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Bell correlations of a thermal fully connected spin chain in the vicinity of a quantum critical point
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Bell correlations are among the most exotic of the phenomena through which quantum mechanics manifests
itself. Their presence signals that the system may violate the postulates of local realism—conjectures once
thought to be to be a non-negotiable property of the physical world. The importance of Bell correlations from
this fundamental point of view is even further clarified by their applications, ranging from quantum cryptography
to quantum metrology and quantum computing. It is therefore of growing interest to characterize the “Bell
content” of complex, scalable many-body systems. Here, we perform a detailed analysis of the character and
strength of many-body Bell correlations in interacting multiqubit systems with particle exchange symmetry.
Such a configuration can be described by an effective Schrödinger-like equation, which allows precise analytical
predictions. We show that in the vicinity of the quantum critical point, these correlations quickly become so
strong that only a fraction of the qubits remain uncorrelated. We also identify the threshold temperature above
which thermal fluctuations destroy Bell correlations. We hope that the approach presented here, due to its
universality, will be useful for upcoming research on genuinely nonclassical Bell-correlated complex systems.
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I. INTRODUCTION

In their 1935 paper [1] Einstein, Podolsky, and Rosen
(EPR) suggested that quantum mechanics should be comple-
mented by a local and realistic theory [1]. In 1964 Bell showed
that such an extension of quantum mechanics cannot exist.
The argument against local realism uses the simplest nontriv-
ial many-body system: two spin-1/2 particles [2]. Despite its
deceptive simplicity, for many years this system has driven
the progress of both theory and experiment. In 1969, the
Clauser-Horne-Shimony-Holt inequality [3], which refined
Bell’s formulation, paved the way for the first experiments
showing the violation of Bell inequalities [4–15]. Finally, a
loophole-free test of Bell nonlocality was reported [16], re-
jecting local realism in quantum mechanics. The importance
of these efforts was recognized by the Nobel committee in
2022.

With the advent of noisy intermediate-scale quantum
(NISQ) devices, research interest has shifted to more complex
systems. It has become increasingly important to understand
how fundamental quantum relations, such as entanglement
[17,18], EPR steering [1,19,20], and Bell nonlocality, can
be created, especially in multiqubit systems. These highly
nonclassical correlations are of particular importance for
measurement-based quantum computing (MBQC) [21–25],
for which entanglement or Bell correlations of the type dis-
cussed here are a necessary computational resource for the
input state [26,27].

The problem of detecting many-body Bell correlations,
which are the main focus of this work, has been formulated
for N-qubit systems using N-body correlation functions in
various ways, most notably by means of Mermin-Bell in-
equalities [28]. In this work we rely on the formulation of
Bell inequalities from Refs. [29–31]. It enabled us to establish
the link between the Bell nonlocality and quantum-enhanced

metrology [32] and to determine the strength of many-body
Bell correlations in the commonly used method of creating
atomic spin-squeezed states [33,34], i.e., the one-axis twisting
method [35–41].

Bell correlations in many-body systems have been the sub-
ject of recent theoretical and experimental research, mostly on
atomic systems. In Ref. [42] a method for the certification of
such correlations using two-body observables was proposed.
For bosonic systems, it takes an experimentally friendly form
that allows for direct verification by measuring the two low-
est moments of the angular momentum operators describing
a two-mode Bose-Einstein condensate (BEC) [43]. Subse-
quently, this method was used to confirm Bell correlations in
two-mode BECs in the ground and thermal states [44].

The present work takes a step forward by adapting the
correlation order to the number of qubits, thus focusing on
many-body Bell correlations. We study the emergence of Bell
correlations in the versatile and scalable multiqubit system.
This is a collection of N qubits in which the interactions of
all the pairs are of equal strength. This setup can be realized
using different platforms well suited for quantum technolo-
gies, such as the fully connected Ising spin chain [45–52], or,
alternatively, by trapping the BEC in a double-well potential.
While we will refer to the latter case throughout this work, it is
equivalent to the former from the perspective of the problems
considered here. In this scenario, the separated single-body
states localized around the two minima of the trap play the role
of a pair of single-qubit levels. In the tight-binding regime,
this system is described by the Bose-Hubbard (BH) Hamil-
tonian, in which the on-site two-body interactions compete
with the coherent Josephson tunneling across the barrier of
the double-well potential [53–59]. On the attractive side of
the interaction, there is a quantum phase transition (QPT)
[60–70], at which point the properties of the BH Hamiltonian
suddenly change—from a Gaussian state to the macroscopic
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superposition [62–67]. We show that in the vicinity of this
point, the Bell correlations are genuinely many body; i.e.,
a macroscopic fraction of the qubits are Bell correlated. To
show this, we derive a simple, but informative, formula that
allows us to predict the strength of Bell correlations associ-
ated with this emergent macroscopic superposition. We then
consider nonzero temperatures and analytically demonstrate
that the relevant temperature scale, above which the thermal
fluctuations destroy the Bell nonlocality, is related to the en-
ergy gap between the ground state and the first excited state.
This allows us to derive a clear criterion for the threshold,
from the point of view of many-body Bell correlations: tem-
perature. We also carry out a numerical study of the effect of
fluctuations of the energy imbalance between the two modes.

The MBQC can use the states with large components of the
density matrix which are related to the Greenberger-Horne-
Zeilinger (GHZ) coherence [27]. As we argue in Sec. III,
when this type of superposition is big, it leads to the violation
of the many-body Bell inequality. We precisely characterize
the multiqubit states from this point of view, hopefully con-
tributing to the field of MBQC and allowing for accurate
planning of future experiments.

II. MANY-BODY QUANTUM SYSTEMS

Consider a collection of N qubits (spin-1/2 particles) fully
connected via the distance-independent two-body interaction
of strength U . The spins are subject to an external uniform
magnetic field aligned by the x axis, whose amplitude is
proportional to �. One possibility of modeling such a system
is via the Ising model, the one on which we focus in this work.
The Hamiltonian reads

Ĥ = −�

N∑
i=1

σ̂ (i)
x + U

2

N∑
i �= j=1

σ̂ (i)
z σ̂ ( j)

z . (1)

Here, σ̂
(k)
ξ is the ξ component of the triad of Pauli matrices

for the kth spin (i.e., ξ = x, y, z). Note that this Hamiltonian
is invariant under the exchange of any pair of spins; hence,
all its eigenstates possess this symmetry. Thus, to analyze the
many-body properties of the ground and the thermal states, it
is convenient to map it onto the bosonic BH Hamiltonian in
the tight-binding limit, namely,

Ĥbh = −�Ĵx + UĴz
2
, (2)

where the collective spin operators are

Ĵξ = 1

2

N∑
k=1

σ̂
(k)
ξ . (3)

The spectrum of this operator is spanned by the symmetrized
states |N − n, n〉 of n spins in the −1 eigenstate of, for in-
stance, the z-component Pauli operators and the remaining
N − n spins in the +1 eigenstate. Hence, the dimensionality
of the symmetric subspace H(sym)

N , compared to the size of the
whole Hilbert space HN , is

dim H(sym)
N = N + 1 vs dim HN = 2N . (4)

Therefore, any state vector |ψ〉 in H(sym)
N can be expressed as

|ψ〉 =
N∑

n=0

ψn|N − n, n〉,
N∑

n=0

|ψn|2 = 1. (5)

To extract the crucial properties of the eigenstates of the
Hamiltonian from Eq. (2) we follow the steps in Ref. [71].
First, we project the stationary Schrödinger equation onto the
nth element of the basis, i.e., 〈N − n, n|Ĥ |ψ〉 = Eψn, giving

− �

2
[ψn+1

√
(N − n)(n + 1) + ψn−1

√
(N − n + 1)n]

+ U

4
(N − 2n)2ψn = Eψn. (6)

Next, we introduce the normalized population imbalance,

zn = (N − n) − n

N
= 1 − 2n

N
, (7)

which varies from −1 to 1, with the increment equal to �z =
2/N . Equation (6) expressed in terms of this new variable zn

becomes

−�N

2
[ψn+1 f+(zn) + ψn−1 f−(zn)] + UN2

4
ψnz2

n = Eψn,

f±(zn) =
√

1 ± zn

2

(
1 ∓ zn

2
+ 1

N

)
. (8)

When N is large, the 1/N term in f± can be neglected. Further-
more, as the increment of zn diminishes, the discrete variable
can be approximated with a continuous z. In particular, this
means that the finite difference tends to

ψn+1 + ψn−1 − 2ψn

(�z)2
≈ d2

dz2
ψ (z). (9)

In such a large-N regime we obtain a stationary one-
dimensional (1D) Schrödinger-like equation for a fictitious
unit-mass particle subject to an external potential,

Veff (z) = −
√

1 − z2 + z2γ /2, (10)

with γ = UN/�, i.e.,(
− 2

N2

√
1 − z2

d2

dz2
+ Veff (z)

)
ψ (z) = Ẽψ (z). (11)

The normalized energy is Ẽ = 2E
�N . Note also that here, 2/N

is the dimensionless equivalent of the reduced Planck’s con-
stant h̄. For the mathematical details of this derivation with a
discussion of all its limitations, we refer readers to Ref. [71].

The ground state of Eq. (11) depends crucially on the
value of γ and hence on the ratio (and the sign) of the
interaction-to-tunneling energies. For large and positive γ ′s,
Veff (z) �

1
2γ z2; hence, the problem simplifies to that of the 1D

harmonic potential. As γ grows, the width of the ground-state
Gaussian shrinks. This implies diminishing fluctuations of
the population imbalance, which, since the intramode coher-
ence is mostly maintained, signals the spin squeezing of the
state [33,34].

On the negative-γ side, the shape of the ground state is
more diversified, depending on the value of the parameter.
For γ � γ0 ≡ −1 the wave function is still a Gaussian, but
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FIG. 1. The effective potential Veff (z) (solid black lines) for
N = 100 and γ = −1.1 (left) and γ = −1.5 (right). The dashed gray
lines show the ground state for each case.

now its width grows as γ approaches γ0; this, in turn, signals
the phase squeezing of the sample [72]. However, when γ0

is crossed, Veff (z) changes abruptly, indicating the passage
through the QPT. Upon crossing this point, the fluctuations
of the population imbalance grow rapidly, more sharply for
higher N (see Fig. 4 of Ref. [71] and the discussion therein).
This is a consequence of the buildup of a macroscopic super-
position when qubits symmetrically occupy the two modes.
This effect is visualized in Fig. 1, where we show how the
potential and the ground state change across this highlighted
point. Upon crossing γ0, the potential breaks and develops two
minima at positions ±z0, with z0 = (1 − 1/γ 2)1/2. A quantum
state that respects the left-right symmetry of the problem is
a macroscopic superposition of two separated wave packets.
As γ → −∞, the maxima of ψ (z) separate, tending towards
the NOON state, which in the ket notation used in Eq. (5) is
|ψ〉 = 1/

√
2(|N, 0〉 + |0, N〉). A similar transition is present

in nonsymmetric spin chains, as discussed in Sec. VI. As we
argue in the following section, the emergence of this twin-
peak structure is a signature of strong Bell correlations, and
their analysis is the main focus of this work.

The shape of the potential after the breaking suggests that
some of the properties of the state vector can be extracted by
locally approximating Veff (z) with two harmonic oscillators
located at ±z0, namely (recall that the fictitious particle has a
mass set to unity),

Veff (z) � 1
2ω2(z ± z0)2 + V0, (12)

where ω =
√

γ (1 − γ 2) and V0 = − γ 2+1
γ

. In Fig. 2 we show
how this approximation works for N = 500 qubits and γ =
−1.4. Roughly speaking, the position of the lowest-lying lev-
els, denoted by the horizontal blue dashed line, seems to be
deep in the regime where the approximation is valid. Nev-
ertheless, this must be analyzed in more detail, as discussed
below.

Note that the harmonic potential (12) is an approximation
of the already approximate model of the Schrödinger-like
equation in Eq. (11). In order to make sure that in this pro-
cess the errors do not accumulate to some unacceptable level,
we perform the exact diagonalization of the BH Hamiltonian
from Eq. (2) and compare its two lowest-lying energy lev-
els with those from the harmonic approximation [HA; see
Eq. (12)]. In Fig. 3 we show the normalized energy differ-
ence between these two outcomes, expressed as a percentage,

FIG. 2. Comparison of the potentials Veff (z) (normalized to
Vmin = −1) from Eqs. (10) and from (12) for N = 500 and γ =
−1.4. The horizontal dashed blue line shows the energy scales of
the few lowest-lying states of either potential.

namely,

�Ei =
∣∣∣∣∣E (BH)

i − E (HA)
i

E (BH)
i

∣∣∣∣∣ × 100% (13)

for i = 0 (ground state) and i = 1 (first excited state). The
left panel shows the difference for two γ ′s equal to −1.1
and −1.5 as a function of N . As expected from the procedure
described above, the discrepancy diminishes as N grows and
for N = 500 can be safely kept below 1%. Similarly, the
variation of γ for fixed N ′s (100 and 500; see the right panel)
confirms the satisfactory precision of the harmonic approxi-
mation. Last, but not least, we scrutinize the quality of the
harmonic approximation by calculating the overlap between
the eigenstates corresponding to these two energy levels with
the eigenstates of the exact BH Hamiltonian,

Fi = ∣∣〈ψ (BH)
i

∣∣ψ (HA)
i

〉∣∣2 × 100%, (14)

again with i = 0, 1. In Fig. 4 we show that for the ground state,
the fidelity F0 is above 90% for a wide range of γ ′s and N ′s.
While the fidelity F1 can be unsatisfactory for smaller N ′s and
in the direct vicinity of the QPT, we will argue that even for
T �= 0 this is not a concern—the Bell correlator we discuss

FIG. 3. Left: The normalized energy difference �Ei [see
Eq.(13)] for i = 0 (the ground state, solid lines) and i = 1 (the
first excited state, dashed lines) of the potentials (10) and (12) for
γ = −1.1 (black) and γ = −1.5 (gray) as a function of N . Right:
Here, N is fixed to N = 100 (black) and N = 500 (gray) while γ is
varied.
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FIG. 4. The quality of the harmonic approximation quantified by
the fidelity Fi of the ground and first excited states, expressed as a
percentage [see Eq. (14)]. The left panel displays Fi as a function
of the number of particles N for γ = −1.1 (black) and γ = −1.5
(gray). The right panel is the reverse: here, N is fixed to 100 (black)
and 500 (gray) while γ changes.

below is mostly characterized by the properties of the ground
state.

In this section we have shown how to replace the exact
quantum BH model with an approximate twin-harmonic ap-
proximation. It is valid on the negative side of the quantum
critical point and will be our workhorse for the derivation of
simple, yet powerful, analytical formulas of the many-body
Bell correlations.

III. MANY-BODY BELL CORRELATOR

We now briefly review the theory behind the method of
detecting many-body Bell correlators that will be used in
this work. For an extensive discussion of its properties, see
Refs. [30,73–76].

Consider m objects, each being a subject of local measure-
ments of two binary quantities [77], σ (k)

x = ±1 and σ (k)
y =

±1, with k = 1, . . . , m. These outcomes are combined locally
(i.e., separately for each object) into σ

(k)
+ = 1

2 (σ (k)
x + iσ (k)

y ),
and the following correlator is constructed:

Em = |〈σ (1)
+ · · · σ (m)

+ 〉|2. (15)

Here, 〈·〉 denotes averaging over experimental repetitions. If
Em can be reproduced by a system that is consistent with
the local hidden-variable theory [1,2,78,79], then this average
can be expressed in terms of an integral over this (possibly
multivariate) variable λ distributed with a probability density
p(λ), namely,

Em =
∣∣∣∣
∫

dλ p(λ) σ
(1)
+ (λ) · · · σ (m)

+ (λ)

∣∣∣∣
2

. (16)

Using the Cauchy-Schwarz inequality for complex integrals,
we obtain

Em �
∫

dλ p(λ) |σ (1)
+ (λ)|2 · · · |σ (m)

+ (λ)|2 = 2−m. (17)

Thus, Em � 2−m is the m-body Bell inequality. Note that
each party has the freedom of choice of the orientations of
its operator σ̂ in Eq. (15). The most general N-qubit Bell
inequality, taking into account all possible choices at once,
was formulated in [80].

This inequality can be tested with quantum systems of m
qubits. In this case, the correlator Em from Eq. (15) is replaced

by its quantum-mechanical (q) equivalent

E (q)
m = |Tr[
̂ σ̂

(1)
+ ⊗ · · · ⊗ σ

(m)
+ ]|2. (18)

For the case of the m-qubit GHZ state [81], i.e.,

|ψ〉 = 1√
2

(|↑〉⊗m + |↓〉⊗m), σ̂+|↓〉 = |↑〉, (19)

we obtain E (q)
m = 1/4, hence the exponential (as a function of

m) breaking of the bound (17).
This quantum correlator (18) can be adapted to symmetric

systems, in which only collective operations are allowed. In
this case, the single-body particle-resolving operators σ̂

(k)
+ are

replaced with their (still one-body) collective equivalent

σ̂
(k)
+ −→ Ĵ+ =

N∑
k=1

σ̂
(k)
+ , (20)

in analogy to Eq. (3). Upon replacing the σ
(k)
+

′
s in Eq. (18)

by Ĵm
+ one notices that there are N!/(N − m)! more terms in

the latter case, which is a consequence of the permutational
invariance of the problem. Hence, the proper symmetric (the
symmetrization is here denoted by the tilde symbol) m-body
Bell inequality is

Ẽ (q)
m ≡ |〈Ĵm

+〉|2 �
(

N!

(N − m)!

)2

2−m, (21)

and more details on its derivation can be found in Ref. [76]. It
is convenient to normalize the left-hand side of this inequality
by its right-hand side and introduce [82]

Qm = log2

[
2m

(
N!

(N − m)!

)−2

Ẽ (q)
m

]
. (22)

The Bell inequality then becomes

Qm � 0. (23)

It is the purpose of the remainder of this work to demon-
strate that both at zero temperature (T = 0) and when T > 0,
there exists an order m = μ of the Bell correlator which
is significantly above the nonlocality bound Qμ > 0 in the
vicinity of the QPT. This particular Qμ, as we argue below,
means that an extensive (i.e., growing linearly with N) number
of qubits are Bell correlated. Moreover, Qμ turns out to be
directly linked to how far γ is from the quantum critical point.
Benefiting from the above-verified harmonic approximation,
we will connect the correlation order μ and the value of the
corresponding correlator Qμ with γ using a simple, but ver-
satile, analytical formula and extend the analysis to nonzero
temperatures.

The concept relies on the following observation. If the
operator Ĵm

+ that determines the correlator Qm acts on a ket
|N − n, n〉, it gives

Ĵm
+|N − n, n〉 = jnm|N − n + m, n − m〉,

jnm = m!

√(
n

m

)(
N − n + m

m

)
. (24)
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FIG. 5. The ground state of the Bose-Hubbard Hamiltonian and
the effective potential Veff (z) (both in arbitrary units picked only for
illustration) for N = 500 qubits and γ = −1.4. As argued in the text,
the distance between the peaks determines the relevant order of the
Bell correlator.

Hence, the average of this operator is equal to

〈Ĵm
+〉 =

N−m∑
n=0


n,n+m jnm, (25)

i.e., a coherent sum of all the elements of the density matrix
distanced by m from the diagonal and weighted with j′nms.
Here, we use the general expression for the density matrix in
the N-qubit symmetric subspace, namely,


̂ =
N∑

nn′=0


nn′ |N − n, n〉〈N − n′, n′|. (26)

Due to the characteristic twin-peak structure of the ground
state, one m stands out, namely, the one directly linked to the
separation of the two maxima δz = 2z0 by means of Eq. (7),
i.e.,

μ = N

2
�δz� = N�z0� (27)

(see Fig. 5). Here, �x� denotes the integer which is closest to
and larger than x (the “ceil” function). Hence, the following
conjecture arises: one particular order of Bell correlator at
a given γ stands out, i.e., the one for which m = μ holds.
Moreover, its value can be reproduced with excellent precision
by reducing the sum in Eq. (25) merely to the contribution
coming from the peak values at these two maxima positioned
at n± = (N ± μ)/2. In other words, using Eqs. (21) and (24),
the correlator is approximated by

Qμ � log2

[
2μ

(
N!

(N − μ)!

)−2

|
n+,n− jn+,n−|2
]
. (28)

We now show that this very simple formula works exception-
ally well for a pure ground state and allows us to determine
the threshold temperature, above which the Bell correlator Qμ

drops below the Bell limit.

It should be underlined that Qμ does not provide complete
information about Bell nonlocality in the system. At fixed γ ,
there are various correlation orders that give Qm > 0 [76].
Also, there are other ways to construct the many-body Bell
correlator [80] that, in principle, could yield more information
about the nonlocal correlations in this case. Nevertheless, the
analysis presented here has two strengths—it is simple, lead-
ing to analytical predictions, and it allows us to lower bound
the extent of Bell correlations over the system, an important
issue for many application aspects, such as quantum-enhanced
metrology [32]. We underline that the Bell correlator we use
is well suited to detecting the macroscopic superpositions
governed by the density-matrix element 
n+,n− that forms
after the QPT has been crossed (see Fig. 5). Their emergence
when γ � −1 is a clear indicator of a rapid growth of Bell
correlations, according to Eq. (28).

IV. BELL CORRELATIONS AT T = 0

The Harmonic approximation indicates the ground state of
the system is a superposition of two localized Gaussians, i.e.,

|ψ〉 �
N∑

n=0

(C(+)
n + C(−)

n )|N − n, n〉, (29)

where

C(±)
n =

( ω

2πN

) 1
4
e−( N±μ

2 −n)2 ω
N . (30)

Hence, by taking the peak values of the state coefficients
[located at n± = (N ± μ)/2] and substituting this result into
Eq. (28), we obtain

Qμ = log2

[
2μ

(N+μ

2

μ

)2(
N

μ

)−2
ω

2πN

]
. (31)

Keeping the dominant terms that scale with N , we obtain a
simple, but powerful, expression that allows us to lower bound
the strength of μ-body Bell correlations in the vicinity of the
quantum critical point, namely,

Qμ � μ log2

[
N + μ

N − μ

]
− μ − N log2(γ 2). (32)

Finally, by using Eq. (27), we obtain the compact formula

Qμ = N f (γ ), (33)

where

f (γ ) =
√

γ 2 − 1

|γ | [2 log2(
√

γ 2 − 1 + |γ |) − 1] − 2 log2 |γ |.
(34)

Most importantly, the correlator is extensive in N , which has
profound consequences for the quantitative characterization
of many-body Bell nonlocality. Moreover, this form of Qμ

implies that the value of γ at which the many-body Bell corre-
lations emerge is universal (i.e., independent of N) and equal
to γ0 � −1.3. The quality of this approximation is shown in
Fig. 6, where we plot the ratio of the Bell correlator Qμ that is
calculated using the exact diagonalization of the Hamiltonian
from Eq. (2) to the analytical result from Eq. (32) using
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FIG. 6. The ratio of the Bell correlator Qμ obtained from the
exact numerical diagonalization of Eq. (2) to the analytical approxi-
mation from Eq. (32) for N = 200, 500, and 1000 (from bottom to
top) as a function of γ .

N = 200, 500, and 1000 qubits. Clearly, the approximation
improves for larger N and with γ farther from the QPT.

Note that the value of Qμ carries information about the
nonlocality depth, i.e., about how many qubits are Bell cor-
related. So if

μ − 2 − (k + 1) < Qμ � μ − 2 − k, (35)

where k ∈ N, then this correlator can be reproduced with a
state of m qubits, where maximally k − 2 of them are not
Bell correlated with the rest [75,82,83]. By using Eq. (33) we
notice that the depth of Bell correlations in the ground state
can be lower bounded because maximally

k � N[�z0� − f (γ )] − 2 (36)

qubits are not Bell correlated. The description of the relation
between the remaining M = N − k particles, where

M � N[ f (γ ) − �z0�] + 2, (37)

requires a model that defies the local realism.
Hence, we conclude that the number of Bell-correlated

qubits M is, universally for all N , an extensive function of
N , starting from the critical point γ = γ0. This confirms that
Qμ is a useful tool to lower bound the nonlocality depth in this
system.

V. QUANTUM CORRELATIONS WITH NOISE

In this section we incorporate two sources of noise that
are inevitable in realistic conditions: thermal occupation of
excited states and fluctuations of the population imbalance
between the two modes.

A. Thermal noise

First, we calculate the Bell correlator and the nonlocality
depth in nonzero temperatures, considering the thermal den-
sity matrix


̂ = 1

Z
∑

n

|ψn〉〈ψn|e−Enβ, (38)

FIG. 7. The energy spectrum (eight lowest levels) of the
Hamiltonian Hbh for N = 500 atoms in the vicinity of the critical
point. The left panel shows the energies Ei (i = 0–7), while the right
panel displays the seven energy gaps with respect to the ground state
E0.

where β−1 = kbT , kb is the Boltzmann constant, Z is the
statistical sum, and Ĥbh|ψn〉 = En|ψn〉, with the Hamiltonian
from Eq. (2).

The characteristic temperature scales are set by the
eigenenergies (with respect to the ground state) of the
Hamiltonian; hence, first, we plot part of the spectrum for γ ′s
of interest and N = 500 atoms (see Fig. 7). The energy gaps
δi = Ei − E0 of the seven lowest-lying excited states are all
of the order of unity, apart from the first one, i.e., δ1, which
quickly converges to zero upon passing the QPT point. This
observation allows us to identify the relevant scale of β ′s.

The following toy model indicates that the temperature
should be kept well below this smallest gap δ1 to retain high
values of Qμ. Let us approximate the twin-peak ground state
with what is sometimes called a “Schrödinger’s kitten” state,

|ψ0〉 = 1√
2

(∣∣∣∣N + μ

2
,

N − μ

2

〉
+

∣∣∣∣N − μ

2
,

N + μ

2

〉)
. (39)

The gap δ1 dropping to zero is the result of the fact that this
state is almost degenerate with

|ψ1〉 = 1√
2

(∣∣∣∣N + μ

2
,

N − μ

2

〉
−

∣∣∣∣N − μ

2
,

N + μ

2

〉)
. (40)

Note that this is an approximation of the true ground and
first excited states at finite γ , while the exact degeneracy is
when γ → ∞ (i.e., when μ → N). Nevertheless, when the
temperature is kept sufficiently low that only |ψ0〉 and |ψ1〉
are populated, the thermal density matrix is approximately


̂ � 1

1 + e−δ1β
(|ψ0〉〈ψ0| + |ψ1〉〈ψ1|e−δ1β ). (41)

Substituting this 
̂ into Eq. (22) gives

Qμ = log2

⎡
⎣2μ

∣∣∣∣∣1

2

(
N

μ

)−1(N+μ

2

μ

)
1 − e−δ1β

1 + e−δ1β

∣∣∣∣∣
2
⎤
⎦. (42)

Clearly, when β � δ1, i.e., when kbT is much larger than the
gap, the correlator vanishes. This conjecture is fully confirmed
by the exact diagonalization, which gives the thermal state
and the correlator Qμ (see the right panel of Fig. 8). Here, the
temperature is picked to be equal to 10% of the energy gap δ1,
the value of which is calculated using either γ = −1.1 (solid
black line) or γ = −1.6 (solid gray line). The correlator Qμ

drops drastically when the interaction strength γ is far away
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FIG. 8. The Bell correlator calculated with the full Bose-
Hubbard Hamiltonian (solid lines) and with the approximate
formulas (dashed lines). Left: T = 0 for N = 100 (gray) and N =
500 (black) qubits. The approximate formula is given in Eq. (33).
Right: the correlator Qμ calculated with the thermal state [see
Eq. (38)] with N = 100 qubits. The black solid line is for kbT1 =
10% × δ1, which is the gap taken at γ = −1.1. The gray solid line
is for kbT2 = 10% × δ1, where the gap is for γ = −1.6. Hence,
T2 < T1. The vertical dashed lines and red dots indicate those values
of γ . Clearly, soon after passing these points, when the temperature
becomes comparable to the corresponding gap, the correlator drasti-
cally drops.

from the QPT, so the population of the excited state becomes
significant.

Recall that the many-body Bell correlations detected by
Qμ require γ < −1.3 [see the discussion below Eq. (33)].
This observation, together with the results from the previous
paragraph, yields the threshold temperature, above which the
Bell correlations will not be detected by Qμ. Namely, if γ

must be below γ0 and the temperature must be at least 1
order of magnitude smaller than the energy gap, the maximal
temperature at which Qμ > 0 is set by a fraction of the energy
gap δ1 at γ0. Since this gap rapidly shrinks with growing
N , we conclude that the higher N is, the more sensitive the
many-body Bell correlator Qμ is to any thermal excitations.

B. Fluctuations of population imbalance

We now focus on another source of noise, the origin of
which is the nonvanishing population imbalance between the
two modes [44]. This effect is represented by the addition
of the population imbalance operator to Eq. (2), giving the
Hamiltonian in units of �,

Ĥ (δ)
bh = −Ĵx + γ

N
Ĵz

2 + δĴz, (43)

where δ is a constant. The population imbalance fluctuates
incoherently between experimental realizations, effectively
introducing noise into the system. Denoting a ground state of
the Hamiltonian (43) as |ψ (δ)

0 〉, a good model of a state that
incorporates this noise is


̂imb =
∫ ∞

−∞
dδ p(δ)

∣∣ψ (δ)
0

〉〈
ψ

(δ)
0

∣∣, (44)

where p(δ) is the probability distribution of the random vari-
able δ. We model the noise fluctuations with a Gaussian p(δ)
and numerically calculate the Bell correlator Qμ. The result is
shown in Fig. 9 for N = 100 and σ = 0, 8 × 10−5, 3 × 10−4,
and 3 × 10−3 in units of �, using four values of the mean pop-
ulation imbalance, namely, 〈δ〉 = 0 [Fig. 9(a)], 〈δ〉 = 10−10

[Fig. 9(b)], 〈δ〉 = 10−8 [Fig. 9(c)], and 〈δ〉 = 10−6 [Fig. 9(d)].
Naturally, the effect is more pronounced for higher σ ′s and

FIG. 9. The Bell correlator Qμ as a function of γ for N = 100
and for four values of the population-imbalance noise width: σ = 0,
8 × 10−5, 3 × 10−4, 3 × 10−3. The higher the value of σ is, the lower
lying the curve is. The four panels correspond to the mean population
imbalance equal to (a) 〈δ〉 = 0, (b) 〈δ〉 = 10−10, (c) 〈δ〉 = 10−8, and
(d) 〈δ〉 = 10−6.

bigger mean population imbalances. We stress that even for
a minuscule σ or any 〈δ〉 �= 0, when γ → −∞, the Bell
correlations of all orders will vanish. The reason is that when
the interaction energy becomes very large and negative, even a
small population imbalance forces qubits to occupy the mode
with the lower energy and form a fully separable state of
either |N, 0〉 or |0, N〉. Nevertheless, our analysis reveals that
in the vicinity of the QPT, the many-body Bell correlations of
lower orders prevail in the presence of fluctuating population
imbalance.

VI. DISCUSSION AND CONCLUSION

In this work we analyzed the character of the many-
body Bell correlations in interacting multiqubit systems with
particle-exchange symmetry, such as the fully connected Ising
model in a perpendicular magnetic field and the tight-biding
Bose-Hubbard Hamiltonian of a Bose-Einstein condensate in
a double-well potential. Our analysis hinges on the obser-
vation that such systems can be mapped onto an effective
Schrödinger-like equation. This allows for detailed analytical
calculations using a harmonic approximation of the local min-
ima of the effective potential. As our main result, we showed
that upon passing a quantum phase transition, the ground state
of the system is characterized by strong Bell correlations that
are extensive in N . We also showed the existence of the thresh-
old temperature, above which the thermal noise dampens the
Bell correlations.

For this work, the role of symmetry was crucial since the
reduced dimensionality allows for high-N simulations and
for the Schrödinger-like equation approach. While for the
two-mode BEC this symmetry is inherent, for a spin chain it
requires all-to-all interactions [52]. Nevertheless, some of our
analysis holds even if this condition is relaxed. For instance,
when an initial product state evolves under the Ising-type
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Hamiltonian

Ĥ = −
∑
i> j

Ji j σ̂
(i)
z σ̂ ( j)

z + h
∑

i

σ̂ (i)
x , (45)

the strength and depth of many-body correlations improve
when the range of the distance-dependent interactions Ji j is
high. However, even finite-range interactions lead to the cre-
ation of many-body Bell correlations [82]. Also, the ground
state of the Hamiltonian (45) for h = 0 is the desired GHZ
state, disregarding the form of Ji j . For the nearest-neighbor
case, Ji j ∝ δi,i+1, the system undergoes a QPT at h = −1,
where the entanglement depth related to the GHZ type of
coherence grows rapidly [62,63,84].

With the expected advent of NISQ devices, such a precisely
tailored analysis might help to solve various theoretical and

experimental problems, particularly in the context of MBQC.
Nevertheless, our understanding of how many-body Bell cor-
relations can be used as a resource for modern quantum
technologies is still in statu nascendi. A seminal work on
quantum cryptography [85] and a more recent perspective on
quantum metrology [32] can serve as examples.
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