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Quantum trajectory entanglement in various unravelings of Markovian dynamics
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The cost of classical simulations of quantum many-body dynamics is often determined by the amount of
entanglement in the system. In this paper, we study entanglement in stochastic quantum trajectory approaches
that solve master equations describing open quantum system dynamics. First, we introduce and compare adaptive
trajectory unravelings of master equations. Specifically, building on [Phys. Rev. Lett. 128, 243601 (2022)], we
study several greedy algorithms that generate trajectories with a low average entanglement entropy. Second,
we consider various conventional unravelings of a one-dimensional open random Brownian circuit and locate
the transition points from area- to volume-law-entangled trajectories. Third, we compare various trajectory
unravelings using matrix product states with a direct integration of the master equation using matrix product
operators. We provide concrete examples of dynamics, for which the simulation cost of stochastic trajectories is
exponentially smaller than the one of matrix product operators.

DOI: 10.1103/PhysRevA.110.012207

I. INTRODUCTION

Entanglement plays a central role in modern quantum
science as a resource for several quantum information pro-
cessing tasks [1–5]. At the same time it poses a substantial
obstacle to the efficient simulations of quantum many-body
systems on classical computers [6–9]. For instance, simulat-
ing quench dynamics of closed many-body systems can lead
to the accumulation of extensive entanglement, resulting in
prohibitively large cost of classical simulations [8–13]. The
hardness of classically simulating such dynamics has been
rigorously established via arguments grounded in complexity
theory [14–17] and has spurred recent interest in developing
and implementing protocols aimed at achieving a quantum
advantage [18–22].

Experimental implementations of quantum many-body dy-
namics on contemporary quantum hardware are, however,
inherently affected by noise, and thus they are best described
in terms of open quantum systems [23–27]. When the quan-
tum system is open, the complexity of its classical simulation
requires reevaluation, since simulating noisy quantum dynam-
ics on a classical computer can potentially be more efficient
than its noiseless counterpart. Several classical algorithms for
open-system dynamics leverage this fact, albeit mostly indi-
rectly. Among them are algorithms based on matrix product
or neural network density operators that represent and evolve
the full system density operator [28–32]. Another category
encompasses stochastic methods, where the presence of noise
is incorporated explicitly as a stochastic element in the al-
gorithm. In particular, in quantum trajectory techniques the
system density operator and its dynamics are obtained by
statistical averaging over pure-state wave functions [33–41].
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Tensor network methods such as matrix product states (MPSs)
can sometimes provide an efficient means to represent each of
these many-body pure-state trajectories [42–45].

In Ref. [46] we have introduced a novel way to directly
leverage noise in trajectory-based stochastic methods. The
central premise relies on the fact that the same system dy-
namics can be obtained by different unravelings, which give
different ensembles of pure-state trajectories. Specifically,
Ref. [46] puts forward the idea to adaptively optimize the
unraveling choice to minimize the average entanglement,
which acts as a proxy of the cost of classically representing
trajectories. The physical mechanism underlying this idea
is reminiscent of the phenomenon of measurement-induced
phase transitions [47–60]. This association stems from the
interpretation of the quantum trajectory methods as simula-
tions of the dynamics of (continuously) monitored quantum
systems [61–63].

In this paper, we expand upon the concept introduced
in Ref. [46], analyzing entanglement in various quantum
trajectory schemes. We complement our discussion with ex-
plicit examples of one-dimensional open quantum dynamics,
demonstrating that some trajectory-based methods employing
MPSs can yield an exponential reduction in classical com-
putational cost compared with other MPS trajectory-based
methods or compared with conventional matrix product op-
erator (MPO) techniques. Finally, we note that our findings
are interesting not only from a computational point of view,
but also from a fundamental quantum-information-theoretic
perspective. This follows the fact that our analysis gives rise
to heuristic algorithms for finding upper bounds on mixed-
state entanglement measures, such as the entanglement of
formation (EoF), a task that holds an independent and intrinsic
interest [64–69].

This paper is structured as follows: In Sec. II we review
basic concepts and introduce the formalism this work is built
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upon. This includes a brief review of the notion of entan-
glement in pure and mixed states, as well as the discussion
on stochastic propagation and quantum trajectories within
the formalism of quantum channels. In Sec. III we show the
results obtained using the concepts presented in Sec. II. These
include a comparison between various optimization strategies
to simulate noisy quantum systems, as well as the results of
the numerical experiments on relevant many-body models,
with which we explore the practicality of developed ideas.

II. FORMALISM AND METHODS

In this section we review important basic concepts, intro-
duce the notation and develop the formalism that we employ
for the rest of the paper. In Sec. II A we briefly review standard
entanglement measures for pure states and efficient tensor
network representations thereof and consider the notions of
pure-state ensembles and ensemble-averaged functions of
mixed states. In Sec. II B we introduce the concept of a quan-
tum channel as well as variations of the quantum trajectory
approach as a means to simulate quantum channels. Then in
Sec. II C we consider a special case of continuous Markovian
quantum channel, for which in Sec. II D we develop the con-
cept of an adaptive entanglement optimization.

A. Bipartite entanglement and pure-state decompositions

1. Pure states

Consider a pure state |ψ〉 of a one-dimensional1 quantum
many-body system, consisting of L subsystems with a local
Hilbert-space dimension d . Throughout this work we are in-
terested in the entanglement between subsystem A and its
complement B. Important objects for quantifying this bipartite
entanglement are the rank χ and the eigenvalues {λ1, . . . , λχ }
of the reduced state of either of the partitions. For instance,
the von Neumann entanglement entropy is given by [70]

E (|ψ〉) = −
χ∑

i=1

λi log2 λi. (1)

The rank χ , also known as the bond dimension, is of central
importance for tensor-network-based methods, such as MPS
techniques, because it governs the computational cost of rep-
resenting and processing such states on classical computers
[6]. The von Neumann entropy of the state (1) is often used
as a proxy for this cost. For a comprehensive review on MPSs
we refer the reader to Refs. [42,43].

2. Mixed states and pure-state decompositions

Imagine now that our system is in a mixed state given by
the density matrix ρ, a positive semidefinite Hermitian opera-
tor with a unit trace. This operator can always be decomposed

1Throughout this text we consider one-dimensional systems for
simplicity. However, many considerations can be generalized to
higher dimensions.

into an ensemble of pure states:

ρ =
k∑

α=1

pα|ψα〉〈ψα|. (2)

The decomposition (2) represents ρ as a statistical mixture
of pure, normalized states |ψα〉 with probabilities pα . It
is also useful to introduce the unnormalized states |ψ̃α〉 =√

pα|ψα〉, such that ρ = ∑k
α=1 |ψ̃α〉〈ψ̃α|, and the notation

�̃ ≡ (|ψ̃1〉, |ψ̃2〉, . . . , |ψ̃k〉) for a compact representation of
the pure-state ensemble. Note that the ensemble size k is
bounded from below by the rank of the density matrix, k �
rank(ρ).

It is important to notice that the decomposition (2) is not
unique [71]. Two different ensembles of pure states give the
same density matrix

ρ =
k∑

α=1

|ψ̃α〉〈ψ̃α| =
r∑

α=1

|φ̃α〉〈φ̃α|, (3)

if these two pure-state ensembles are isometrically related:

|φ̃α〉 =
k∑

β=1

Tα,β |ψ̃β〉, (4)

where T ∈ T r
k is an instance of an r × k isometry (right uni-

tary matrices) [64]. We use the shorthand notation 
̃ = T �̃

to write Eq. (4) more compactly.
Since the pure-state ensembles �̃ and 
̃ are equivalent in

terms of their density matrix ρ, all ensemble-averaged linear
functions of the pure-state projectors, e.g., expectation values
of operators, coincide. However, the ensemble averages of
nonlinear functions are in general different from one ensemble
to another. An important example is an ensemble-averaged
entanglement entropy (EAEE):

Ē [�̃] =
k∑

α=1

pαE (|ψα〉), (5)

where E (|ψα〉) is the von Neumann entanglement entropy (1).
The dependence of the EAEE (5) on the pure-state ensemble
�̃ that decomposes ρ in Eq. (2) is the key concept behind
the mixed-state entanglement measure known as the entan-
glement of formation (EoF) [72], which is the result of the
minimization of the EAEE over all possible ensembles of all
possible sizes r:

min
r

inf
T ∈T r

k

Ē [T �̃] ≡ E f (ρ). (6)

According to Carathéodory’s theorem [73–75], the optimum
(6) is attained by ensembles of size r � rank2(ρ). Computing
the EoF for a generic many-body quantum state is known to be
NP hard [76,77]. Nevertheless, finding a pure-state decompo-
sition with low EAEE is practically useful, even if the global
minimum cannot be found. In particular, in the case when the
pure states from (2) are expressed as MPSs, a lower EAEE (5)
should allow for a more economic state representation.
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B. Quantum channels and trajectories

We describe the dynamics of quantum systems using a
quantum channel E [70], which is a completely positive trace-
preserving map that maps an input state of the system ρin to
an output state ρout:

ρout = E (ρin ) =
k∑

α=1

KαρinK†
α , (7)

where Kα are the Kraus operators that satisfy
∑k

α=1 K†
αKα =

1. It is also useful to introduce the notation K =
(K1, K2, . . . , Kk ) as a compact way to denote the Kraus rep-
resentation of a quantum channel.

It is important to notice that the Kraus representation (7)
is not unique. Two different sets of Kraus operators represent
the same quantum channel E :

ρout =
k∑

α=1

KαρinK†
α =

r∑
α=1

RαρinR†
α, (8)

if they are isometrically related:

Rα =
k∑

β=1

Tα,βKβ, (9)

with T ∈ T r
k being an isometric (right unitary) transformation.

We use the short-hand notation R = TK to write Eq. (9) more
compactly. One can notice the analogy between the transfor-
mation of the Kraus representations (9) and the transformation
of the ensemble states (4). As we explore below, this trans-
formation between different Kraus representations is directly
related to the possibility to construct different stochastic prop-
agation operators for a given quantum channel.

Throughout this work we are interested in sequential quan-
tum channels that are composed of many channels applied in
sequence. That is, if the system is initially in a state ρ0, its
output state ρn after a sequence of n quantum channels can be
written as

ρn = E (n)(ρn−1) = E (n)(· · · E (i)(· · · E (1)(ρ0))), (10)

where E (i) is the ith quantum channel given by the Kraus
representation K(i) = (K (i)

1 , . . . , K (i)
ki

). This model includes
two important examples. First, it can be used to describe
discrete quantum circuits, where a single quantum channel
E (i) represents the ith layer of the circuit. Importantly, the
quantum channel description allows us to include the case of
imperfect quantum gates with uncorrelated noise, an instance
of which is considered in Sec. III C 1. Second, this model
also includes continuous dynamics governed by Markovian
master equations, which is described in detail in Sec. II C and
is used in the most parts of Section III. In the remainder of this
Sec. we consider the connection between sequential quantum
channels and quantum trajectories.

1. Stochastic propagation and quantum trajectories

A sequential quantum channel implies a quantum dynam-
ics that can be solved by the quantum trajectory method [62].
In this method, instead of keeping track of the full system
state ρn from one step to the next, one sequentially samples

pure states generated at each step and recovers the solution by
statistical averaging. To illustrate this, let us consider a system
initialized in a pure state ρ0 = |ψ〉〈ψ |. The state ρn generated
by the sequence of quantum channels (10) can be expressed
as

ρn =
∑

αn,...α1

K (n)
αn

· · · K (1)
α1

|ψ〉〈ψ |K (1)†
α1

· · · K (n)†
αn

(11)

=
∑

αn,...,α1

pαn,...,α1 |ψαn,...,α1〉〈ψαn,...,α1 |, (12)

where αi ∈ {1, . . . , ki} for each i ∈ {1, . . . , n}. In the spirit
of decomposition (2), the state (12) can be interpreted as a
mixture of normalized pure states

|ψαn,...,α1〉 ∝ K (n)
αn

· · · K (1)
α1

|ψ〉, (13)

with probabilities

pαn,...α1 = 〈ψ |K (1)†
α1

· · · K (n)†
αn

K (n)
αn

· · · K (1)
α1

|ψ〉. (14)

The quantum trajectory approach is a method to sample the
states (13) referred to as quantum trajectories according to the
probability distributions (14). This is achieved by sequentially
sampling pure states at each step of the sequence (10). For
instance, after application of the first quantum channel from
the sequence E (1), the full state of the system is described by

ρ1 = E (1)(ρ0) =
k1∑

α1=1

K (1)
α1

|ψ〉〈ψ |K (1)†
α1

, (15)

which again, as in (2), can be viewed as a pure-state
decomposition:

ρ1 =
k1∑

α1=1

|ψ̃α1〉〈ψ̃α1 | =
k1∑

α1=1

pα1 |ψα1〉〈ψα1 |, (16)

where |ψ̃α1〉 = K (1)
α1

|ψ〉 are pure states with corresponding
probability weights pα1 = 〈ψ̃α1 |ψ̃α1〉. Using these weights,
one can stochastically sample a single pure state from the
ensemble �̃1 = (|ψ̃1〉, . . . , |ψ̃k1〉), thus stochastically propa-
gating the state. That is, with probability pα1 one sets the
quantum trajectory after the first step to be |ψα1〉.

To continue the stochastic propagation of this trajectory,
one executes the same procedure for the next quantum chan-
nel, E (2)(|ψα1〉〈ψα1 |). Iterating this stochastic algorithm for
the whole sequence of channels generates a single quantum
trajectory after n steps, |ψαn,...,α1〉, as given in Eq. (13). It
is important to observe that the probability to obtain this
trajectory is given by (14).

Stochastically generating M independent trajectories ac-
cording to the algorithm described above, one recovers the
state of the system ρn from the following unbiased estimator:

ρn = lim
M→∞

1

M

M∑
�=1

|ψ�〉〈ψ�|, (17)

where � = (αn, . . . , α1) labels the sampled trajectories. In the
case when the initial state is mixed, one can simply consider
each pure state from the mixture separately and then take the
average.
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2. Adaptive stochastic propagation

In the standard trajectory sampling method described
above the Kraus representations are fixed for all of the quan-
tum channels and trajectories. In a more general setting, one is
allowed to change Kraus representations from one trajectory
to another. This simply follows from the fact that mixtures of
different pure-state decompositions of the same density opera-
tor also form valid decompositions. We can further generalize
this by choosing Kraus representations in a way that depends
on the state of current trajectory; that is, in an adaptive way
[40]. The corresponding adaptive stochastic propagators gen-
erate valid quantum trajectories that recover the density matrix
via (17), as we discuss in the following.

To demonstrate the validity of adaptive trajectory sam-
pling, let us consider again the first step in the sequence (10).
Following (9) we choose a transformed Kraus representation
R(1)

α1
= ∑k1

β1=1 Tα1,β1 K (1)
β1

to obtain

ρ1 =
r∑

α1=1

R(1)
α1

|ψ〉〈ψ |R(1)†
α1

. (18)

Since the isometry T is arbitrary, we can choose it in such
a way that the corresponding pure-state ensemble 
̃1 =
(R(1)

1 |ψ〉, . . . , R(1)
r |ψ〉) has favorable properties. For example,

as mentioned in Sec. II A, the states in an ensemble with
a lower EAEE (5) can be represented more efficiently with
MPSs. Importantly, the transformation T can depend on the
initial state |ψ〉. After the choice of T is made, one samples
a state |φ̃α1〉 = R(1)

α1
|ψ〉 with probability qα1 = 〈φ̃α1 |φ̃α1〉 and

identifies it with the state of the trajectory after the first step.
To continue the propagation of the trajectory |φα1〉, one

considers the next quantum channel E (2)(|φα1〉〈φα1 |). In the
adaptive propagation scheme one chooses the Kraus repre-
sentation of E (2) and the corresponding stochastic propagator
based on the state of the current trajectory |φα1〉. To see that
this is valid and that the resulting trajectories faithfully recover
the density matrix (17), let us consider different Kraus rep-
resentations of E (2) for each of the possible trajectories after
the first step. That is, we consider Kraus representations that
explicitly depend on α1:

R(2)
α2|α1

=
∑
β2

T α1
α2,β2

K (2)
β2

. (19)

Here T α1 is an isometric transformation that depends on the
index α1. It is easy to see that the state after the first two time
steps can be equivalently written as

ρ2 =
∑
α2α1

K (2)
α2

K (1)
α1

|ψ〉〈ψ |K (1)†
α1

K (2)†
α2

(20)

=
∑
α2α1

R(2)
α2|α1

R(1)
α1

|ψ〉〈ψ |R(1)†
α1

R(2)†
α2|α1

. (21)

Equation (21) indeed shows that the adaptive stochastic prop-
agation scheme described above generates trajectories that
faithfully recover the state of the system from (17). This
argument can be easily generalized to prove that an n-step
adaptive stochastic propagation scheme generates trajectories
from a valid decomposition of ρn with the proper probability
distributions [46].

C. Continuous dynamics

In this work we are particularly interested in the continuous
time dynamics of Markovian quantum processes. If t is the
process duration, then the corresponding Markovian quantum
channel reads:

ρt = Et (ρ0) = eLtρ0, (22)

where L is the generator of the system dynamics known as the
Lindbladian [78], which can be written as2

L · = −i[H, ·] +
m∑

j=1

γ j

(
c j · c†

j − 1

2
{c†

j c j, ·}
)

, (23)

where H is a Hamiltonian, c j are arbitrary operators known
as jump (or Lindblad) operators, γ j � 0 are the associated
decoherence rates and m is a positive integer. To integrate
the dynamical map (22), it is often convenient to use the
semigroup property and discretize the quantum channel into
small time steps dt [79]:

ρt = Et (ρ0) = Edt (Edt · · · (Edt (︸ ︷︷ ︸
n times

ρ0))), (24)

with t = ndt and Edt = exp(Ldt ). Thus, a Markovian quan-
tum channel can be written as a sequential quantum channel
(10) composed of n identical quantum channels E (i) = Edt ∀ i.
For sufficiently small dt one can express Edt with a represen-
tation consisting of m + 1 Kraus operators:

K0 = 1 − i

⎛
⎝H − i

2

m∑
j=1

γ jc
†
j c j

⎞
⎠dt,

Kj = √
γ jdtc j for j ∈ [1, m]. (25)

One can check that applying these Kraus operators in (7) with
α ∈ [0, m] indeed recovers the action of the channel Edt up to
O(dt2).

The discretized propagation explained above can be sim-
plified even further by Trotterization [80] of each single-step
quantum channel Edt :

Edt = Ecoh
dt E incoh

dt , (26)

where the coherent channel Ecoh
dt is unitary and thus has only

one Kraus operator Kcoh = exp (−iHdt ), while the incoherent
channel can be further split into a sequence of m individual
channels E incoh

dt = E (1)
dt · · · E ( j)

dt · · · E (m)
dt [44], where every chan-

nel E ( j)
dt can be represented with two Kraus operators:

K ( j)
0 = 1 − (γ jdt/2)c†

j c j,

K ( j)
1 = √

γ jdtc j, (27)

that form the Kraus representation K( j)
dt . With the decom-

positions performed above, the Markovian channel (22) is
now expressed as a sequential application of n(m + 1) simple

2Here we assume a time-independent Lindbladian for notational
simplicity. Generalizations to time-dependent master equations are
straightforward. In Sec. III the time-dependence is indicated explic-
itly when necessary.
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channels, each of them given either by a unitary channel Ecoh
dt

of rank k = 1 or by a individual channel E ( j)
dt of rank k = 2.

Thus, the application of any of these channels to a pure state
results in a mixed state whose rank is at most two. This sim-
plicity allows for an optimization of the adaptive stochastic
propagation introduced in Sec. II B 2, which we explore in the
next section.

D. Adaptive entanglement optimization

In this section we discuss strategies to adaptively choose
propagators to find trajectories with a low value of the EAEE
(5). As outlined in Sec. II A, such pure-state ensembles are
more economic in terms of their MPS representations. Since
finding the global EAEE optimum (6) is NP hard [76,77], we
devise simpler, heuristic strategies that find ensembles with
low (albeit not necessarily minimal) EAEE. Specifically, we
exploit the fact that we consider sequential quantum channel
to design greedy algorithms that break down the global opti-
mization problem into a sequence of simpler problems.

The central idea underlying our greedy optimization al-
gorithms is to propagate pure-state trajectories adaptively by
choosing stochastic propagators for each individual channel
in such a way that the EAEE is minimized. Let us specify
this idea on the example of a continuous Markovian dynamics
(22), which can be broken down into a sequence of simple
channels, as explained in Sec. II C. For each of these simple
channels the pure state of the trajectory, which we denote as
|ψ〉, is stochastically propagated by Kraus operators that are
specified by an isometry T (see Sec. II B 2). We thus choose T
such that the EAEE of the trajectory after this propagation step
is as small as possible. Therefore, in analogy with Eq. (6), we
define the following greedy entanglement optimization (GEO)
problem:3

inf
T ∈T 4

2

Ē [T �̃dt ], (28)

where the reference ensemble �̃dt = Kdt |ψ〉 =
(K0|ψ〉, K1|ψ〉) is generated by the stochastic propagator
defined in Eq. (27) and optimization is performed over
the isometries of the class T 4

2 , which, according to
Carathéodory’s theorem [73–75], is sufficient to attain
the minimum.

Since we work with a Trotterization of a Markovian quan-
tum channel, it is natural to consider the limit of small
time steps dt . This motivates the definition of the following
quantity:

lim
dt→0

inf
T ∈T 4

2

Ē [T �̃dt ] − E (|ψ〉)

dt
≡ ˙̄EGEO. (29)

Solving the minimization problem (28) at each step of the
propagation sequence thus defines an adaptive trajectory
propagation algorithm. Note that each state propagation is
optimized independently, with the goal to minimize the en-
tanglement immediately after the propagation step. In this

3In what follows we refrain from writing the individual decoher-
ence channel index j whenever there is no potential for confusion.

sense the algorithm optimizes locally and in a greedy way.
Below we consider several simplifications that are obtained
by replacing the cost function (28) with proxies that are nu-
merically more tractable.

A way to simplify the optimization (28) is to consider
a limited class of isometries to optimize over. The minimal
nontrivial class of isometries is T 2

2 ⊂ T 4
2 , the instances of

which are 2 × 2 matrices T (θ, ϕ) that can be written as [81]

T (θ, ϕ) =
(

cos (θ ) sin (θ )e−iϕ

sin (θ ) − cos (θ )e−iϕ

)
. (30)

With this transformation the optimization reduces to a simple
two-parameter optimization over θ and ϕ. Clearly, the result
of this optimization gives an upper bound on (29). In the
following we refer to this optimization simply as 2-GEO. Ap-
pendixes A and B contain the details regarding the numerical
implementations of the optimization method.

An even simpler algorithm can be obtained by considering
the time derivative of the EAEE for a given isometry T :

˙̄E (T ) ≡ lim
dt→0

Ē [T �̃dt ] − E (|ψ〉)

dt
. (31)

Minimizing this time derivative with respect to T defines
an alternative greedy algorithm to construct trajectories with
small average entanglement, which was explored in Ref. [46].
Note that the corresponding greedy entanglement derivative
optimization (GEDO) problem

inf
T ∈T 4

2

˙̄E (T ) ≡ ˙̄EGEDO, (32)

is obtained formally by exchanging the limit and minimization
in Eq. (29), which implies that the quantity (32) is an upper
bound to the minimum (29):

˙̄EGEDO � ˙̄EGEO. (33)

Even though GEO (29) can give trajectories with lower aver-
age entanglement, GEDO (32) has a key feature: ˙̄EGEDO can
be calculated efficiently when the state |ψ〉 is represented by
an MPS. The reason for this is twofold. First, in the GEDO
the minimum is attainable with isometries from T 2

2 ⊂ T 4
2 .

Second, the minimization landscape in this case is trivial and
can be explored analytically. Specifically, the minimization
reduces to choosing between the transform parameters θ = 0
and θ = π/4 and evaluating the optimal phase parameter ϕ

(see Ref. [46] for details). The evaluation of the analytic
expressions of GEDO has a cost of O(χ3d ), where χ is the
bond dimension and d is the local Hilbert-space dimension.
In contrast, calculating ˙̄EGEO in general is very costly since
it requires gradient-descent-type numerical optimization, for
which we need a normalization sweep at every optimizer
iteration. This operation has a cost of O(χ3d3Lκ ), where L
is the system length and κ is the number of gradient descent
iterations (see Appendix A for technical details).

III. RESULTS

In this section we analyze three distinct aspects of the
quantum trajectory algorithms introduced above. First, in
Sec. III A, we apply the adaptive unraveling schemes to sim-
ple two-qubit systems. This serves to illustrate differences
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between optimization schemes as well as their greedy na-
ture. Second, in Sec. III B, we show that different unraveling
schemes can lead to qualitatively different behavior in the
entanglement of many-body systems. For this we consider
noisy random Brownian circuits and determine the parame-
ter regimes that correspond to different entanglement scaling
laws. We locate the transition between area- and volume-
law phases and show that the transition points depend on
the unraveling scheme. Third, in Sec. III C, we compare
trajectory-based MPS calculations with standard MPO-based
approach and show that the former can be more efficient.
For this we construct an explicit example of a noisy many-
body models, that can be unraveled using MPSs with a finite
bond dimension, while the MPO solution of the same model
requires exponential bond dimensions.

A. Comparison of optimization strategies

1. Minimal example: Bell-state dephasing

Let us start with a minimal example of two qubits ini-
tially in a Bell state, |ψ〉 = |
+〉 = (|00〉 + |11〉)/

√
2. We

consider a situation where both qubits dephase with a rate
γ . That is, their dynamics is described by a Lindblad mas-
ter equation (23) with H = 0 and c j = σ z

j /2 for j = 1, 2.
The corresponding Kraus operators, as defined in Eq. (27),
generate trajectories that jump between two Bell states |
+〉
and |
−〉 = (|00〉 − |11〉)/

√
2, which are both maximally

entangled. Hence, the ensemble generated by such an un-
raveling has the maximal EAEE at all times. In contrast, if
we transform the Kraus representation according to Eq. (9)
with T (θ, ϕ) ∈ T 2

2 , then it is easy to see that the states in all
trajectories are of the form

|ψ (x, ν)〉 = cos(x)|11〉 + sin(x)eiν |00〉, (34)

where x ∈ [0, π/2] and ν ∈ [0, 2π ). For these states the opti-
mization over T (θ, ϕ), as defined in Eq. (28), can be explicitly
performed. The optimal θ depends on the state of the trajec-
tory (34) and is given by

θ (x, dt ) = arcsin[sec (2x)
√

γ dt/2], (35)

and the optimal ϕ = 0. It is interesting to observe that all the
trajectories obtained by this adaptively optimized unraveling
have the same entanglement, which matches the EoF during
the whole evolution time [82], as indicated in Fig. 1(a) by
the black line. We note that this is specific to this minimal
example and is not the case in general. In Fig. 1(a) we also
show the entanglement probability density distribution p(E )
for trajectories obtained if we instead minimize the EAEE
derivative, given in Eq. (32). In this case the entanglement
distribution initially spreads and drifts to smaller values before
accumulating around zero for longer times. As expected from
Eq. (33), in this case the mean entanglement, indicated in
Fig. 1(a) by the dark purple line, is larger than the EoF.

2. Numerical analysis of single-step optimization strategies

In this section we consider performance differences and
features of the optimization strategies presented above. For
this we take several typical states, let them evolve under a
decoherence channel for a single time step and compare the

resulting EAEE change rates for different channel unravel-
ings. Specifically, we take Haar-random two-qubit states [83]
and compare the average entanglement after evolution with
2-GEO and GEDO unravelings of a single decoherence chan-
nel. In Fig. 1(b) we make such a comparison for the jump
operator c = σ z/2. We can see that the 2-GEO method that
directly optimizes the entanglement gives lower EAEE values
than the GEDO approach that optimizes the entanglement
derivative, which is consistent with the inequality (33). We
note that the EAEE change rate is larger for the states with
larger initial entanglement. Interestingly, the states taken from
(34) highlighted by black rims in Fig. 1(b) give the largest
difference for the EAEE change rate. In addition, as shown in
the inset of Fig. 1(b), we also observe that, for the case of two
qubits with a single decoherence channel, the 2-GEO method
(28) is sufficient to reach the EoF [82], which implies that in
this case going from GEO to 2-GEO is not a limitation. In
Appendix C we provide the same analysis for states of more
qubits.

To gain more insights into the difference between the two
optimization methods, it is useful to consider the optimization
landscapes in both cases. For this it is important to note
that the optimization landscape of the 2-GEO method (29)
depends on the time step dt . In contrast, the GEDO approach
(32) does not depend on dt due to the fact that the limit of
dt → 0 is taken before the minimization. To illustrate this,
in Fig. 1(c) we take a particular instance of the state (34)
with cos(x) = 0.98 as an initial state and consider the EAEE
optimization landscapes for different values of the time step
dt . Since in this case the phase ϕ = 0 contains the global min-
imum, we consider the corresponding cuts of the optimization
landscapes. Notably, the minimal EAEE values differ for the
2-GEO and GEDO methods. In particular, the minimal value
of ˙̄E2-GEO is below ˙̄EGEDO. This highlights the fact that the
optimization and the limit dt → 0 do not commute. Addi-
tionally, we observe that the GEDO optimization landscape
is trivial, as the optimization landscape is constant for every
value of θ except when θ = 0, and the minimum in this case is
obtained by comparing the cases of θ = 0 and θ = π/4 (see
also Ref. [46]).

3. Two-channel propagation analysis

An important aspect of the adaptive propagation strategies
discussed in Sec. II D is their greedy nature, i.e., the fact
that the optimization is done separately for each decoherence
channel (27) in the (Trotter) sequence. This becomes crucial in
the case of multiple decoherence channels, where optimizing
each of them separately does not necessarily produce the
ensemble with minimal EAEE. We illustrate this again with an
example of two independently dephasing qubits. For this setup
we compare the entanglement obtained from sequentially op-
timized unraveling to the global optimum, which is given by
the EoF [82]. Specifically, we evolve the two qubits for a
single time step dt , which consists of a sequential application
of a dephasing channels to each of the qubits. That is, we first
apply a dephasing channel to the first qubit and then propagate
the resulting state with a dephasing channel that acts on the
second qubit. Each propagation is optimized independently
according to the 2-GEO method. From the resulting states we
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FIG. 1. Comparison of optimization strategies. (a) The entanglement probability density distributions over M = 1000 trajectories for a
two-qubit dephasing process with c j = σ z

j /2. The color plot corresponds to the distribution of trajectories generated by the GEDO method
(32) with the average indicated by the purple line. The solid black line corresponds to the distribution of the trajectories generated by the
2-GEO method (29). The entanglement entropy obtained by the latter method is equal to the EoF (6) for all the trajectories, therefore its
distribution looks like a line. (b) The EAEE change rates obtained by the 2-GEO vs GEDO method for a single-channel dephasing of two
qubits with c = σ z/2 and γ = 1. Each dot represents an instance of a Haar random state (total of 20 000 instances), the black rims around the
dots indicate instances from Eq. (34) (total of 200 instances). The inset shows the EoF vs 2-GEO EAEE change rates obtained for the same
conditions. The color of the dots corresponds to the initial-state entanglement, indicated by the color bars on the right. (c) The EAEE change
rates of the 2-GEO (solid colored lines) and GEDO (dashed black line) methods vs the isometry parameter θ from Eq. (30). In contrast with
the 2-GEO method, the optimization landscape is constant in θ except the point θ = 0. The inset shows the dependence of the optimal θ of the
2-GEO method on the value of the time step dt , which is in agreement with the analytic formula (35). (d) The two-qubit EoF vs the 2-GEO
EAEE change rates in the case of two incoherent channels with c j = σ z

j /2 and γ j = 1 ( j = 1, 2). Each dot represents an instance of a Haar
random state (total of 20 000 instances). The color of the dots corresponds to the initial-state entanglement, indicated by a color bar on the
right.

extract the change rate of the EAEE, which we plot against
the entanglement of formation of the mixed quantum state in
Fig. 1(d). As expected, the sequential optimization of the two
channels does not give the minimal configuration.

B. Entanglement in noisy random Brownian circuits

So far we only considered two-qubit systems and evo-
lution for a single time step. For larger system sizes and
longer evolution times more interesting phenomena can occur.
The competition between unitary dynamics and incoherent
processes can give rise to distinct phases, characterized by
different entanglement properties of the trajectories. If the
unitary dynamics dominates in a given unraveling scheme,
the entanglement of the trajectories can grow extensively
with the system size (volume-law phase). In contrast, when
the stochastic processes dominate, the entanglement can
be bounded by the size of the subsystem boundary (area-
law phase) [7,55]. This transition, typically referred to as
measurement-induced phase transition, has been observed
in several models in recent studies [47–59]. Importantly, as

shown in Ref. [46], the transition point can change for dif-
ferent unraveling schemes. Due to the connection between
the entanglement and computational cost for classical simu-
lations with tensor networks, different trajectory propagation
approaches can thus differ significantly in terms of their com-
putational cost for solving the same master equation.

To see this, let us consider the model studied in Ref. [46],
i.e., the noisy Random Brownian circuit (RBC) that is
schematically depicted in Fig. 2(a). It describes a one-
dimensional chain of spin-1/2 systems, whose coherent
evolution is given by the Hamiltonian:

H (t ) =
L−1∑
j=1

3∑
o,p=0

go,p
j (t ) σ o

j ⊗ σ
p
j+1, (36)

where σ o
j ∈ {1 j, σ

x
j , σ

y
j , σ

z
j } are the Pauli matrices acting

on qubit j. The parameters go,p
j are Gaussian stochastic

variables with 〈〈go,p
j 〉〉 = 0 and 〈〈go,p

j go′,p′
j′ 〉〉 = αδ j, j′δo,o′δp,p′ ,

where 〈〈· · · 〉〉 denotes the average over Hamiltonian realiza-
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FIG. 2. Entanglement distributions in various unravelings of the continuous RBC model with dephasing. (a) The initial state |ψ〉 =
|11 . . . 1〉 is propagated by an open continuous RBC consisting of alternating Trotter layers corresponding to coherent and incoherent part
of the master equation. For each incoherence channel Edt (the channel index j is omitted) we consider the “quantum jump” unraveling that
uses the standard Kraus representation Kdt , “quantum state diffusion” unraveling that uses the transformed Kraus representation Rdt (see text),
the GEDO method (32) and the 2-GEO method (29). Panels (b)–(e) show the corresponding entanglement probability density distributions of
the entanglement exponent p(eE ) in the trajectories modeling the RBC dephasing process. For panels (c)–(e) we additionally plot the average
of the entanglement exponent on top of the distributions (black lines). The inset in panel (d) illustrates the average proportion of choices
between cases θ = 0 and θ = π/4 done by the GEDO algorithm (see text). The number of qubits in the system is L = 16, the jump operators
are c j = σ z

j /2 and the decoherence rate relative to the variance of the Gaussian variable in the RBC (36) is γ = 10 (γ j = γ ). The number
of trajectories with various RBC realizations is M = 200 for each panel, the bond dimension is χ = 256, which is exact for L = 16. We
emphasize a different vertical scale in panel (b) compared with panels (c)–(e).

tions and α is the variance of the Gaussian variable.4 The
incoherent part of the evolution is described by jump operators
c j = σ z

j /2 with γ j = γ .
In Figs. 2(b)–2(e) we show the histograms of the entan-

glement in the various trajectories that solve the dynamics
of the noisy RBC. Specifically, we plot the exponential eE

of the entanglement entropy (1) of every trajectory, since
this quantity serves as a proxy for the bond dimension χ

required to represent the trajectory in the MPS form [6]. In
Fig. 2(b) we depict the histogram of trajectories generated
by the Kraus representation Kdt defined in Eq. (27), which
corresponds to the standard quantum trajectory method known
as the “quantum jump” approach [33–36,39,41]. In this case,
both of the propagation operators from Eq. (27) are local
unitary operations, and thus the incoherent part of the evo-
lution does not remove any entanglement, despite the large
decoherence rate (γ = 10). The dynamics of the entangle-
ment is thus determined by the coherent part, which leads
generically to linear entanglement growth. This growth con-
tinues until a saturation value proportional to the system size
is reached. In Fig. 2(c) we plot the histogram generated by
the Kraus representation Rdt = T (θ, ϕ)Kdt , where T (θ, ϕ)
defined in Eq. (30) has fixed parameters θ = π/4 and ϕ = 0.
This unraveling is known as the “quantum state diffusion”

4Without the loss of generality, in what follows we set α = 1.

[37,38,40]. In contrast with the “quantum jump” method, the
“quantum state diffusion” approach results in entanglement
distributions that saturate at much smaller values. Importantly,
these values here are not determined by the system size, but
by the decoherence rate (see also Ref. [46]). In Fig. 2(d) we
depict the histogram obtained by the GEDO method, which
minimizes the EAEE change rate (32) by switching between
transformed Kraus representations with θ = 0 and θ = π/4
(with free phase parameter ϕ) and selecting the best one at
every propagation step. Comparing Fig. 2(c) with Fig. 2(d)
we observe a similarity in the trajectory distributions. This is
due to the fact that the GEDO approach in this case almost
exclusively selects θ = π/4 with ϕ = 0, which corresponds
to the “quantum state diffusion” unraveling. This can be also
seen from the inset in Fig. 2(d), where we show the average
proportion of θ parameter choices made by the GEDO algo-
rithm.5 The reason is that the jump operator here is a local
unitary operator (c j ∝ σ z

j ), which implies that the unraveling
with θ = 0 does not change the entanglement. We stress that
for a generic jump operator GEDO does not simply reduce
to the “quantum state diffusion” unraveling, an example of
which can be found in Fig. 2(b) of Ref. [46]. At last, in
Fig. 2(e) we plot the histogram obtained by the 2-GEO method

5As in the example in Fig. 1(c), in this case the GEDO minimum is
found always at ϕ = 0, therefore this parameter is not shown.
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(28), which minimizes the EAEE by adaptively choosing the
transform T (θ, ϕ). In this case the parameters θ and ϕ are de-
termined numerically and the optimization cannot be reduced
to switching between two cases as it happens in the GEDO
method. Among the four unraveling schemes shown in Fig. 2,
the 2-GEO one results in the trajectories with the smallest
average entanglement and also with the smallest weight on
trajectories with higher entanglement.

Importantly, the entanglement distributions do not only
differ quantitatively across unraveling schemes, but they also
change qualitatively at long times [46]. In particular, for the
unraveling in Fig. 2(b) the entanglement distribution concen-
trates around a saturation value that is proportional to the
system size. In contrast for unravelings in Figs. 2(c)–2(e), the
saturation value is independent on the system size, indicat-
ing that the system is in the area-law phase. This area-law
phase is expected to persist for sufficiently large decoherence
rate γ . At the critical value γ = γ ∗, one expects a so-called
measurement-induced phase transition from area- to volume-
law entanglement. Hence, interesting quantities to determine
are the critical decoherence rates γ ∗ for various unraveling
schemes.

In the following we focus on determining the critical points
in unravelings congenial to some of those presented in Fig. 2.
The “quantum jump” unraveling shown in Fig. 2(b) demon-
strates a volume-law scaling and hence does not possess a
critical point. We therefore consider a variation of “quantum
jump” unraveling with the following Kraus representation:

K̃ ( j)
0 = 1 − (γ dt/2)|1〉 j〈1|,

K̃ ( j)
1 = √

γ dt |1〉 j〈1|, (37)

to which we refer to as K̃dt for brevity.6 Notice that this
is a standard “quantum jump” unraveling with c j = |1〉 j〈1|.
Its Kraus operators are not unitary and therefore have the
potential to remove entanglement. We also study “quantum-
state-diffusion” unravelings:

R( j)
± = 1√

2
[(1 − γ dt/8)1 j ± e−iϕ√

γ dtσ z
j /2], (38)

of which we take two instances with ϕ = 0 and ϕ = π/4
and consider how changing the phase parameter affects the
critical point. We refer to these representations as Rdt and
R̃dt , respectively.

In what follows we do not consider adaptive unravelings
shown in Figs. 2(d) and 2(e). The reason for this is twofold.
First, as already mentioned, in the case of the open RBC
the GEDO approach chooses mostly the “quantum state dif-
fusion” unraveling. We therefore expect this method to have
similar critical decoherence rate. Second, as mentioned in the
end of Sec. II D, our implementation of the 2-GEO unraveling
is too computationally demanding for large system sizes that
are required to establish the critical point (see Appendix A for
details).

6This representation can be obtained by applying the isometric
transformation (30) with parameters θ (dt ) = arcsin(

√
γ dt/2) and

ϕ = 0 to the original representation. Note that in this case the trans-
formation is time-step dependent.

To determine the critical decoherence rates γ ∗ for different
unravelings, we use a finite-size scaling argument. We con-
sider the entanglement entropy averaged over trajectories and
RBC realizations, 〈〈ĒLA

SS 〉〉, where LA is the size of the sub-
system. The subscript SS indicates that the value is evaluated
at late times, when the entanglement distribution becomes
stationary. When LA = L/2, the above quantity is constant in
the area-law phase and grows linearly with the system size L
in the case of the volume-law scaling. Thus one can make the
following ansatz: 〈〈

ĒL/2
SS

〉〉 = a(γ ) + b(γ )L, (39)

where a(γ ) is the EAEE saturation value in the area-law phase
and b(γ ) is the slope of the volume-law scaling. The area-law
phase is thus identified when b(γ ) = 0 and a(γ ) is finite.
When γ approaches the critical point γ ∗ from above (i.e.,
from the area-law phase), we expect a(γ ) to diverge, while
b(γ ) should remain zero. In Fig. 3 we use this to locate the
critical point γ ∗. Specifically, we start with the system initially
in the state |ψ〉 = |11 . . . 1〉, which we evolve with the random
circuit (36) with dephasing channels as depicted in Fig. 2(a).
The dephasing channels in the circuit are expressed by the
mentioned representations K̃dt , Rdt , and R̃dt , which result in
different trajectory unravelings.

In Fig. 3(a) we plot the EAEE in the system after suffi-
ciently long evolution time, 〈〈ĒLA

SS 〉〉, for various system sizes,
unraveling schemes and decoherence rates. Using this data, in
Fig. 3(b) we plot the middle-cut steady-state EAEE against
the inverse of the system size, from which, using the ansatz
(39), we can extract the area-law coefficients a(γ ) and confirm
that the volume-law coefficient b(γ ) = 0 within the fitting
error. In Fig. 3(c) we plot the inverse of area-law coefficients
against the decoherence rate and extrapolate this data to get
the critical rates γ ∗.

From the results obtained in Fig. 3(c) we observe that
the critical points indeed depend on the particular unraveling
of the decoherence channels. Specifically, unravelings with
Kraus representations K̃dt and Rdt give lower critical values
compared with the unraveling with R̃dt . Another observa-
tion stems from comparing the “quantum state diffusion”
unravelings Rdt and R̃dt , where different values of the phase
parameter ϕ significantly affect the location of the critical
point. Specifically, within the standard error the obtained crit-
ical decoherence rates are related to each other as γ ∗|Rdt =
cos2(π/4)γ ∗|R̃dt

, as predicted in Ref. [46].

C. Comparison with other approaches to solve
the many-body dynamics

We study entanglement properties in various quantum tra-
jectory unravelings, because this is crucial for determining
the computational cost of solving the master equation (23)
using quantum trajectories represented with MPSs (which we
refer to as QT MPS in the following). Given this motivation,
it is important to compare this approach with other existing
methods to solve master equations. Specifically, in this sec-
tion we compare the QT MPS method with an MPO approach
[84–86]. The latter consists in vectorizing the density matrix
and corresponding equations of motion (23) and representing
them as tensors. In general, it is unclear which of the two
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FIG. 3. Determination of the critical decoherence rates γ ∗ in the continuous RBC model with dephasing for various unravelings. (a) The
dependence of the distributions of the steady-state EAEE 〈〈Ē LA

SS 〉〉 over the bipartite cut location LA on the decoherence rate γ for various system
sizes L and decoherence channel representations K̃dt , Rdt , and R̃dt (see text for more details). The arrows indicate the increasing values of γ

different for each of the Kraus representations: γ = {9, 10, 11, 12} for K̃dt , γ = {7, 8, 9, 10} for Rdt and γ = {14, 16, 18, 20} for R̃dt .
(b) The dependence of the middle-cut steady-state EAEE divided by the system size 〈〈Ē L/2

SS 〉〉/L on the inverse system size 1/L. According
to the ansatz (39), the slope of the plot corresponds to the area-law coefficient a(γ ). The arrows indicate the increasing values of γ . (c) The
dependence of the inverse values of the area-law coefficients 1/a(γ ) on the decoherence rate γ . The data are compatible with linear behavior,
therefore we use the linear extrapolation to determine the critical decoherence rates γ ∗ written in corresponding colors in the plot. The gray
shadings indicate the standard errors of the numerical lines, while the dashed lines illustrate the extrapolations. The system sizes used to
generate the data: L = {44, 48, 52, 56, 60, 64, 68, 72}, the number of trajectories with various RBC realizations is M = 200 and the bond
dimension is χ = 300. The bond dimension convergence is checked against instances with χ = 512.

methods, QT MPS or MPO, is computationally less expen-
sive. The computational cost of a simulation based on MPO
scales as O(χ3d6Ln), where χ is the bond dimension, d is the
local Hilbert-space dimension, L is the system length and n is
the total number of (continuous) time steps. In turn, for the QT
MPS method (with a fixed statistical accuracy) the computa-
tional cost scales as O(χ3d3Ln). Note that the bond dimension
χ has different physical meaning for the MPS and MPO. As
discussed above, in the MPS approach the bond dimension χ

is related to the entanglement in individual trajectories. On
the other hand, for the MPO the bond dimension represents
both quantum and classical correlations in the density matrix.
To illustrate this difference we consider a simple model of a
system that features unbounded growth of classical correla-
tions during its evolution, while the amount of entanglement
in individual trajectories can remain finite.

1. Discrete case

Let us consider an infinite one-dimensional chain of qubits
being initially a product of nearest-neighbor Bell pairs:

|ψ〉 = · · · ⊗ |
+〉 ⊗ |
+〉 ⊗ |
+〉 ⊗ |
+〉 ⊗ · · · . (40)

We consider time evolution of this initial state under the dis-
crete circuit depicted in Fig. 4(a), which consists of alternating
layers of nearest-neighbor SWAP gates [70] and individual
local dephasing channels of the form:

E ( j)(ρ) = (1 − p)ρ + pσ z
j ρσ z

j , (41)

where p is the decoherence strength.
To understand the dynamics of this model, first note that

the coherent part of the evolution (induced by the SWAP gates)
simply leads to a ballistic separation of the initially correlated
nearest-neighbor pairs across the chain, with the distance be-
tween each partner of a pair growing as 4n. The incoherent

part does not affect this ballistic dynamics, but instead leads
to a dephasing of each pair, which transforms entanglement
in each pair into classical correlations. The dynamics thus
simply reduces to that of independent pairs, and measures of
entanglement or correlations across a given bipartition (and
the associated computational costs of MPS or MPS represen-
tations) can thus be evaluated analytically.

As a proxy of the computational cost of the MPO method
we consider its operator entanglement entropy [85]:

EMPO = −
∑

i

μ2
i log2 μ2

i , with μi = μ̃i√∑
i′ μ̃

2
i′

, (42)

where μ̃i (μi) are the (normalized) singular values of the
MPO’s middle cut. In the above setting the corresponding
operator entanglement grows with the circuit depth n, and
has two characteristic regimes. Initially, when pn � 1, the
dephasing processes do not destroy the quantum entanglement
in Bell pairs, hence the operator entanglement initially scales
as 4n. For later evolution times, when pn � 1, only the clas-
sical correlations remain, which is reflected in the operator
entanglement scaling as 2n. More generally, the operator en-
tanglement is given by

EMPO(p, n) = 2n + 2n

1 + (1 − p)8n
{log2[1 + (1 − p)8n]

+ (1 − p)8n log2[1 + (1 − p)−8n]}. (43)

To analyze the entanglement dynamics in trajectories, we
consider two types of unravelings. A naive choice corresponds
to a Kraus representation of the channel (41):

K ( j)
0 =

√
1 − p 1 j,

K ( j)
1 = √

pσ z
j , (44)
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FIG. 4. Discrete noisy quantum circuit and entanglement dynamics therein for different simulation methods. (a) Discrete quantum SWAP

circuit with dephasing applied to infinite chain of Bell pairs (40). Each discrete circuit step n consists of nearest-neighbor SWAP gates applied
alternatively to odd and even neighboring qubit pairs and individual decoherence channels E ( j) defined in Eq. (41). The system’s bipartition AB
is shown by the gray dashed line. (b) The (operator) entanglement dynamics during the discrete noisy circuit evolution with various decoherence
rates p. The line colors that change from bright orange to dark purple correspond to different values of the decoherence rate, p = 0, 0.005,
0.01, 0.02, 0.05, and 0.1. Colored solid lines indicate the operator entanglement (42) and the black dotted line shows the EAEE dynamics for
the standard Kraus representation K( j) from Eq. (44) that is independent on p. Both of these cases exhibit an unbounded entanglement growth.
Colored solid lines with circles indicate the EAEE (46) of the trajectories generated with the transformed Kraus representation R( j), while
colored solid lines with crosses correspond to EAEE of the 2-GEO method (total of M = 50 trajectories). The colored dashed lines illustrate
the EoF minimum (6).

to which we refer as K( j) for brevity. In this case it is easy to
see that the middle-cut EAEE (5) is linearly growing with n as
Ē (n) = 2n, since the Kraus operators (44) are both unitary and
do not remove any entanglement from the system. A better
choice for unraveling this dynamics is given by an alternative
Kraus representation K̃( j) of the channel (41):

K̃ ( j)
0 = |0〉 j〈0| + (1 − 2p)|1〉 j〈1|,

K̃ ( j)
1 = 2

√
p(1 − p) |1〉 j〈1|, (45)

where one of the Kraus operators is a projector onto the
excited state, K̃ ( j)

1 ∝ |1〉 j〈1|. Applying such an operator on
one qubit removes its entanglement with other qubits. This
means that the resulting EAEE is reduced (compared with the
EAEE in the naive choice case) and is given by

ĒK̃(p, n) = 2n

[
qp,n log2 qp,n − q̃p,n log2 q̃p,n + 1

2

]
, (46)

with qp,n = 1 + (1 − 2p)4n

2
and q̃p,n = (1 − 2p)4n

2
.

In Fig. 4(b) we plot the evolutions of the entanglement
measures for various values of p and for different simulation
methods as well as the EoF [82]. From this plot we can
draw several conclusions. First, as discussed above, the MPO
method as well as the naive trajectory unraveling result in
the unbounded growth of the (operator) entanglement, which
implies an exponential growth of the bond dimension χ . Sec-
ond, the alternative unraveling, as well as the 2-GEO adaptive
approach, generate trajectories that obey area-law scaling in
EAEE. Finally, the 2-GEO unraveling results in the EAEE
that is smallest among the considered unraveling schemes and
closest to the global minimum E f .

2. Continuous case

The essential features of the above model can also be seen
in its continuous-time generalization given by a spin-1/2 XX
model [87]:

HXX = �

L−1∑
j=1

(σ+
j σ−

j+1 + H.c.), (47)

whose coupling to Markovian environments is described by
the jump operators c j = σ z

j /2 and decoherence rates γ j = γ

and where σ±
j = σ x

j ± iσ y
j . This model can be solved effi-

ciently numerically after a Jordan-Wigner transformation to
a free fermion model [88,89].

In Fig. 5 we solve this model with the MPO and QT MPS
methods and compare it with the exact solution.7 Specifically,
we consider the correlation and entanglement dynamics of
L = 20 qubits initially in the state (40). In Figs. 5(a), 5(b),
and 5(c) we fix the truncation bond dimension at χ = 256
and compare the σ z-correlation function obtained by the MPO
method and the QT MPS unravelings with the “quantum
jump” Kraus representation Kdt from Eq. (27) and with the
“quantum state diffusion” representation Rdt = T (θ, ϕ)Kdt ,
where θ = π/4 and ϕ = 0. We can see that for both the
MPO and “quantum jump” QT MPS approaches the bond
dimension is not sufficient to correctly capture the correlation
dynamics.8 In contrast, the trajectories obtained by the “quan-
tum state diffusion” match the exact results at this value of the
bond dimension (within the statistical accuracy). The origin of

7Due to the dispersion processes in this model, the steady-state cor-
relation values are all equal to 1/L and vanish in the thermodynamic
limit.

8We note that the MPO simulation nevertheless correctly captures
the steady-state values.
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FIG. 5. Correlation and entanglement dynamics in the XX model
(47) for different numerical methods. The system consists of L =
20 spin-1/2 particles and we use jump operators c j = σ z

j /2 and
γ = 0.4�. σ z correlations of the first qubit with the fifth, tenth
and fifteenth qubits in the chain simulated with the maximal bond
dimension χ = 256 by (a) the MPO method, (b) the “quantum jump”
QT MPS (total of M = 2000 trajectories), and (c) the “quantum
state diffusion” QT MPS (total of M = 15 000 trajectories). The
dotted black lines correspond to the analytical solution. The statis-
tical error bars in trajectory simulations are denoted by gray filling.
Panel (d) compares the dynamics of the (operator) entanglement of
the MPO and QT MPS simulations for bond dimensions χ = 256
(solid lines), χ = 128 (dashed lines) and χ = 64 (dotted lines). The
EAEE lines of “quantum state diffusion” trajectories overlap, which
indicates their convergence even for smaller truncation values of the
bond dimension.

this difference is visible in Fig. 5(d), where we show the dy-
namics of the middle-cut (operator) entanglement for various
bond dimensions. We observe that the MPO method exhibits
an entanglement barrier [85,90], a well-known computational
issue occurring in quantum many-body system simulations.
A similar behavior can be also seen for the “quantum jump”
QT MPS method, for which the average entanglement rapidly
grows during the evolution and saturates at a value set by the
bond dimension. In both cases the lack of convergence in the
bond dimension is apparent. In contrast, the average entan-
glement of “quantum state diffusion” trajectories is small and
converges with bond dimension. In Appendix D we consider
a more general case of the XX model with fields and give a
more detailed discussion on the convergence of observables
with the bond dimension.

IV. CONCLUSIONS

In this work we studied strategies to simulate open quan-
tum many-body system dynamics by combining quantum
trajectory methods with tensor-network techniques. The key
concept underlying our work is the fact that the same sys-
tem dynamics can be simulated by infinitely many quantum
trajectory unravelings. These unravelings however can signif-
icantly differ in the ensemble-averaged entanglement entropy

(EAEE) that acts as a proxy of the average computational
cost associated with tensor-network representation of indi-
vidual trajectories. To illustrate this crucial difference, we
considered several examples, to which we applied various
trajectory unravelings as well as another widely used ap-
proach to simulate open quantum many-body dynamics based
on matrix product operators (MPOs). These included models
that exhibit qualitative differences across different unraveling
schemes, as well as models that feature exponential advantage
of the trajectory unravelings over MPO simulations. These
considerations motivated the development of adaptive tra-
jectory unravelings that minimize the EAEE. We proposed
several strategies that utilize this concept by directly minimiz-
ing the EAEE (greedy entanglement optimization, GEO) or
by minimizing the instantaneous EAEE change rate (greedy
entanglement derivative optimization, GEDO, proposed in
Ref. [46]). We performed a comprehensive comparison of the
GEO and GEDO approaches and concluded that the GEDO
method allows us to efficiently generate trajectories with low
EAEE and that the GEO approach (specifically, 2-GEO) pro-
vides trajectory configurations with a lower EAEE value at
a cost of less efficient numerical performance. In summary,
our work paves the way towards better understanding of the
classical simulatability of open quantum many-body systems
and defines new avenues for the development of algorithms
for noisy quantum many-body dynamics.

There are several directions left for future work. First,
our methods are limited to the optimization of individual
decoherence channels. It would be interesting to generalize
our approach to the collective optimization. Second, it would
be interesting to compare or combine the developed methods
with other approaches for open-system dynamics [32,91–94].
Lastly, it would be interesting to find examples where the
adaptive approach is qualitatively better than all nonadaptive
unravelings. In the context of measurement-induced phase
transitions this would imply that adaptive unravelings of mas-
ter equations can change the value of the critical point, and,
e.g., give area-law trajectories in regimes where nonadaptive
unravelings cannot.
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APPENDIX A: OPTIMIZATION OVER T ∈ T 2
2

In this section we provide the details of the numerical
solution of the optimization problem (28). Here we consider
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a limited class of isometries T (θ, ϕ) ∈ T 2
2 ⊂ T 4

2 explicitly
given in (30). Applying such an isometry to the reference
ensemble �̃dt = Kdt |ψ〉 = (K0|ψ〉, K1|ψ〉) results in a new
ensemble of the form9(|φ̃0(θ, ϕ, dt )〉

|φ̃1(θ, ϕ, dt )〉
)

= T (θ, ϕ)

(
K0|ψ〉
K1|ψ〉

)
. (A1)

Inserting it into the EAEE (5) allows us to reformulate the
optimization problem (28) as

inf
T ∈T 4

2

Ē [T �̃dt ]
T =T (θ,ϕ)−−−−−→ min

θ,ϕ
Ē (θ, ϕ, dt ), (A2)

the solution of which we aim to explain below. The EAEE
Ē (θ, ϕ, dt ) in Eq. (A2) is convex, which allows us to define
unambiguously the minimum using the standard optimization
methods. We choose the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm—a quasi-Newton gradient-based method,
which efficiently solves nonlinear optimization problems
[95–98]. Below we provide an explicit form of the EAEE
as a function of the optimization parameters and contraction
schemes of MPS networks needed for BFGS optimization.

Let us write the EAEE as a function of the isometry
parameters:10

Ē (θ, ϕ) =
∑

α=0,1

pα (θ, ϕ)E (|φα (θ, ϕ)〉), (A3)

where pα (θ, ϕ) = 〈φ̃α (θ, ϕ)|φ̃α (θ, ϕ)〉 are the probability
weights of the ensemble (A1) and E (|φα (θ, ϕ)〉) is the von
Neumann entanglement entropy (1) of the normalized state
|φα (θ, ϕ)〉 = |φ̃α (θ, ϕ)〉/√pα (θ, ϕ). If we define the partial
trace φ̃α (θ, ϕ) = trB(|φ̃α (θ, ϕ)〉〈φ̃α (θ, ϕ)|), we can write

Ē (θ, ϕ) =
∑

α=0,1

pα (θ, ϕ) log2 pα (θ, ϕ)

− tr[φ̃α (θ, ϕ) log2(φ̃α (θ, ϕ))]. (A4)

The gradients of such a function have a simple form

∂θ,ϕĒ (θ, ϕ) = −
∑

α=0,1

tr[∂θ,ϕφ̃α (θ, ϕ) log2(φα (θ, ϕ))], (A5)

where φα (θ, ϕ) = φ̃α (θ, ϕ)/pα (θ, ϕ). One can find the ex-
plicit forms of the probability weights pα (θ, ϕ) and the
partial traces φ̃α (θ, ϕ) in terms of the optimization param-
eters θ, ϕ and the initial ensemble �̃dt = (K0|ψ〉, K1|ψ〉) =
(|ψ̃0〉, |ψ̃1〉):

p0(θ, ϕ) = cos2 (θ )q0 + sin2 (θ )q1

+ 2 cos (θ ) sin (θ ) cos (ϕ − υ01)q01, (A6)

p1(θ, ϕ) = sin2 (θ )q0 + cos2 (θ )q1

− 2 cos (θ ) sin (θ ) cos (ϕ − υ01)q01, (A7)

φ̃0(θ, ϕ) = cos2 (θ )ψ̃0 + sin2 (θ )ψ̃1

+ cos (θ ) sin (θ )(e−iϕψ̃10 + H.c.), (A8)

9For simplicity in what follows we assume the Kraus operators and
corresponding jump operators to be local.

10From here on we do not write dt for notational clarity.

φ̃1(θ, ϕ) = sin2 (θ )ψ̃0 + cos2 (θ )ψ̃1

− cos (θ ) sin (θ )(e−iϕψ̃10 + H.c.), (A9)

where qα = 〈ψ̃α|ψ̃α〉 are the probability weights of the initial
ensemble, q01 = |〈ψ̃0|ψ̃1〉| and υ01 = arg(〈ψ̃0|ψ̃1〉) are ampli-
tude and phase of the overlap of the initial ensemble states,
ψ̃α = trB(|ψ̃α〉〈ψ̃α|) are the partial traces of the initial ensem-
ble and ψ̃10 = trB(|ψ̃1〉〈ψ̃0|). With this one can calculate the
derivatives of the matrices:

∂θ φ̃0(θ, ϕ) = 2 cos (θ ) sin (θ )
(
ψ̃1 − ψ̃0

)
+ 2[cos2 (θ ) − sin2 (θ )](e−iϕψ̃10 + H.c.),

(A10)

∂θ φ̃1(θ, ϕ) = 2 cos (θ ) sin (θ )(ψ̃0 − ψ̃1)

− 2[cos2 (θ ) − sin2 (θ )](e−iϕψ̃10 + H.c.),
(A11)

∂ϕφ̃0(θ, ϕ) = i cos (θ ) sin (θ )(−e−iϕψ̃10 + eiϕψ̃01), (A12)

∂ϕφ̃1(θ, ϕ) = i cos (θ ) sin (θ )(e−iϕψ̃10 − eiϕψ̃01), (A13)

which can be inserted into (A5) to calculate the gradient.
In the case when the system state is represented in the MPS

form, one can calculate the EAEE (A4) and its gradients (A5)
by contracting tensor networks as shown in Fig. 6. There are
two important aspects to notice. First, this optimization is nu-
merically costly when using MPS contractions. The reason for
this is that for every set of parameters θ, ϕ one has to calculate
singular values of the MPS for every new optimization itera-
tion, since these values depend implicitly on the optimizing
parameters. This can be seen by analyzing the second term of
Eq. (A4). This term can be written using the singular value
decomposition as

tr[φ̃α (θ, ϕ) log2(φ̃α (θ, ϕ))] =
∑

i

λ̃(i)
α (θ, ϕ) log2 λ̃(i)

α (θ, ϕ),

(A14)

where λ̃(i)
α (θ, ϕ) are the eigenvalues of φ̃α (θ, ϕ). Second,

in the case of the gradient calculation (A5), in addition to
singular value calculation one has to explicitly contract the
corresponding tensor networks instead of just using the singu-
lar values [see Fig. 6(g)].

APPENDIX B: COMMENT ON OPTIMIZATION
OVER T ∈ T 4

2

So far we covered the EAEE optimization over a limited
class of isometries T ∈ T 2

2 . However, in order to guarantee
attainment of the minimum (28), one has to consider the
full class of isometries T 4

2 [81]. This implies optimizations
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FIG. 6. The MPS tensor objects in Vidal’s �λ form [6] and their contractions required to calculate the EAEE and it gradients. (a) The
initial state |ψ〉 with the bipartition AB. (b) The initial ensemble state |ψ̃α〉 obtained by applying the corresponding Kraus operator Kα .
(c) The transformed ensemble state |φ̃α (θ, ϕ)〉 with Rα (θ, ϕ) = ∑

β Tαβ (θ, ϕ)Kβ . (d) The probability weight pα (θ, ϕ). (e) The partial trace
φ̃α (θ, ϕ) = trB[|φ̃ (α)(θ, ϕ)〉〈φ̃ (α)(θ, ϕ)|]. (f) The term tr[φ̃α (θ, ϕ) log2(φ̃α (θ, ϕ))] from (A14). (g) The term tr[ψ̃0 log2(φα (θ, ϕ))] as an example
of a building block to calculate the EAEE gradient (A5).

of 3 × 2 right-unitary matrices with five parameters:

T (θ1, θ2, θ3, α, β ) =

⎛
⎜⎜⎜⎜⎜⎝

cos (θ1) sin (θ1) cos (θ2)eiα

sin (θ1) cos (θ3)
− cos (θ1) cos (θ2) cos (θ3)eiα

− sin (θ2) sin (θ3)e−iβ

sin (θ1) sin (θ3)
− cos (θ1) cos (θ2) sin (θ3)eiα

+ sin (θ2) cos (θ3)e−iβ

⎞
⎟⎟⎟⎟⎟⎠, (B1)

and of 4 × 2 right-unitary matrices with eight parameters:

T (θ1, θ2, θ3, θ4, θ5, α, β, γ ) =⎛
⎜⎜⎜⎜⎜⎜⎝

cos (θ1) sin (θ1) cos (θ2)eiα

sin (θ1) cos (θ3) sin (θ2) sin (θ3) cos (θ5)eiβ − cos (θ1) cos (θ2) cos (θ3)eiα

sin (θ1) sin (θ3) cos (θ4)
sin (θ2) sin (θ4) sin (θ5)eiγ − cos (θ1) cos (θ2) sin (θ3) cos (θ4)eiα

− sin (θ2) cos (θ3) cos (θ4) cos (θ5)eiβ

sin (θ1) sin (θ3) sin (θ4)
− cos (θ1) cos (θ2) sin (θ3) sin (θ4)eiα − sin (θ2) cos (θ3) sin (θ4) cos (θ5)eiβ

− sin (θ2) cos (θ4) sin (θ5)eiγ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B2)

The EAEE and its gradients associated with the isometries
(B1) and (B2) have a more complicated form than those
shown in Appendix A, but the calculations are similar. The
important aspect to notice in this case is that the high-
dimensional optimization landscapes for (B1) and (B2) make
the optimization process more complicated.

APPENDIX C: NUMERICAL ANALYSIS OF SINGLE-STEP
OPTIMIZATION: A CASE OF TEN QUBITS

In Sec. III A 2 of the main text we compare the per-
formance of the adaptive unraveling strategies, namely, the
2-GEO and GEDO methods (see Sec. II D of the main text).
Here we extend our analysis to larger systems. For this we
consider a system of L = 10 qubits and perform the same
procedure as in Fig. 1(b). Namely, we take typical states of the
10-qubit system, let them evolve under a decoherence channel

for a single time step and compare the resulting EAEE change
rates for different adaptive unravelings. Note that, in contrast
with the two-qubit scenario discussed in the main text, the
10-qubit system can be partitioned in multiple ways, and,
hence, many bipartite entanglement values may be optimized.
Here we focus on the case of the middle-cut bipartition and
corresponding EAEE values.

As typical states we take a class of random states with
various middle-cut entanglement entropies. These states are
generated by propagating a product state of excited qubits⊗L

i=1 |1〉i with a time-dependent random Hamiltonian defined
in Eq. (36). This fast-scrambling Hamiltonian increases the
entanglement in the qubit system linearly in time. There-
fore, one can explore both weakly and strongly entangled
many-body states by changing the propagation times. In
what follows we take 25 different propagation times starting
from tmin = 0.2/γ j and up to tmax = 5/γ j , where γ j = 1. The
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FIG. 7. Middle-cut EAEE change rates of the system of L = 10
qubits obtained by the 2-GEO vs GEDO methods with a single
jump operator c j = σ z

j /2, γ j = 1, and j = L/2. Each dot represents
a random state (total of 1250 instances).

propagation time step is dt = 0.01/γ j . For each of the prop-
agation durations we apply 50 different random Hamiltonian
realizations, which in total gives us 1250 random many-body
states with different entanglement entropies.

In Fig. 7 we compare the EAEE values of the 2-GEO
and GEDO unravelings of the 10-qubit evolution under the
decoherence channel with c j = σ z

j /2, where j = 5. From this
plot we draw a conclusion similar to the two-qubit case: the
2-GEO method finds configurations that give lower EAEE
values compared with the GEDO method. We note that, in
contrast with the two-qubit case, in the 10-qubit case the
entanglement change rate is no longer monotonically related
to the value of initial-state entanglement entropy, which can
be seen in the distribution of colors in Fig. 7.

APPENDIX D: XX MODEL WITH LONGITUDINAL
AND TRANSVERSE FIELDS

Complementing the study in Sec. III C 2 of the
main text, here we consider the noisy XX model with

FIG. 8. Correlation and entanglement dynamics in the noisy XX model with fields (D1) for different numerical methods. The system
consists of L = 8 spin-1/2 particles and we use jump operators c j = σ z

j /2 and γ = 0.4�, � = h = 0.02�. σ z correlations of the first qubit
with the second qubit (solid lines) and with the seventh qubit (dashed lines) simulated with various bond dimensions χ by (a) the MPO method,
(b) the “quantum jump” QT MPS (total of M = 10 000 trajectories) and (c) the “quantum state diffusion” QT MPS (total of M = 20 000
trajectories). The dotted black lines correspond to the exact solution. In this case the error bars are not exceeding the line widths and hence are
not shown. Panel (d) compares the dynamics of the (operator) entanglement of the MPO method, shown in bright orange color with χ = 256
(solid line), 64 (dashed line), 16 (dash-dotted line) and 4 (dotted line), and the QT MPS methods, shown in pink and dark purple colors with
χ = 16 (solid lines), 8 (dashed lines), 4 (dash-dotted lines), and 2 (dotted lines).

fields:

HXXF = �

L−1∑
j=1

(σ+
j σ−

j+1 + H.c.) + �

L∑
j=1

σ z
j + h

L∑
j=1

σ x
j ,

(D1)

which cannot be mapped to free fermions and therefore is not
efficiently numerically solvable. In Fig. 8 we solve this model
with the MPO and QT MPS methods and compare it with
the exact diagonalization solution. Specifically, we consider
the correlation and entanglement dynamics in a system of
L = 8 qubits initially in the state (40). In Figs. 8(a), 8(b),
and 8(c) we plot the σ z correlations obtained by the MPO
method and the QT MPS “quantum jump” and “quantum state
diffusion” unravelings. In each panel we vary the value of
the maximal bond dimension χ and check the convergence
of the simulations towards the exact diagonalization solu-
tion. We set the maximal MPO bond dimension to be the
square of the analogous value for the MPSs for comparison
clarity [99].

We observe that for a fixed maximal bond dimension χ =
16 the QT MPS simulations give exact results, while the MPO
method significantly deviates from the exact solution even for
a larger maximal bond dimension χ = 64. In turn, comparing
the two trajectory approaches, we see that “quantum jump”
trajectories also significantly deviate from the correct results
once the maximal bond dimension is reduced. In contrast
with that, the “quantum state diffusion” trajectories are closer
to the exact results for lower χ values. The origin of these
differences is visible in Fig. 8(d), where we plot the dynamics
of the middle-cut (operator) entanglement for various bond di-
mensions. We observe that for a fixed bond dimension χ = 16
the MPO method is not exact in contrast with the trajectory
methods. In addition, reducing the maximal bond dimension
to χ = 8 makes “quantum jump” trajectories deviate from
the exact line, which does not take place for “quantum state
diffusion” trajectories.
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