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Discrete time crystals in the presence of non-Markovian dynamics
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We study discrete time crystals (DTCs) in periodically driven quantum systems, in the presence of non-
Markovian dissipation. In contrast to DTCs observed in earlier works in the presence of Markovian dynamics,
using the open Dicke model in presence of Jaynes-Cummings-like dissipation, we show that non-Markovian
regime can be highly beneficial for stabilizing DTCs over a wide range of parameter values. This may be
attributed to periodically varying dissipation rates even at long times in the case of non-Markovian dynamics.
Further the Markovian and non-Markovian regimes show sharp distinctions for intermediate strengths of the
dissipator coefficient, with a time-independent steady state in the Markovian regime being replaced by varied
dynamical phases, including DTC order, in the non-Markovian regime. We also verify the robustness of the DTC
phase in the non-Markovian regime by introducing errors both in the Hamiltonian as well as in the dissipation.
Our study shows the possibility of using DTC as a probe for non-Markovian dynamics in periodically modulated
open quantum systems, at long times.
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I. INTRODUCTION

Many-body quantum systems driven out of equilibrium
present exciting fields of research [1], owing to the differ-
ent nontrivial behaviors exhibited by such systems, such as
Kibble-Zurek mechanism [2,3], dynamical localization [4,5],
and time-translational symmetry breaking [6,7], to name a
few. Recent developments in quantum simulators have en-
abled researchers to experimentally study the behavior of
many-body systems driven out of equilibrium as well [8,9].
Consequently, theoretical and experimental research on dy-
namics of many-body systems have received a lot of attention
in the recent years. In particular, time-translational symme-
try breaking in the form of continuous [10–16] or discrete
[7,17–19] time crystals have received wide interest from the
community in the last decade, and also realized experimen-
tally [8,20–22].

Discrete time crystals (DTCs) are associated with spon-
taneous symmetry breaking in time, and are formed in
periodically driven many-body quantum systems. In closed
quantum systems DTCs have been studied widely, both the-
oretically [7,17,23–25] as well as experimentally [8], in
many-body localized systems. More recently, DTCs have
been shown to exist in periodically driven clean quantum
systems as well [26,27], and also in the presence of dissi-
pation [28–30]. Such dissipative DTCs in periodically driven
many-body open quantum systems can be viewed as quantum
engines, wherein a part of the energy supplied through peri-
odic drive flows to a cold bath, while the rest is obtained as
output work [7,31]. Analogous to different phases of matter,
DTCs are robust to small perturbations. However, large pertur-
bations, such as errors in the Hamiltonian [32], or strong rates
of dissipation [29,33], can destroy a DTC. Consequently, find-
ing scenarios which can result in stable DTCs is a fundamental
question in the field of time-translational symmetry breaking
in many-body systems. Furthermore, open questions remain

regarding the existence and behavior of DTCs for different
types of dissipative dynamics. Here we address the above two
crucial issues by focusing on a periodically modulated many-
body quantum system in the presence of non-Markovian
dynamics. We show that suitably controlled non-Markovian
dynamics can result in the generation of DTCs as well as other
dynamical phases.

Dissipative dynamics can be classified as Markovian or
non-Markovian depending on the absence or presence of
memory effects, respectively [34]. Markovian dynamics can
be described by time-independent Lindblad superoperators,
such that the system approaches a long-time steady-state
monotonically. On the other hand, non-Markovian dynamics
are associated with memory effects, which may result in the
system moving away from the steady state for some intervals
of time [35–39].

In this work, we focus on an open Dicke model, and
present results in the Markovian limit, following Ref. [32].
In the case of Markovian dynamics, DTC phase obtained for
weak dissipation is replaced by a time-independent steady-
state (TISS) for intermediate or higher rates of dissipation
[29]. In order to study the dynamics in the non-Markovian
regime, we focus on a Jaynes-Cummings-like dissipator with
tunable parameters, which allows one to traverse between the
Markovian and the non-Markovian regimes [34]. We show
that in contrast to the Markovian regime, the non-Markovian
regime can be associated with a stable DTC for a wide
range of parameter values, thereby significantly expanding the
regime of parameters allowing the existence of time trans-
lational symmetry breaking. We present phase diagrams for
the Markovian and non-Markovian regimes; striking differ-
ences emerge in the response of a system in the presence
of Markovian and non-Markovian dissipation, for intermedi-
ate strengths of the dissipator coefficient. This presents the
intriguing possibility of using dissipative DTC as a probe
for detecting non-Markovianity at long times. Furthermore,
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we show that the DTC phase persists in the non-Markovian
regime even in the presence of a random noise in the
dissipator.

We begin by discussing the model and dynamics Sec. II; we
start by discussing the dynamics in a generic open quantum
system in Sec. II A, and then focus on the specific example
of an open Dicke model in Sec. II B. We consider Markovian
dynamics in Sec. II B 1, while we address the non-Markovian
regime in Sec. II B 2, and dissipation in the presence of
a random noise in Sec. II B 3. Finally, we conclude in
Sec. III.

II. MODEL AND DYNAMICS

A. Dissipative discrete time crystals

We consider a system S described by generic periodically
modulated Hamiltonian H (t ) = H (t + T ). The system is cou-
pled to a dissipative environment, such that the state ρ of the
system evolves following the master equation

ρ̇ = − i

h̄
[H (t ), ρ(t )] + κ (t )L[ρ(t )]. (1)

Here L is a Lindblad superoperator, while κ (t ) determines
the rate of thermalization with a bath, which we assume to
be time-dependent in general. Complete positivity demands∫ t

0 κ (t ′)dt ′ � 0 for all t . Furthermore, in case of Markovian
dynamics, κ (t ) � 0 for all times, which ensures that the sys-
tem approaches the long-time steady state at all times. As
shown in Ref. [32] for a time-independent κ (t ) = κ0 ∀ t , a
periodic modulation in H (t ) can result in a DTC in case of
Markovian dynamics, for small values of κ0. On the other
hand, a large κ0 is associated with rapid thermalization with
the bath in a time scale τth ∼ κ−1

0 , and a destruction of the
DTC phase [29].

In contrast to Markovian dynamics, κ (t ) can assume
negative values for some time intervals in the case of non-
Markovian dynamics [35]. This results in the non-Markovian
regime being associated with information backflow, such that
a negative κ (t ) may drive S away from the long-time steady
state for some time-intervals [38]. The distinct properties
of Markovian and non-Markovian dynamics raises questions
regarding the existence and characteristics of DTCs in the
non-Markovian regime. For example, in a non-Markovian
dynamics with a continuously varying κ (t ), the dissipative
dynamics slows down significantly close to κ (t ) → 0, which
may be beneficial for the stabilization of a DTC phase. Be-
low we focus on the specific setup of a Dicke model in the
presence of a Jaynes-Cummings-like dissipation, to show that
indeed, the behavior of DTC in the non-Markovian regime
can be significantly different from that seen in the Markovian
regime.

B. Modulated open Dicke model

We consider an open Dicke model comprising N two-level
atoms in a cavity, which is described by the Hamiltonian [40]

Ĥ (λ) = ωâ†â + ω0Ĵz + 2λt√
N

(â + â†)Ĵx. (2)

Here a and a† are, respectively, the Bosonic annihilation and
creation operator for the photons, Jμ = ∑N

i=1 σ
μ
i , where σ

μ
i

denotes the Pauli matrix corresponding to the ith spin along
the μ = x, y, z axis, ω is the frequency of photon field, ω0

represents the transition frequency of the two level atoms, and
λt is the atom-photon coupling strength, which we consider to
be time-dependent in general.

The setup considered here possesses a Z2 symmetry; the
Hamiltonian (2) commutes with the parity operator P =
eiπ (â†â+Ĵz+N/2), such that Ĥ (λ) remains invariant under the
transformation â → −â, and Ĵx → −Ĵx. However, in the ther-
modynamic limit N → ∞, the Z2 symmetry is spontaneously
broken leading to superradiant phase transition at the critical
value of λ = λc = 1

2

√
(ω0/ω)(ω2 + κ2

0 /4) [32,41].
In order to study the possibility of time-translational sym-

metry breaking in the presence of non-Markovian dynamics,
we now consider a phenomenological model, wherein the
above atom-photon setup [see Eq. (2)] evolves in the presence
of a dissipative environment, following the master Eq. (1).
In analogy with the Jaynes-Cummings model describing the
dynamics of a two-level system coupled to a bath comprising
Bosonic field modes characterized by a Lorentzian spectral
function [34], we consider here a κ (t ) given by

κ (t ) =
{

2mκ0 sinh(td/2)
d cosh(td/2)+m sinh(td/2) |κ (t )| < κmax

κmax |κ (t )| � κmax.
(3)

Here d =
√

m2 − 2mκ0, L[â]ρ̂ = âρ̂â† − 1
2 {â†â, ρ̂} [see

Eq. (1)], and κmax > κ0 is a parameter which can be tuned to
control the maximum possible rate of dissipation. In the case
of the Jaynes-Cummings model, κmax → ∞, m denotes the
spectral width of the bath, while κ0 is related to the system-
bath coupling strength [34].

The above form of κ (t ) [Eq. (3)] allows us to tune between
the Markovian regime (κ0 < m/2) in which case κ (t ) > 0 ∀ t ,
and the non-Markovian regime (κ0 > m/2), in which case
κ (t ) assumes an oscillatory form realized by replacing sinh
(cosh) by sin (cos) in Eq. (3), and can can take negative values
for some time intervals (see Sec. II B 2) [34,38].

Following Ref. [32], one can use Eq. (1) to arrive at
time-evolution equations for the scaled variables x = 〈â +
â†〉/√2Nω, p = i〈â − â†〉/√2Nω, and j = ( jx, jy, jz ) with
jμ = 〈Ĵμ〉/N , in thermodynamic limit of N 
 1 (see Ap-
pendix A).

1. Markovian regime

We start by focusing on the extreme Markovian limit
of m 
 κ0, m → ∞, in which case κ (t ) reduces to the
time-independent form κ (t ) ≈ κ0 for all times. For a time-
independent λt = λ0, the above setup has two-symmetry
broken steady states ρss and ρ ′

ss (see Appendix A) [32,42].
In order to study the emergence of time-translational sym-

metry breaking in the above system, we introduce a period
doubling dynamics aimed at periodically evolving between
ρss and ρ ′

ss. To that end, we apply a periodically modulated
λt of the form

λt+T = λt =
{
λ0 0 � t < T/2
0 T/2 � t < T ,

(4)
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FIG. 1. The mean magnetizations jx , jy, jz and the corresponding Bloch sphere representations are shown for the Markovian with m → ∞
(a), (b), (c), (d) and non-Markovian (e) and (f) regimes. We get a DTC phase for (a) small κ0 = 0.05, represented by two dots in the (b) Bloch
sphere. In contrast, a TISS is obtained for large κ0 (c) and (d) in the Markovian regime. The DTC phase is preserved for intermediate values of
κ0 in the non-Markovian regime (e) and (f). Here ωT = 1, T = 2π , ε = 0.02, λ0 = 1, (a) κ0 = 0.05, (c) κ0 = 2.7 (c) ωT = d/2, κ0 = 2.7 and
m = κ0/4, T = 2π/ωT .

where, T = 2π
ωT

and λ0 > λc [32]. In the resonant case ω = ω0

and in absence of dissipation (κ0 = 0), the above form of
λt results in the parity operation P̂ = exp[−i(T/2)H (0) +
iπN/2] during the second half period T/2 � t < T , up to a
global phase which we can ignore.

We start with the system in one of the symmetry broken
steady states ρs at the start of a time period. The system stays
at ρs during the first half of the time period, during which
time λt = λ0. Thereafter, the modulation in λ results in a
parity operation P̂ during the second half period, which, in
the absence of a dissipative bath (i.e., κ0 = 0), would take the
system to the other symmetry broken steady state ρ ′

s = P̂ρsP̂†

at the end of the second half period. Consequently, the above
modulation Eq. (4) results in ρ(t ) = ρs (ρ(t ) = ρs′ ) at the end
of even (odd) number of time periods for κ0 = 0, thus giving
rise to a DTC behavior.

In this Markovian regime, the parameter κ (t ) changes with
time for small t , finally reaching the value κ (t ) = 2mκ0/(d +
m) for long times t 
 d−1. However, our numerical analysis
shows that the behavior of the system at long times (t 

T, d−1) is independent of d .

One can study the robustness of the DTC phase by intro-
ducing an error parameter ε, defined by ω = (1 − ε)ωT ; ω0 =
(1 + ε)ωT . As shown in Ref. [32], the DTC order is robust to
small values of ε, while a larger ε may result in destruction of
the same.

Let us now focus on the behavior of the DTC order
with increasing values of the dissipator coefficient κ0. The

parameter κ0 sets the time scale of thermalization τth ∼ κ−1
0 .

Consequently, a low κ0 (i.e., τth 
 T ) may be expected to
facilitate the emergence of DTC [see Fig. 1(a)], as can also be
verified in the Bloch sphere representation of the stroboscopic
dynamics, where a DTC corresponds to two distinct states,
shown by the blue dots in Fig. 1(b). On the other hand, in
the limit of large κ0 (i.e., τth � T ), the dissipative mechanism
may be expected to dominate the dynamics, thus leading to
destruction of the DTC phase, and emergence of a TISS [see
Figs. 1(c)–1(d) [29]. Therefore it is crucial to study scenar-
ios where a DTC order might be robust over a wide range
of parameter values. Below, we go beyond the Markovian
approximation to show that remarkably, non-Markovian dy-
namics may allow us to achieve the above aim, thus resulting
in DTC which is robust to both ε and κ0.

2. Non-Markovian regime

In this section, we focus on the non-Markovian regime,
obtained for κ0 > m/2. In this case κ (t ) assumes the form [see
Eq. (3)]

κ (t ) =
{

2mκ0 sin(t |d|/2)
|d| cos(t |d|/2)+m sin(t |d|/2) |κ (t )| < κmax

κmax |κ (t )| � κmax.
(5)

This regime corresponds to a periodically varying κ (t ) with a
time period TNM = 4π/|d|; κ (t ) < 0 for some time intervals,
which eventually results in the so-called information back-
flow in the system [34,43]. Here for simplicity we consider
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TP DTC DP 

FIG. 2. Stroboscopic dynamics (a), (b), (c), (d), of the atomic average angular momentum jμ for atom-photon coupling λ = 1 and time
dependent photon-loss rate κ (t ). As ε is varied, various dynamical phases emerges over long periods of time. Only the last 30 periods is shown
in the figure. The last 200 periods (blue) are projected onto the Bloch sphere. Here κ0 = 2.7 and κmax = 5.

a periodically modulated λt with time period T = TNM [see
Eq. (4)].

In contrast to the behavior reported for Markovian dy-
namics [32] where DTC phase is present only for small
κ0 [see Figs. 1(a)–1(d), numerical analysis shows that non-
Markovian dynamics makes DTC more robust against κ0, as
signified by the presence of time-crystalline order for inter-
mediate values of κ0 and κmax; this is verified both for the
Markovian limit with time-independent κ (t ) = κ0, obtained
for m/κ0 → ∞ (see Fig. 1), as well as for finite values of m/κ0

(see Figs. 2 and 3). This robustness of the DTC phase w.r.t.
κ0 may be attributed to the periodically varying κ (t ) in the

non-Markovian regime, even at long times [34,44]. However,
we note that the DTC phase is replaced by a TISS or a thermal
phase for large κmax (see Appendix B).

In addition to robustness w.r.t. large κ0, the DTC
phase shows resilience even in the presence of a nonzero
detuning parameter ε. Analogous to that seen in the
Markovian regime [32], as we vary ε, several dynamical
phases emerge, viz. thermal [Fig. 2(a)], DTC [Fig. 2(b)],
sextet [Fig. 2(c)], and limit cycle [Fig. 2(d)] for these
parameters.

In order to have a deeper understanding of the effect of
non-Markovian dynamics on the presence of DTC, we study

FIG. 3. Phase diagram representing TISS, DTC, other dynamical phases (DP) and thermal phase (TP) as functions of m and and κ0 =
2.7 a)κmax = 5, b)κmax = 3, the dashed line at m = 2κ0, represents the transition line from NM to M regime.
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TABLE I. Time scales.

Time scales
Markovian (M)

regime
Non Markovian(NM)

regime Remarks

Modulation period of λt T T In the DTC phase the system shows oscillations
with a time period 2T .

Thermalization time τth τth ∼ κ−1
0 τth ∼ κ−1

0 DTC phase is preserved for intermediate values
of κ0 (κ0 � T −1) in the NM regime.

Time period of information back
flow ≡ time period of κ (t )

NA TNM = 4π/|d| In the NM regime we have taken TNM = T for
simplicity.

the behavior of the system for different values of ε and m/κ0.
The results are summarized in the phase diagram Fig. 3. We
navigate between the Markovian (m/κ0 > 2) and the non-
Markovian (m/κ0 < 2) regimes by varying m, for a constant
κ0. Interestingly, as seen in Fig. 3, one can clearly distinguish
the Markovian and non-Markovian regimes from the stark
difference in behavior of the system across the transition.
For a large enough κ0 (κ0 
 T −1), the system approaches a
TISS in the Markovian regime. However, varied dynamical
phases, including DTC, appear on undergoing transition to the
non-Markovian regime at m = 2κ0 (highlighted by a dashed
line in Fig. 3). Interestingly, the DTC phase shows the most
robustness w.r.t. ε close to the Markovian to non-Markovian
transition line m = 2κ0. This might be owing to small values
of the parameter d for m → 2κ−

0 , which results in a slowly
varying κ (t ), and an effectively longer time scales ∼ d−1.
As we move away from the transition line (i.e., m � 2κ0),
we find rich dynamical phases, including DTC which shows
period doubling [see Fig. 2(b)], sextet which shows periodic
behavior with a time period of 6T [see Fig. 2(c); the corre-
sponding Bloch sphere shows six dots as the system oscillates
between six stable solutions as we vary ε], and limit cycle
where the system oscillates between two periodic orbits (see
Appendix C). Other dynamical phases characterized by differ-
ent time periods are shown in Fig. 2(d) and in the red shaded
regimes in the Fig. 3. In addition, we get thermal phases,
characterized by irregular trajectories and spins randomly dis-
tributed on the Bloch sphere [see Fig. 2(a)]. However, we
note that this stark difference between Markovian and non-
Markovian regimes vanishes for small κ0, in which case varied
dynamical phases may exist for different values of ε in the
Markovian regime as well.

3. Non-Markovian regime with noisy aperiodic κ(t )

We next focus on the question whether the DTC phase in
the non-Markovian regime is stable in the presence of random
noise in κ (t ). To this end, we consider an aperiodic κ (t ),
realized by introducing random fluctuations in the dissipator
coefficient, given by:

κ (t )′ = κ (t ) + a0 f (t ). (6)

Here f (t ) (−1 � f (t ) � 1) is a random function applied at
every time step, while a0 gives the strength of the fluctuations.

As shown in Fig. 4, the DTC order persists in this case,
thereby showing the robustness of DTC phase in the non-
Markovian regime, in the presence of intermediate values of

κ0, nonzero detuning error ε as well as random noise f (t ) in
the dissipator coefficient.

III. CONCLUSION

We study the emergence of DTC in the presence of non-
Markovian dynamics by considering an open Dicke model
with Jaynes-Cummings-like dissipation κ (t ) [cf. Eq. (3)]. Our
analysis shows that in contrast to Markovian dynamics, the
DTC phase is more robust to a wide range of parameter
values in the non-Markovian regime (m < 2κ0), which may
be attributed to periodically varying κ (t ) even at long times.
We present a dynamical phase diagram w.r.t. ε and m (cf.
Fig. 3). The transition from Markovian to non-Markovian
regime at m = 2κ0 is marked by TISS for all values of ε in the
Markovian regime for large enough κ0, which changes to var-
ied dynamical phases, including DTC, in the non-Markovian
regime. Furthermore, the DTC phase emerging for m close to
2κ0 shows substantial robustness w.r.t. ε, while this robustness
is reduced, even though does not vanish, as we move deeper
into the non-Markovian regime of m < 2κ0. Furthermore, we
verify the presence of robust DTC order in the non-Markovian
regime even for aperiodic κ (t ), realized by introducing a ran-
dom noise in the dissipator coefficient. Our analysis involves
different time scales, which we tabulate below in Table I.

We note that the results presented here shows the possi-
bility of using DTC as a probe for non-Markovian dynamics
at long times, for intermediate strengths of the dissipator
coefficient κ0. In the absence of an external modulation, the
steady-state of a dynamics may be identical for the Markovian
and the non-Markovian dynamics [34,38]. Consequently, in
general a probe for differentiating between the Markovian and
non-Markovian regimes is applicable only for short times,

FIG. 4. Figure showing (a) an aperiodic κ (t ), formed through the
introduction of random fluctuations in the dissipation [see Eq. (6)],
and (b) the corresponding DTC phase. Here κ0 = 2.7, m = κ0/4, ε =
0.03, a0 = 0.5 and κmax = 5.
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FIG. 5. Stroboscopic dynamics for κmax = 10, ε = 0.02, (a) m =
κ0 and (b) m = κ0

4 .

before the system reaches the steady-state, which can be
highly challenging in cases of short thermalization times. In
contrast, as discussed here, the long-time state reached by a
system can change drastically in the presence of a periodic
modulation; for intermediate values of κ0 we get a TISS
in case of Markovian dynamics, which changes to a DTC
phase for some ranges of ε in the non-Markovian regime
(see Figs. 3). This may provide us with a novel way of es-
timating the nature of the dynamics even at long times, when
conventional probes acting in absence of periodic modulation
will fail.

We expect the dissipative DTCs studied here can be real-
ized experimentally in currently existing setups. For example,
the presence of DTCs has been verified experimentally in
different platforms, both in closed quantum systems, such as
in ion traps [8], and in the presence of dissipation, for example
in optical cavities [45,46]. Experimental studies of DTCs in
the presence of different forms of dissipation would require
control over bath spectral functions, which for example can
be achieved through the introduction of filters [47].

Our results show that non-Markovian dynamics can be
highly relevant for time-translational symmetry breaking in
many-body open quantum systems, and can show features
distinct from those seen in the Markovian regime. This also
raises open questions regarding the fate of DTCs in more
generic forms of non-Markovian dynamics, and regarding the
possible role played by information back-flow in the forma-
tion of DTCs.
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FIG. 6. A limit cycle, stroboscopic dynamics for κmax = 3, ε =
0.07, (a) m = κ0

5 .

APPENDIX A: EVOLUTION EQUATIONS
AND STEADY STATES

As discussed in Ref. [32], one can use Eq. (1) to arrive
at the following time-evolution equations for the scaled vari-
ables x = 〈â + â†〉/√2Nω, p = i〈â − â†〉/√2Nω, and j =
( jx, jy, jz ) with jμ = 〈Ĵμ〉/N ,

dj
dt

= (−ω0ez + 2λt

√
2ωxex ) × j,

dx

dt
= p − κ (t )

2
x,

d p

dt
= −ω2x − κ (t )

2
p − 2λt

√
2ωx jx, (A1)

in the thermodynamic limit for N 
 1.
For a time-independent λt = λ0, the setup considered here

has two-symmetry broken steady states ρss and ρ ′
ss [32,42]

jx = ±
√

1 − λ4
c

λ4
, jy = 0, jz = −λ2

c

λ2
,

x = ∓λ

√
2ω

(
1 − λ4

c
λ4

)
ω2 + κ2

0 /4
,

p = ∓κ0/2

√
2ω

(
1 − λ4

c
λ4

)
ω2 + κ2

0 /4
. (A2)

APPENDIX B: DYNAMICS FOR LARGE κmax

In case of large κmax dissipation dominates the dynamics,
such that the system reaches a TISS, as shown in Fig. 5(a) or
a thermal phase, as shown in Fig. 5(b).

APPENDIX C: LIMIT CYCLE

As we vary ε the system may oscillate between two limit
cycles, as shown in Fig. 6 (see Sec. II B 2).
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