

levels,

|22〉 −→ |11〉 (W = E + E = 2E ),

|21〉 −→ |20〉 (W = 0 + 2E = 2E ),

|12〉 −→ |02〉 (W = 2E + 0 = 2E ),

|11〉 −→ |10〉 (W = 0 + 2E = 2E ), (76)

where hereafter we use the shorthand notation |i j〉 to represent
the state |εi〉 ⊗ |ε j〉. To see that this is the optimal solution
for n = 2 notice that according (40), the only two admissible
values of W associated with the energy level |11〉, are 2E [at-
tained in Eq. (76)] and 4E (reachable, e.g., through a unitary
that maps |11〉 into |00〉). The last possibility however is not
acceptable since there are no unitary transitions of (say) |21〉
that could lead to such energy gain [indeed for such level the
only admissible values of W compatible with (40) are E , 2E ,
3E , and 5E ]. In a similar fashion one can show that using the
three-body unitary U (3) that induces the mapping

|222〉 −→ |201〉 (W = 0 + 3E + E = 4E ),

|221〉 −→ |101〉 (W = E + 3E + 0 = 4E ),

|212〉 −→ |011〉 (W = 3E + 0 + E = 4E ),

|122〉 −→ |110〉 (W = 0 + E + 3E = 4E ),

|211〉 −→ |200〉 (W = 0 + 2E + 2E = 4E ),

|121〉 −→ |020〉 (W = 2E + 0 + 2E = 4E ),

|112〉 −→ |002〉 (W = 2E + 2E + 0 = 4E ),

|111〉 −→ |100〉 (W = 0 + 2E + 2E = 4E ). (77)

We get

W (det)
max

(
ω⊗3
A (0); Ĥ (3)) = 4E �⇒ R3(A, Ĥ ) = 4E

3
,
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FIG. 5. MDEW rate Rn(A, Ĥ ) for the Hamiltonian model (73).
The red dashed line corresponds to the upper bound (68) while the
blue dashed line to the lower bound (122) introduced in Sec. VII.

which further improves the MDEW ratio reported in Eq. (75).
A numerical study of Rn(A, Ĥ ) for larger values of n is pre-
sented in Fig. 5: as evident from the plot in this case, for large
n the MDWE ratio approaches the upper bound (68).

A class of models (70) for which the asymptotic ratio
R(A, Ĥ ) can be explicitly computed is obtained by setting

ε2 = 3E , ε1 = E , ε0 = 0, (78)

see Fig. 4(b). Notice that in this case the energy gap ε1 − ε0 =
E is half of the energy gap ε2 − ε1 = 2E , while in the previous
example it was exactly the opposite. Notice also that for A as
in Eq. (71) the upper bound Eq. (64) implies

R(A⊗n; Ĥ (n) ) � R(A; Ĥ ) � E . (79)

It is easy to see that similarly to the model of Eq. (72), also in
this case we have

W (det)
max (ω̂A(0); Ĥ ) = 0. (80)

For n = 2 we get the same result, i.e.,

W (det)
max

(
ω̂⊗2
A (0); Ĥ (2)) = 0. (81)

To see this notice that here from |11〉 we have only two
possible transitions: toward |10〉 or |01〉 which corresponds to
the extraction of an energy E , or toward |00〉 with extraction
of energy 2E . From the doublet |12〉, |21〉 we have only two
possibility: either a transition toward |02〉, |20〉 with energy E ,
or a transition toward |01〉, |10〉 with energy extraction of 3E .
So we have a match for E . However there are no transitions
for |22〉 that produces such an amount of the energy (the
minimum energy we can extract from such level is indeed 2E ).
What about n = 3? In this case we observe that the bound (79)
gets saturated, i.e.,

W (det)
max

(
ω̂⊗3
A (0); Ĥ (3)) = 3E �⇒ R3(A; Ĥ ) = E , (82)

implying that E is the asymptotic MDEW ratio of the model.
The result of Eq. (82) is achieved with the choice of the unitary
Û (3) which induces the mappings

|222〉 −→ |220〉 (W = 0 + 0 + 3E = 3E ),

|221〉 −→ |021〉 (W = 3E + 0 + 0 = 3E ),
|212〉 −→ |210〉 (W = 0 + 0 + 3E = 3E ),

|122〉 −→ |102〉 (W = 0 + 3E + 0 = 3E ),

|211〉 −→ |011〉 (W = 3E + 0 + 0 = 3E ),

|121〉 −→ |101〉 (W = 0 + 3E + 0 = 3E ),

|112〉 −→ |110〉 (W = 0 + 0 + 3E = 3E ),

|111〉 −→ |000〉 (W = E + E + E = 3E ). (83)

Equation (82) can be extended to the whole class of energy
spectra of the form

ε2 = NE , ε1 = E , ε0 = 0, (84)

with N � 2 integer. To see this take n = N and use the unitary
Û (N ) which induces the mapping

|22 · · · 22〉 −→ |02 · · · 22〉 (W = NE + 0 + · · · + 0 = NE ),

|22 · · · 21〉 −→ |02 · · · 21〉 (W = NE + 0 + · · · + 0 = NE ),

permutations

|22 · · · 211〉 −→ |02 · · · 211〉(W = NE + 0 + · · · + 0 = NE ),

permutations

...

|11 · · · 11〉 −→ |00 · · · 00〉 (W = E + E + · · · + E = NE ).

In other words, Û (N ) maps |11 · · · 11〉 into the ground while when acting any other eigenvector of ω̂⊗N
A (0) replace one (and only

one) of the two terms with a zero. By construction we have that

W (det)
max

(
ω̂⊗N
A (0); Ĥ (N )) = NE �⇒ RN (A; Ĥ ) = E , (85)

which once more saturates the bound (64).
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B. Degenerate two-level models

Adding degeneracy in the model typically increases the
complexity of the MDEW analysis. Consider, for instance a
two-level model with degeneracy d1 > 1 for the excited level
ε1 and with the ground level ε0 = 0 that has no degeneracy,
i.e.,

Ĥ = ε1

d1−1∑
j=0

|ε1, j〉〈ε1, j |, (86)

with input states ρ̂ ∈ SA which assign nonzero population to
all the elements of the excited level leaving the ground level
empty, i.e.,

A = Span{|ε1,0〉, . . . , |ε1,d1−1〉} = H1, S = {1}, (87)

see Fig. 4(c). Clearly for n = 1 we have that no energy can be
extracted in the absence of fluctuations, i.e.,

W (det)
max (ω̂A(0); Ĥ ) = 0 �⇒ R1(A; Ĥ ) = 0. (88)

The situation changes however already for n = 2. Indeed in
this case, if d1 = 2 we can get a rate of ε1/2, by using the
following unitary operation:

|1010〉 −→ |010〉,
|1111〉 −→ |011〉,
|1011〉 −→ |100〉,
|1110〉 −→ |110〉, (89)

where we used |1〉, |1′〉 to represent the two orthogonal states
|ε1,0〉 and |ε1,1〉 of level 1. More generally, for d1 > 1 generic,
we can use n copies of the state we could extract the work
kε1 by promoting k excited states into the ground level if the
following conditions are satisfied

#input(n) � #output(n, k), (90)

where #input(n) and #output(n, k) are the number of orthog-
onal configurations associated, respectively, with the n copies
of the input state and they transformed versions. The first
number corresponds to the possible ways in which we form
n-long strings with d1 symbols, i.e., #input(n) = dn

1 , while the
second corresponds to the possible ways in which we can form
n-long strings using d1 symbols under the constraint that k
elements are fixed equal to zero, i.e.,

#output(n, k) =
(

n
k

)
dn−k

1 .

Accordingly, Eq. (90) reduces to the constraint

Cn,k (d1) :=
(

n
k

)
− dk

1 � 0. (91)

For each n, and k fulfilling the above expression k/n repre-
sents an achievable rate. Observe also that, for each fixed n,
the maximum k that is compatible with (91) represents the
maximum rate attainable (indeed the only way we have to get
energy from the system is to promote the excited state into the
ground). Accordingly we can write

Rn(A; Ĥ ) = ε1 max
k

{k/n : Cn,k (d1) � 0}, (92)

R(A; Ĥ ) = ε1 lim
n→∞ max

k
{k/n : Cn,k (d1) � 0}

= ε1 max
n,k

{k/n : Cn,k (d1) � 0}. (93)

Recalling that for all n and k we have(en

k

)k
�
(

n
k

)
�
(n

k

)k
. (94)

The lower bound implies that for n, k such that k/n � 1/d1

one has Cn,k (d1) � 0; the upper bound instead can be used
to verify that k/n > e/d1 instead we always get Cn,k (d1) < 0.
Replacing this in the above expression yields the following
bounds for R(A; Ĥ ):

eε1/d1 � R(A; Ĥ ) � ε1/d1. (95)

The above analysis can be easily extended to include also
those configurations where the input states of the system do
occupy all the full energy subspace H1 associated with the
energy level ε1. In fact suppose that A covers only δ1 < d1 of
the vectors of H1, e.g.,

A = Span{|ε1,0〉, . . . , |ε1,δ1−1〉} ⊂ H1, S = {1}. (96)

Under this condition we can still use Eq. (90) to identify
the work values which can be extracted deterministically: in
this case however the left-hand-side term of such inequality
assumes a smaller value [i.e., #input(n) = δn

1], and (91) gets
replaced by the weaker constraint

Cn,k (d1, δ1) :=
(

n
k

)
− dk

1

(
δ1

d1

)n

� 0. (97)

Inserting this into (92) and (93) leads to MDEW rates which
are larger than or equal to the one obtained for δ1 = d1, in
agreement with the prediction of Lemma 3. For instance for
δ1 = 1 and d1 � 2 the inequality (97) can be always fulfilled
with k = n leading to Rn(A; Ĥ ) = ε1 which corresponds to
the maximum work one can hope to extract from the system.
More generally the new values of the rates are given by

Rn(A; Ĥ ) = ε1 max
k

{k/n : Cn,k (d1, δ1) � 0}, (98)

R(A; Ĥ ) = ε1 lim
n→∞ max

k
{k/n : Cn,k (d1, δ1) � 0}

= ε1 max
n,k

{k/n : Cn,k (d1, δ1) � 0}. (99)

C. Free levels at higher energy

As established by Lemma 3 reducing the occupancies num-
bers di = dim[Ai] of the energy eigenspaces of the model
tends to improve the MDEW of the model: this is a direct con-
sequence of the fact that smaller values of the di corresponds
to weaker constraints on the associated optimization problem.
A similar effect arises when we increase the degeneracy of Ĥ
while keeping the same occupation level of A. For instance,
in the example of Sec. VI B, setting d0 = d1, for A as in
Eq. (87) will always allow for an optimal MDEW value rate
of Rn(A; Ĥ ) = ε1. Strangely enough, the same phenomenon
can also occur if we add extra levels to Ĥ with energy values
that are above the one occupied by A. To see this consider
the case of a three-level model Hamiltonian Ĥ obtained by
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adding an extra level ε2 > ε1 with degeneracy d2 � 1 to the
one presented in (86), i.e.,

Ĥ = ε1

d1−1∑
j=0

|ε1, j〉〈ε1, j | + ε2

d2−1∑
j=0

|ε2, j〉〈ε2, j |. (100)

while maintaining A as in (87), i.e., assigning zero occupation
to both the ground level and the new one and assuming full
occupancy for the intermediate level—see Fig. 4(d). Under
these assumptions one would be tempted to conclude that the
level ε2 plays no fundamental role in the energy extraction
process: indeed promoting populations from ε1 to ε2 will
cost an energy ε2 − ε1 which will contribute negatively on
the overall budget. It turns out, however, that under certain
conditions such a loss can be exploited to improve the MDEW
efficiency above the one described in Eq. (92)—which in the
context of the three-level model corresponds to the restricted
set of TPM strategies where we can only move population
from ε1 toward the ground state. To see this consider for
instance the case where we have at disposal n copies of the
input state ρ̂ ∈ SA. Given hence k� the maximum k that fulfils
(91), from (92) we know that the strategies that convert states
of ε1 into the ground can achieve at most the rate

R̃n(A; Ĥ ) = ε1k�/n (101)

(notice that typically this will be smaller than ε1 since k� <

n). Exploiting the presence of ε2 we can try to do better e.g.,
promoting k� + 1 states ε1 into the ground and one extra state
ε1 into one of the levels ε2. Indeed assuming that such unitary
exists we could gain a rate equal to

Rn = ε1(k� + 1) − (ε2 − ε1)

n
= ε1k� + (2ε1 − ε2)

n

= R̃n(A; Ĥ ) + (2ε1 − ε2)

n
, (102)

which is greater than R̃n(A; Ĥ ) whenever 2ε1 > ε2. A suffi-
cient condition for this to happens, is that there are sufficiently
many output configurations with k� + 1 ground states, n −
(k� + 2) states ε1 and one state ε2, to accommodate the input
configurations #input(n) = dn

1 of ρ̂⊗n. Considering the degen-
eracy we have assumed for Ĥ , the total number of the above
output configurations can be explicitly computed: they are

#output(n, k� + 1, 1) := n!dn−(k�+1)
1 d2

(n − k� − 2)!(k� + 1)!1!
. (103)

Accordingly the possibility of reaching the rate (102) is deter-
mined by the inequality

d2 �
(

(n − k� − 2)!(k� + 1)!

n!

)
dk�+1

1 . (104)

As an example consider for instance what happens for d1 = 2
and n = 3. Under this condition one notices that k� = 1, so
that k�/n = 1/3. On the contrary the condition (104) becomes
d2 � 4/3: therefore it is sufficient to have d2 = 2 to bring
the rate from ε1/3 to [ε1 + (2ε1 − ε2)]/3. Notice that the
presence of d2 can be exploited to lead even more drastic
improvements: for instance, for fixed n, one can try to promote
n − 1 states to the ground paying the price of having a single

state in ε2. Under this condition one could push the rate at

Rn = (n − 1)ε1 − (ε2 − ε1)

n
= ε1 − ε2

n
, (105)

which for n sufficiently large approximates the upper bound ε1

dictated by (64). The condition for this to happens is that d2 is
sufficiently large to ensure that the output configurations with
n − 1 ground states and 1 state ε2 are larger than #input(n) =
dn

1 , i.e.,

nd2 � dn
1 , �⇒ d2 � dn

1 /n. (106)

VII. RATIONAL SPECTRA

Building up from the examples analyzed in the previ-
ous section, here we focus on a special class of models for
which one can explicitly prove that the asymptotic MDEW
ratio is nonzero. Specifically we consider the case where the
nonempty elements set S of the subspace A identifies energy
levels of the Hamiltonian Ĥ that are proportional to integer
numbers up to a common multiplicative factor E :

∀ i ∈ S

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�̂Ai =∑di−1
s=0 |εi,s〉〈εi,s|, Ĥ |εi,s〉 = εi|εi,s〉,

∀ i, s, i′, s′ : 〈εi,s|εi′,s′ 〉 = δii′δss′ ,

∃ mi ∈ N : εi = Emi,

(107)
where

di := dim[Ai] � di (108)

is the dimension of the ith energy block Ai of A, and
{|εi,s〉}s=1,...,di

an orthonormal basis for such space (of course
such scenario includes as special instances the settings where
the entire spectrum of Ĥ—not just the part of it that it is
filtered out in A—fulfils the above requirement). Under the
condition (107) we can prove that, as long as the ground state
of the system is not populated, i.e., if 0 /∈ S, the asymptotic
MDEW ratio of the model is explicitly nonzero [of course if
0 ∈ S then the MDEW ratio is always null due to Eq. (65)].
To do so we provide a lower bound for R(A; Ĥ ) which is
explicitly not zero.

Assume hence S to be a collection of energy eigenvectors
indexes which does not include the ground energy level and
that contains at least two distinct elements [the case in which
S has a unique element is already solved in Eq. (46)]. Define
then MS to be the least common multiplier of the integers mi

associated with the populated part of the spectrum of Ĥ , i.e.,

MS := lcm{mi : i ∈ S}, (109)

and the quantities

Ki := MS

mi
+ di − 1, (110)

KS :=
∑
i∈S

di(Ki − 1). (111)

Notice that, by construction, the mi are all distinct integer
numbers greater than or equal to 1, so we can conclude that
MS � 2. Also it follows that the Ki are all greater than or equal
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to 1 and that

MS

mi

= MS

mj
∀ i 
= j ∈ S. (112)

Observe next that from Eq. (107) it follows that, for n integer,
the eigenvectors of ω̂⊗n

A (0) are provided by the tensor product
states of the form

|ε�i,�s〉 := |εi1,s1〉 ⊗ |εi2,s2〉 ⊗ · · · ⊗ |εin,sn〉, (113)

meaning that each eigenstate can be uniquely identify
by a couple (�i, �s ), with �i := (i1, i2, . . . , in) ∈ Sn and �s :=
(s1, s2, . . . , sn). Let V denote the set of allowed vectors:

V := {(�i, �s) : �i ∈ Sn and ∀ j, 0 � s j < di}. (114)

For each couple (�i, �s ) ∈ V , we define nj,u(�i, �s ) as the number
of copies of the terms |ε j,u〉 it contains: these quantities of

course provide a partition of n, i.e.,
∑

j∈S
∑δ j−1

u=0 n j,u(�i, �s ) =
n. Observe also the following lemma:

Lemma 4. Given n > KS, for each (�i, �s ) ∈ V there exists
j� ∈ S and u� ∈ {0, 1, . . . , δ j� − 1} such that n j�,u� (�i, �s ) �
Kj� .

Proof. Assume by contradiction that all n j,u(�i, �s ) are
smaller than the corresponding Kj . Then we can write

n =
∑
j∈S

δ j−1∑
u=0

n j,u(�i, �s) �
∑
j∈S

δ j−1∑
u=0

(Kj − 1)

=
∑
j∈S

δ j (Kj − 1) = KS, (115)

which is impossible. �
As a consequence of the above result it follows that as long

as n � KS + 1, then for each (�i, �s ) ∈ V we can assign the
quantities

j�(�i) := min{ j� ∈ S : ∃ u s.t. n j�,u(�i, �s) � Kj�},
u�(�i, �s) := min{u� : n j�(�i),u�

(�i, �s) � Kj�},
K�(�i) := Kj= j�(�i).

The set V can hence be divided into a collection of disjoint
subsets which contain vectors (�i, �s ) that have the same values
of j�(�i ) and u�(�i, �s ) [and hence the same K�(�i )], i.e.,

V :=
⋃

a∈S

⋃
0�b<δa

Va,b,

Va,b := {(�i, �s) ∈ V : j�(�i) = a, u�(�i, �s) = b}. (116)

By construction the couples of vectors included in Va,b pos-
sess at least Ka = MS

ma
+ δa − 1 copies of the symbol (a, b).

For each Va,b we can hence assign a new set of couples of
n-dimensional vectors V a,b whose elements are obtained by
taking the vectors of Va,b, and replacing MS/ma copies of the
entry (a, b) with (0,0). Since for each (�i, �s ) ∈ Va,b there are at
least (

Ka

MS/ma

)
=
(

MS/ma + δa − 1

MS/ma

)

ways to do this, the size of V a,b must satisfy

|V a,b| �
(

MS/ma + δa − 1

MS/ma

)
|Va,b| � δa|Va,b|, (117)

meaning that for each Va,b we can identify a subset Ṽa,b ⊆
V a,b whose cardinality is exactly |Ṽa,b| = δa|Va,b|. Now let
Va :=⋃δa−1

b=0 Va,b and V a :=⋃δa−1
b=0 V a,b. The sets Va,b are by

construction disjoint, so

|Va| =
δa−1∑
b=0

|Va,b|. (118)

The size of the set V a satisfies instead the inequality

|V a| =
∣∣∣∣∣
δa−1⋃
b=0

V a,b

∣∣∣∣∣ �
∣∣∣∣∣
δa−1⋃
b=0

Ṽa,b

∣∣∣∣∣ � max
b

|Ṽa,b|

= δa max
b

|Va,b| �
δa−1∑
b=0

|Va,b| = |Va|. (119)

Recall that the elements of V a,b are characterized by
MS/Ka copies of the ground state. From Eq. (112) it follows
that the sets V a do not overlap, i.e.,

V a ∩ V a′ = ∅ ∀ a 
= a′ ∈ S. (120)

Accordingly we can identify a mapping F from V =⋃a∈SVa

to
⋃

a∈SV a which for all a sends Va into a subset of V a,

(�i, �s) ∈ Va �→ F (�i, �s) ∈ V a, (121)

which is injective, i.e., such that F (�i, �s ) 
= F (�i′, �s′) for all
(�i, �s ) 
= (�i′, �s′). From this we can now derive the following
lower bound for the MDEW ratio,

R(A; Ĥ ) � E
MS

KS + 1
> 0. (122)

The proof relays on the observation that for n � KS + 1 there
exists a unitary transformation Û (n)

F which enables us to ex-
tract an amount W = EMS of work deterministically. On the
eigenvectors |ε�i,�s〉 which form the support of ω̂⊗n

A (0) such
unitary is simply the transformation which implement the
mappings (121) defined above, i.e.,

Û (n)
F |ε�i,�s〉 = |�εF (�i,�s)〉 ∀ (�i, �s) ∈ V . (123)

Due to the fact that for (�i, �s ) ∈ Va, the states |ε(�i,�s )〉 and
|�εF (�i,�s )〉 only differs by the fact that in the latter Ka copies
of eigenvectors with energy eigenvalue εa are replaced with a
ground-state vector, the associated energy gain for each one
for all these transitions is equal to

W = Kaεa = MS

ma
Ema = EMS. (124)

Accordingly for ρ̂ with support HS we can write〈
WÛ (n)

F

(
ω̂⊗n
A (0); Ĥ (n))〉 = EMS,〈

�2WÛ (n)
F

(
ω̂⊗n
A (0); Ĥ (n))〉 = 0,

�⇒ Rn(A; Ĥ ) � EMS

n
, (125)
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The maximum of the above expression is achieved for n =
KS + 1 which via (61) finally leads to (122).

In the special case in which the spectrum of the Hamil-
tonian is nondegenerate (i.e., di = di = 1 ⇒ Ki = MS/mi for
all i), using in (122) the definitions (109), (110), and (111),
we can recast the lower bound (122) in a slightly weaker form
which unveils a more straightforward and useful dependence
on the energy levels εi, i.e.,

R(A; Ĥ ) � E

⎛
⎝∑

i∈S

1

mi

⎞
⎠

−1

=
⎛
⎝∑

i∈S

1

εi

⎞
⎠

−1

. (126)

The difference between the bounds (126) and (122) becomes
negligible when all the mi satisfy mi � d .

Finite-size behaviour

From the definition (62) and from (60) it follows that one
always has

Rkn(A; Ĥ ) � Rn(A; Ĥ ) ∀ k, n ∈ N. (127)

Combining the above inequality with (125) we have

Rn(A; Ĥ ) �
⌊

n

KS + 1

⌋
EMS

n
∀ n > KS, (128)

which also implies that, for every 1/2 � c < 1, we can write

Rn(A; Ĥ ) � c
EMS

KS + 1
∀ n >

c

1 − c
KS. (129)

As in the case of (126), for nondegenerate spectra this can also
be cast in the weaker (yet simpler) form

Rn(A; Ĥ ) � c

⎛
⎝∑

i∈S

1

εi

⎞
⎠

−1

∀ n >
c

1 − c
KS. (130)

VIII. GENERIC SPECTRA

In this section we are going to show that, by approximating
the spectrum of a generic Hamiltonian to rational level, we
can construct a work extraction protocol with bounded fluctu-
ations (see Fig. 6).

Lemma 5. Let Ĥ =∑M−1
j=0 ε j�̂ j and Ĥ ′ =∑M−1

j=0 ε′
j�̂ j be

two Hamiltonians of form (1) characterized by the same de-
generacies values and whose associated eigenvalues differ at
most by a constant δ � 0, i.e.,

|ε′
j − ε j | < δ ∀ j ∈ {0, . . . , M − 1}. (131)

Suppose now that Ĥ ′ admits a unitary evolution Û that permits
to extract a deterministic work value W ′ � 0 for the input state
ρ̂, i.e., P(Ĥ ′ )

ρ̂;Û
(w) = δ(w − W ′). Then using Û when the system

Hamiltonian is Ĥ , yields an average work extraction value

|〈WÛ (ρ̂; Ĥ )〉 − W ′| � 2δ, (132)

and a probability distribution of the extracted work P(Ĥ )
ρ̂;Û

(w),

which is null whenever the distance of w from W ′ is larger

FIG. 6. Comparison between the bounded fluctuation proto-
col presented here and the collective protocol of Ref. [31]. The
typicality-based protocol of Ref. [31] can extract the maximal energy
Etot(�(ρ̂)), with exponentially suppressed fluctuations. In contrast,
the protocol discussed in this section can extract an energy ≈e <

Etot (�(ρ̂)), but with the guarantee that the work fluctuation never
exceeds 4δ. Protocols with bounded fluctuation may exist for higher
value of the mean extracted work, up until the upper bound (67),
which is always smaller than or equal to Etot (�(ρ̂ )) [with the equality
holding only in the case in which ρ̂ = ω̂A(β�)].

than 2δ, i.e.,

P(Ĥ )
ρ̂;Û

(|w − W ′| > 2δ) := 1 −
∫ W ′+2δ

W ′−2δ

dwP(Ĥ )
ρ̂;Û

(w) = 0.

(133)
Proof. Invoking the condition (38) we know that Û applied

to ρ̂, given i ∈ S[ρ̂] the transition probabilities PÛ ( j|ρ̂i) =
Tr[�̂ jÛ ρ̂iÛ †] is equal to one for j such that ε′

i − ε′
j = W ′,

and zero otherwise. Observe hence that according to (131),
when working with the Hamiltonian Ĥ the same mapping will
assign probability equal to one to energy jumps εi �→ ε j which
fulfils the inequality |εi − ε j − W ′| � 2δ, and zero otherwise:

PÛ ( j|ρ̂i ) =
{

1 for |ε j − εi − W ′| � 2δ,

0 otherwise. (134)

The thesis finally follows by replacing the above identity in
Eqs. (32) and (30). �

Remark. Observe that the above result can also be gen-
eralized to situations in which Ĥ and Ĥ ′ commute by have
different degeneracies. In particular consider the case where
Ĥ ′ is nondegenerate with eigenvalues ε′

0, . . . , ε
′
d−1, while Ĥ

has only M < d distinct eigenvalues ε0, . . . , εM−1. Assume
now that we can organize the element of the spectrum of Ĥ ′
into M groups G′

0,G
′
1, . . . ,G

′
M−1 such that

|ε′ − ε j | < δ ∀ j ∈ {0, . . . , M − 1} ∀ ε′ ∈ G′
j . (135)
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Then following the same derivation given in Lemma 5 can be
used to show that if P(Ĥ ′ )

ρ̂;Û
(w) = δ(w − W ′) for some Û and

W ′, then Eqs. (132) and (133) still applies.
Lemma 6. Given a generic Hamiltonian Ĥ =∑M−1

i=0 εi�̂i

and A :=⊕M−1
i=0 Ai a direct sum of subsets of its energy

eigenspaces, let

e :=
⎛
⎝∑

i∈S

di

εi

⎞
⎠

−1

, (136)

with S the nonempty elements set (13) of A and with di =
dim[Ai] the dimension of its ith energy block. Then for each
ρ̂ ∈ SA and c ∈ [0, 1[, we can identify a positive constant A
with the property that, for each δ > 0 sufficiently small, given
n > Aδ−|S|+1 copies of ρ̂, we can find a TPM protocol acting
on ρ̂⊗n such that

W := 〈WÛ (ρ̂⊗n; .Ĥ (n)/n)〉 � ce − 2δ, (137)

P(Ĥ (n)/n)
ρ̂⊗n;Û

(|w − W | > 4δ) = 0. (138)

Proof. Define {|εi, j〉 : j = 0, . . . , di − 1} as the orthonor-
mal basis of the energy subspace Hi of Ĥ constructed by
taking as the first di elements those which define the or-
thonormal basis of Ai introduced in Eq. (107). For δ > 0 and
i ∈ {0, . . . , M − 1} we now introduce the integer constants

mi, j :=
⌊

εi

δ/d�

⌋
+ j + 1, s ∈ {0, . . . , di − 1}, (139)

where εi are the eigenvalues of Ĥ and d� = max j d j is its
maximum degeneracy. We hence define the Hamiltonian

Ĥ ′ :=
M−1∑
i=0

di−1∑
j=0

ε′
i, j |εi, j〉〈εi, j |, (140)

with eigenvalues

ε′
i, j := mi, j

δ

d�
. (141)

which by construction commute with Ĥ and A. Notice also
that we have

εi + δ � ε′
i, j � εi, (142)

for all i ∈ {0, . . . , M − 2} and for all j ∈ {0, . . . , di − 1}. Fur-
thermore, if we take

δ < min
i∈{0,...,M−2}

(εi+1 − εi ), (143)

from (142) ensures that εi+1 > εi + δ > ε′
i, j implying that the

spectrum of Ĥ ′ is nondegenerate. Notice also that the subset
A can be expressed as a direct sum of energy subspaces of
Ĥ ′ with a nonempty index subset S′ identified by the couples
{(i, j) : i ∈ S, j ∈ {0, . . . , di}}. Notice also that the Hamilto-
nian Ĥ ′ falls therefore under the hypotheses of Sec. VII, and
we can invoke (130) to deduce that, for each n > c

1−c KS′ , one

has

Rn(A; Ĥ ′) � c

⎛
⎝ ∑

(i, j)∈S′

1

ε′
i, j

⎞
⎠

−1

� c

⎛
⎝ ∑

(i, j)∈S′

1

εi

⎞
⎠

−1

= ce, (144)

where in the second inequality we use the leftmost part of
(142). This means that there exists a unitary Û such that it
allows us to deterministically extract a work value larger than
or equal to ce from n > c

1−c KS′ copies of a generic density
matrix ρ̂ ∈ SA, i.e.,

W ′ := 〈WÛ (ρ̂⊗n; Ĥ ′(n)
/n)〉 � ce,

〈�2WÛ (ρ̂⊗n; Ĥ ′(n)
/n)〉 = 0. (145)

Observe next that the n-copy Hamiltonians Ĥ (n)/n and Ĥ ′(n)/n
have eigenvalues

ε�i/n :=
n∑

s=1

εis

n
, �i ∈ {0, . . . , M − 1}n,

ε′
�i,�j/n :=

n∑
s=1

ε′
is, js

n
,

{�i ∈ {0, . . . , M − 1}n,

�j ∈ D�i,

with D�i defined implicitly by (140), which satisfy the con-
dition (135). Indeed identifying G′

�i as the set formed by the

elements ε′
�i,�j/n with �j ∈ D�i, from Eq. (142) we get:∣∣∣∣∣

ε′
�i,�j
n

− ε�i
n

∣∣∣∣∣ � 1

n

n∑
s=1

∣∣ε′
is, js − εis

∣∣ � 1

n

n∑
s=1

δ = δ. (146)

Applying the identity (132) of Lemma 5 to the pair of Hamil-
tonians Ĥ (n) and Ĥ ′(n) ensures therefore that the same unitary
Û that realizes (145), also fulfils

|W − W ′| � 2δ, (147)

which implies (137). Similarly from (133) of Lemma 5 we get

0 = P(Ĥ (n)/n)
ρ̂⊗n;Û

(|w − W ′| > 2δ)

= P(Ĥ (n)/n)
ρ̂⊗n;Û

(|(w − W ) + (W ′ − W )| > 2δ),

which together with (147) leads to (138). To complete the
proof, we observe that the constant KS′ can be bounded with

KS′ <
∑
i, j

MS′

mi, j
<
∏
i, j

mi, j

∑
i, j

1

mi, j
(148)

< |S′|(max
i, j

mi, j )
|S′|−1 � |S′|

(
d�εd−1

δ
+ d�

)|S′|−1

� d�|S|
(

d�εd−1

δ
+ d�

)d�|S|−1

= d�|S|(d�εd−1 + d�δ)d�|S|−1
δ−d�|S|+1, (149)

where in the third line we invoke the monotonicity under |S′|
and the inequality |S′| � d�|S|. To identify the constant A
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FIG. 7. Empirical distribution of the difference between the for-
mula (163) and the rigorous upper bound (67), for 500 randomly
chosen energy spectra of dimension d = 3, d = 10, and d = 75. The
gaps between subsequent energy levels in the random Hamiltonians
are independent samples from the uniform distribution; and the sub-
space A is the one generated by all the energy levels except for the
ground state.

finally observe that for sufficiently small δ we can also write

KS′ < d�|S|(d�εd−1 + 1)d�|S|−1
δ−d�|S|+1, (150)

which gives the thesis by taking

A = c

1 − c
d�|S|(d�εd−1 + 1)d�|S|−1

. (151)

�

IX. A SEMIHEURISTIC ESTIMATION BASED ON THE
CENTRAL LIMIT THEOREM

In this section we want to derive a closed formula expres-
sion that, although not exact, does often closely approximate
the asymptotic MDEW ratio R(A, Ĥ ). The idea is to use
the central limit theorem to approximately count the number
of energy levels of a given energy within the subspace A⊗n

and the complete Hilbert space H⊗n. We are not able to
derive rigorous bound for the validity of this approximation.
However, we find empirically that the difference between the
estimation given by the formula (163), that we derive here,
and the upper bound (67), for a randomly chosen Hamiltonian
seems to approach zero as the size of the Hilbert space H
increases (see Figs. 7 and 8).

Let Ĥ be a Hamiltonian satisfying the hypotheses of
Sec. VII. We define the integer quantities n0(x, n) and
n+(x, n) as the number of energy levels with energy equal to
nx in, respectively, Ĥ (n) and A⊗n. Explicitly,

n0(x, n) := #

{
�i ∈ [0, d − 1]n :

n∑
s=1

εis = nx

}
, (152)

n+(x, n) := #

{
�i ∈ Sn :

n∑
s=1

εis = nx

}
, (153)

FIG. 8. Median absolute discrepancies between the CLT-based
estimation (163) and the upper bound (67), for samples of 500
random energy spectra drawn from the same distribution as the one
used in Fig. 7.

where we are using the symbol # to denote the cardinality of
a set. Then the evaluation of (61) can be reformulate as

Rn
(
A, Ĥ
) = max {δ : ∀ xn+(x, n) � n0(x − δ, n)}. (154)

We observe incidentally that n0(x, n) and n+(x, n) can be
expressed as polynomial coefficients in the expansions(

d−1∑
j=0

zε j

)n

=
nd−1∑
i=0

n0

(
i

n
, n

)
zi,

⎛
⎝∑

j∈S
zε j

⎞
⎠

n

=
nd−1∑
i=0

n+

(
i

n
, n

)
zi, (155)

which allow for their efficient numerical computation. Let us
hence define

μ0 := 1

d

d−1∑
i=0

εd , σ 2
0 := 1

d

d−1∑
i=0

ε2
i − μ2

0,

μ+ := 1

|S|
∑
i∈S

εd , σ 2
+ := 1

|S|
∑
i∈S

ε2
i − μ2

+. (156)

FIG. 9. The distribution of energy levels (152) and (153), com-
pared with their Gaussian estimations (157) and (158), for n = 20
copies of the three-level Hamiltonian Ĥ = 2

3 |1〉 〈1| + |2〉 〈2|, when
A = Span{|1〉 , |2〉}.
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For large enough n, the central limit theorem allows us to
approximate the energy level densities as

n0(x, n) � dn

n

√
n√

2πσ 2
0

exp

[
−n(x − μ0)2

2σ 2
0

]
, (157)

n+(x, n) � |S|n
n

√
n√

2πσ 2+
exp

[
−n(x − μ+)2

2σ 2+

]
, (158)

see Fig. 9 for an illustrative example. Exploiting Eqs. (157)
and (158), the condition ∀ xn+(x, n) � n0(x − δ, n) from
(154) becomes

|S|n√
2πσ 2+

exp

[
−n(x − μ+)2

2σ 2+

]

� d√
2πσ 2

0

exp

[
−n(x − δ − μ0)2

2σ 2
0

]
, ∀x (159)

which with some simple algebraic manipulation can be cast in
the form

x2

(
1

2σ 2+
− 1

2σ 2
0

)
− 2x

(
μ+
2σ 2+

− μ0 + δ

2σ 2
0

)

+
(

μ2
+

2σ 2+
− (μ0 + δ)2

2σ 2
0

+ ln
d

|S| + 1

n
ln

σ+
σ0

)
� 0 ∀ x.

(160)

The discriminant of the above quadratic form is equal to

� = (μ0 − μ+ + δ)2

σ 2+σ 2
0

−
(

ln
d

|S| + 1

n
ln

σ+
σ0

)
2σ 2

0 − 2σ 2
+

σ 2+σ 2
0

.

(161)

In order for the condition (160) to hold true, we need that
σ 2

0 > σ 2
+ and that � � 0. Solving (161) for δ, we find that

the requirement � � 0 is equivalent to

δ � μ+ − μ0 +
√

2
(
σ 2

0 − σ 2+
)√(

ln
d

|S| + 1

n
ln

σ+
σ0

)
,

(162)
which, in the n → ∞ limit, leads to the estimation

R(A, Ĥ ) � μ+ − μ0 +
√

2
(
σ 2

0 − σ 2+
)√

ln
d

|S| . (163)

X. CONCLUSIONS

We have derived upper and lower bounds on the asymptotic
maximal deterministic work extraction (MDEW) rate, which
quantifies the maximal work that can be extracted from a
quantum system, without fluctuations, in the limit of infinite
copies of the system. We found a lower bound that is strictly
greater than zero for any Hamiltonian with rational spectra,
meaning that, given enough copies of the system, determinis-
tic work extraction is always possible for such Hamiltonians.
Numerical evidence suggests that the actual MDEW rate may
coincide with, or be very close to, the upper bound we derived,
but we were not able to prove this definitively.

For Hamiltonians with incommensurable energy levels,
although strictly deterministic work extraction may not be
achievable, we have shown that with enough copies it is
possible to bound the fluctuations in the extracted work to
an arbitrarily small tolerance. Our protocols for bounded-
fluctuation work extraction may find applications in quantum
heat engines or batteries where a reliable, stable work output
is critical.

More broadly, the scheme that we have introduced for
manipulating ensembles of noninteracting copies of a quan-
tum system may have implications for bounding fluctuations
of other quantities through global quantum operations on
multiple copies. This could aid in the design of stable quan-
tum devices functioning in the finite-copies regime. An open
question is whether allowing interactions between copies
can enhance deterministic work extraction yields beyond the
independent-copy bounds we have derived.
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APPENDIX A: OPTIMALITY OF EQ. (68)

Here we show that, at least for those cases where the
restriction of Ĥ over the subspace A is not degenerate, then

min
�(ρ̂ )∈SA

Etot(�(ρ̂); Ĥ ) = min
β>0

Etot(ω̂A(β ); Ĥ ). (A1)

To see this recall first that the total ergotropy of a generic state
ρ̂ corresponds to [23,39]

Etot (ρ̂; Ĥ ) = Tr[ρ̂Ĥ ] − Tr[τ̂β(ρ̂ )Ĥ ], (A2)

with τ̂β(ρ̂ ) being the thermal Gibbs state whose inverse tem-
perature β(ρ̂ ) is fixed in order to ensure that the von Neumann
entropy of such a state equals that of ρ̂, i.e.,

S(τ̂β(ρ̂ ) ) = S(ρ̂ ). (A3)

Observe next that if Ĥ is not degenerate, the entropy of the
Gibbs-like density matrices ω̂A(β ) span continuously from 0
(for β → ∞) to ln Tr[�̂A] (for β → 0) which is the maxi-
mum value allowed for states with support in A. Given hence
�(ρ̂) a diagonal ensemble in SA, we can always find β� such
that the Gibbs-like density matrix ω̂A(β�) has entropy equal to
that of �(ρ̂). In such a case τ̂β(�(ρ̂ )) and τ̂β(ω̂A(β� )) will match,
allowing us to write

Etot(�(ρ̂); Ĥ ) = Tr[�(ρ̂)Ĥ] − Tr[τ̂β(ρ̂ )Ĥ ]

= Tr[�(ρ̂)Ĥ] − Tr[τ̂β(ω̂A(β� ))Ĥ ]

� Tr[ω̂A(β�)Ĥ ] − Tr[τ̂β(ω̂A(β� ))Ĥ ]

= Etot(ω̂A(β�); Ĥ ), (A4)

where the last inequality follows from the fact that ω̂A(β�) is
the state with the minimal energy among those which have the
same support and the same entropy, so that

Tr[�(ρ̂)Ĥ] � Tr[ω̂A(β�)Ĥ ]. (A5)
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To see this last fact observer that for β arbitrary, invoking the
Klein inequality we can write

0 � S(�(ρ̂)‖ω̂A(β )) = −S(�(ρ̂)) − Tr[�(ρ̂) ln ω̂A(β )]

= −S(�(ρ̂)) + βTr[�(ρ̂)Ĥ ] + ln ZA(β )

= −S(�(ρ̂)) + βTr[ω̂A(β )Ĥ ] + ln ZA(β )

+ β(Tr[�(ρ̂)Ĥ ] − Tr[ω̂A(β )Ĥ ])

= −S(�(ρ̂)) + S(ω̂A(β )) + β(Tr[�(ρ̂)Ĥ ]

− Tr[ω̂A(β )Ĥ ]), (A6)

where in the second identity we used the fact that �(ρ̂) =
�(ρ̂)�̂A to write

Tr[�(ρ̂) ln ω̂A(β )] = Tr

[
�(ρ̂)�̂A ln

(∑
i∈S �̂Ai e

−βεi

ZA(β )

)]

= βTr

[
�(ρ̂)�̂A

∑
i∈S

�̂Aiεi

]
+ ln ZA(β )

= βTr[�(ρ̂)Ĥ ] + ln ZA(β ). (A7)

The inequality (A5) finally follows from (A6) by simply re-
organizing the various terms and taking β = β�. Since (A4)
applies to all density matrices �(ρ̂) ∈ SA we conclude that
the minimization (67) can be replaced with (68) leading to
(A1).

APPENDIX B: PROOF OF EQ. (69)

We start by defining the real functions

E0(β ) := Tr[τ̂βĤ ], EA(β ) := Tr[ω̂A(β )Ĥ ], (B1)

S0(β ) := S(τ̂β ), SA(β ) := S(ωA(β )), (B2)

Z0(β ) := Tr[eβĤ ], ZA(β ) := Tr[�̂AeβĤ ], (B3)

with τβ and ω̂A(β ) as in Eqs. (69) and (16), respectively. The
above functions satisfy the relationships

S0(β ) = βE0(β ) + ln Z0(β ), (B4)

SA(β ) = βEA(β ) + ln ZA(β ). (B5)

By deriving (B4) with respect to the variable β we have the
following relations:

dS0

dβ
= β

dE0

dβ
,

dSA
dβ

= β
dEA
dβ

. (B6)

For fixed β define now β� the inverse temperature such that
S(ω̂A(β )) = S(τ̂β� ), i.e.,

β�(β ) = S−1
0 (SA(β )). (B7)

Deriving (B7) and then applying (B6) we have that

dβ�

dβ
= dβ�

dSA

dSA
dβ

= dβ�

dS0

dSA
dβ

= β

β�

dβ�

dE0

dEA
dβ

. (B8)

Notice next that, using the expression (A2) for the total er-
gotropy, the right-hand-side of the upper bound (68) can be
expressed as

Etot (ω̂A(β ); Ĥ ) = EA(β ) − E0(β�(β )). (B9)

Deriving (B9) and then using the chain rule and (B8) we
obtain

d

dβ
Etot (ω̂A(β ); Ĥ )

= dEA
dβ

− d

dβ
E0(β�(β )) = dEA

dβ
− dE0

dβ�

dβ�

dβ

= dEA
dβ

− β

β�

dE0

dβ�

dβ�

dE0

dEA
dβ

=
(

1 − β

β�

)
dEA
dβ

.

Every stationary point of Etot(ω̂A(β ); Ĥ ) must satisfy
d
dβ

Etot(ω̂A(β ); Ĥ ) = 0, i.e.,

(
1 − β

β�

)
dEA
dβ

= 0. (B10)

Since dEA
dβ

< 0, we arrive at the conclusion that the bound

(68) is attained at a value of β such that

β�(β ) = β, (B11)

which proves the thesis. �
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