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Infinities in molecular quantum electrodynamics and generalized functions
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The Power-Zienau-Woolley Hamiltonian for the quantum electrodynamics of atoms and molecules is written
in terms of purely transverse electromagnetic field variables and so-called polarization fields for the charged
particles. It is well known that the attempt at finding solutions to the coupled equations that arise from the
Hamiltonian is marred by the occurrence of infinite “self-energies” for both particles and the field. Because of
the occurrence of the Dirac δ function in the nonzero Poisson-brackets/commutation relation for the fields, and in
the definition of the polarization fields, these variables, classical and quantum, must be identified as distributions,
in the mathematical sense. The Schwartz “impossibility theorem” shows that there is no general multiplication
rule for distributions, so one has to find a framework that gives meaning to the Hamiltonian The energy of the
electric polarization field is analyzed in the Colombeau algebra and shown to be finite; in particular Coulomb’s
law (1/r, r > 0) with a finite self-energy (r = 0) is obtained. How these ideas could be extended to the free-field
Hamiltonian is discussed. A finite zero-point energy for the electromagnetic field is to be expected. Relevant
mathematical results are summarized in an Appendix.

DOI: 10.1103/PhysRevA.110.012204

I. INTRODUCTION

For a closed system of N � 1 spinless charges in a radia-
tion field (E⊥

, B), the general nonrelativistic Hamiltonian for
electrodynamics may be written [1,2]

HP =
N∑

n=1

|pn|2
2mn

+ 1

2
ε0

∫
(|E⊥|2 + c2|B|2) d3x

−
∫

P · E⊥ d3x −
∫

M · B d3x +
∫ ∫

X : BB d3x d3x′

+ 1

2ε0

∫
P · P d3x. (1)

The Hamiltonian scheme is completed by giving the equal-
time Poisson-brackets/commutators of the dynamical vari-
ables, which for QED are

[E(x)r, E(x′)s] = [B(x)r, B(x′)s] = 0, (2)[
qr

m, ps
n

] = ih̄δmnδrs, (3)

[E(x)r, B(x′)s] = ih̄ε−1
0 εrst∇t

x′δ
3(x − x′). (4)

In (1) the first term is the total kinetic energy for N free
charges, and the second term is the usual Hamiltonian for
free radiation. The next three terms couple the charges to the
radiation, while the last term has no dependence on the field
nor on the particles’ motion; it is of a purely static nature. M
is a magnetization density linear in the charge e that involves
the particles’ position and momentum variables, and X is a
generalized diamagnetic susceptibility tensor that is propor-
tional to e2. Their particular forms depend on the choice made
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for the electric polarization field P which is also linear in the
charge e. The polarization field, like the vector potential a,
is essentially an arbitrary working variable inasmuch that one
cannot specify an experimental setup that corresponds to some
definite choice of P (or a).

Routine calculation yields the equations of motion as the
Maxwell equations for the fields associated with the polariza-
tion fields (P, M), and the Lorentz force law for the particle
motion in the fields (E, B) [2]. Of course, these must be solved
in a self-consistent manner for the closed system, and one
learns from the conventional calculations that both classical
and quantum formulations lead to infinite quantities, which
physically is a nonsense. We explore here some ideas about
the origin of the infinities which can be traced to invalid
assumptions in the calculations. In order to make this account
reasonably self-contained, some relevant mathematical results
are collected together in the Appendix. Proofs can be found in
the cited mathematical literature.

Some results for specific choices for the polarization field
P were discussed in [1,2], and, in particular, the last term in
the Hamiltonian

EP = 1

2ε0

∫
P · P d3x (5)

was examined. For an overall neutral multicharge system
(atom, molecule), P may be written as a sum of line inte-
grals with endpoints corresponding to the particle position
variables, so it suffices to examine a typical term (see Sec. II)

P = e
∫ X2

X1

δ(.; z) dz. (6)

Although it was noted that the components of the vector P
in the point particle model were distributions, the subsequent
calculations were performed as though they were continuous
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functions; EP was found to have δ function and explicitly
divergent contributions,

EP ∼ e2

4πε0
δ2(0)

∫
dl + · · · , (7)

where l is the arc length along the integration path, and δ2(0)
is the singular spatial δ function in two dimensions evaluated
at the origin with dimension L−2 [1].

Distributions are a particular type of “generalized
function” produced by a construction which allows one to
work with irregular functions in familiar ways; for example
addition and differentiation are defined. They are linear func-
tionals on the Schwartz space S and belong to the vector space
S′, the dual of S [3].

We examine first (Sec. II) some of the implications of the
distributional nature of the polarization field; we concentrate
on P though similar concerns also apply to the magnetic
variables (M, X ) derived from it. Conventionally the prop-
erties of P are determined by a vector quantity, g, which is
a Green’s function or fundamental solution of the divergence
equation [1]. However, once one recognizes that the Green’s
function is really a distribution g with which g is associated it
becomes clear why the calculation of EP in the usual manner
is problematic.

This is because the Schwartz “impossibility theorem” [4,5]
shows that in general distributions cannot be multiplied un-
ambiguously, unlike the continuous functions we are used
to; thus there is the obvious question: how should EP, (5),
be understood? The Schwartz theorem can be evaded if the
factors u, v in the distributional product (u ∗ v) satisfy cer-
tain regularity conditions. For example, Hörmander gave a
criterion in terms of the “wave front sets” of the two dis-
tributions. Roughly speaking when the Fourier transform of
a factor, u, around any point does not decay exponentially
in the direction of a particular wave vector (an element of
its wave-front set), the Fourier transform of the other factor,
v, must decay exponentially in the opposite direction of that
wave vector [6]. This key insight is used to regularize the
singular Feynman diagrams in the usual perturbation theory
approach to Lorentz invariant QED and to carry through the
renormalization program [7–9]. However, the evaluation of EP
is not amenable to this approach since (7) results from an
integral over a product of δ functions if ordinary pointwise
multiplication is used [see (A40)].

There are ways of extending irregular functions to a larger
class of “generalized functions” than the distributions for
which a product is defined. By changing the natural assump-
tions Schwartz required for his interdict against multiplication
of distributions one can make a modified construction that
leads to an algebra of generalized functions. This is the ap-
proach to generalized functions of the Colombeau algebra
which is sketched in the Appendix. The formation of a product
of distributions in the Colombeau algebra is unrestricted in
that it is not subject to the regularity condition mentioned
above. It does, however, involve radically new mathematics
since the familiar notion of pointwise product is given up. The
construction does not simply regularize a singular quantity by
imposing some arbitrary large momentum cutoff to suppress
ultraviolet infinities. The whole, usual calculus on continu-

ous functions is moved into an entirely new mathematical
framework while keeping many familiar features including,
importantly, the notion of product. This is enough to show
that EP is finite, but not to give a definite numerical value.
The details are given in several monographs [10–12], and ap-
plications, developments, and further literature can be found
in [5,13,14].

In Sec. III we look at the polarization field from the per-
spective of the Colombeau algebra having shown (Sec. II) that
the earlier attempt at regularization [1,2] does not satisfy the
algebra’s conditions. In Sec. IV there are some thoughts about
other terms in (1) in the framework of generalized functions.

II. THE POLARIZATION FIELD, P, AND ITS ENERGY

The electric polarization field, P, of N charged particles
{ei, i = 1, . . . , N} is any solution of the divergence equation

∇ · P = −ρ, (8)

where ρ is the charge density. For point charges at positions
{Xi i = 1, . . . , N} it is customary to take ρ to be given by

ρ =
N∑
i

eiδ
3(.; Xi ), (9)

where δ3 is the three-dimensional Dirac δ function and the
{Xi} are parameters. Since (8) is linear we may write

P =
N∑
i

Pi (10)

so that

1

ei
∇ · Pi = −δ3(.; Xi ). (11)

This equation is, to within a constant, the defining equa-
tion for the Green’s function or fundamental solution for the
divergence equation,

∇ · g(.; x′) = −δ3(.; x′), (12)

so if we can find a Green’s function g we have

Pi = eig(.; Xi ). (13)

Equation (11) is also, to within a constant, the same as Gauss’s
Law for the electric field intensity, E, in the Maxwell equa-
tions, so what is said about g here also applies to E.

The literature identifies the vector-valued function

g(x; x′)‖ = ∇x

(
1

4π |x − x′|
)

(14)

valid for x �= x′ as a Green’s function for (12); it is not defined
when x and x′ coincide. The solution set of (12) is much more
general than purely (14). A transverse vector field defined by
g(x; x′)⊥ = Curlxf (x, x′) where f is any differentiable vector
field in the variable x can be added to g‖ along with any
solution g0 of the homogeneous equation associated with (12).

The line integral form

g(x; x′)C = ∇x

(
1

4π |x − O|
)

+
∫ x′

C[O]

δ3(x − z) dz (15)
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for paths C[O] from some origin O to the field point x′ is par-
ticularly important in electrodynamics. If the Dirac δ function
is multiplied by the unit dyadic and then decomposed into
longitudinal and transverse components

δαβδ
3(x − y) = δ

‖
αβ (x − y) + δ⊥

αβ (x − y), (16)

(15) becomes, in component form (α, β = 1, 2, 3),

g(x; x′)C
α = ∇x,α

(
1

4π |x − O|
)

+
∫ x′

C[O]

δ
‖
αβ (x − z) dzβ

+
∫ x′

C[O]

δ⊥
αβ (x − z) dzβ. (17)

The first two terms combine to give precisely g(x; x′)‖, (14),
and the third term is purely transverse by construction.

If one chooses g = g‖ the polarization field (10) is that ap-
propriate to electrostatics. When radiation is involved (moving
charges) the polarization field may have a transverse compo-
nent, and this can be accommodated with the use of the line
integral form (15) for g. The Coulomb gauge version of QED
corresponds to choosing the purely longitudinal polarization
field. Since the origin O and the choice of path C[O] in (15) are
arbitrary, this freedom is an expression of the gauge symmetry
of electrodynamics.

A useful simplification for the line integral Green’s func-
tion follows from the recognition that the arbitrary origin O
should not appear in the final result. For an overall neutral
system of charges this can be achieved by a reordering of
the terms in the charge density so that the limits in every
line integral are associated with coordinates of charges, and
terms involving O no longer appear [1]. Thus for the neutral
two-particle system, the function

g(x; x′; x′′) =
∫ x′′

x′
δ3(x − z) dz (18)

derived directly from the Green’s function, and the charge
density

ρ(x′ − X) = eδ3(x′ − X1) − eδ3(x′ − X2) (19)

yields the polarization field in the well-known form (6). For
the straight line path from X1 to X2 one has [15]

P(x) = er̂δ2(1 − cos(ω))

|X1 − x|2 , |X1 − x| � |r| (20)

and otherwise 0 where r = X2 − X1, and ω is the angle be-
tween the vectors r and X1 − x. P has dimensions of Q/L2

since δ2(θ ) is dimensionless.
Let C1 and C2 be two distinct paths from the charge at X1

to the charge at X2 with C2 the straight line path between the
two charges so that C1 − C2 is a closed loop. Then formally

P(x;C1) = P(x;C2) + e

(∫
	12

∇z ∧ δ3(z − x) dS
)

, (21)

where 	12 is a surface bounded by the closed path z formed
from C1 and C2. The arbitrariness in P is carried by the surface
integral.

Using (10) and (13) the energy EP can be put in the form

EP = 1

2ε0

N∑
i, j

eie j

∫
g(x; Xi ) · g(x; X j ) d3x, (22)

so it suffices to examine the integral

J (g)x′,x′′ =
∫

g(x; x′) · g(x; x′′) d3x. (23)

This was done in [1,2] and results in not only the Coulomb
interaction between pairs of charges and the usual infinite
“self-energies” (with g ≡ g‖) but also a variety of other di-
vergent terms (with the line-integral form).

We now review the formalism above in the light of the
Appendix, focusing on the implications of the use of the Dirac
δ function in (9) and (12). The δ is not a function in the
classical sense and has to be understood as a tempered dis-
tribution acting on functions belonging to the Schwartz space,
S , according to the rule (A32). Since (12) is an equality the
Green’s function is also a (vector-valued) distribution g in the
variable x providing a distributional solution to the differential
equation

∇ · u = −δx′ , (24)

the vector x′ being regarded as a parameter. In terms of g, (24)
is explicitly, for all s ∈ S

〈∇ · g(·; x′); s〉 = −〈δx′ ; s〉 ≡ −s(x′). (25)

The vector quantity in (14) is locally integrable, and so can
be associated with a tempered distribution g(·; x′)‖. Similarly,
Curlxf , for suitable f , will also be locally integrable and hence
is associated with a tempered distribution g(·; x′)⊥, and one
can try

g(·; x′) = g(·; x′)‖ + g(·; x′)⊥, (26)

where

g(·; x′)‖ = Tg(·;x′ )‖ (27)

and similarly for the transverse component. With these asso-
ciations, (25) can be rewritten as

〈∇ · Tg(·;x′ ); s〉 = −
∫
R3

g(x; x′) · ∇s(x) dx

=
∫
R3

∇x · g(x; x′)s(x) dx (28)

after integration by parts and use of the differentiation rule for
distributions, (A28),

〈∇ · g(·; x′); s〉 = −〈g(·; x′); ∇s〉. (29)

In the same way, Eq. (15) becomes

g(·; x′)C = g(·; O)‖ +
∫ x′

C[O]

δz dz. (30)

This is a distributional solution of (25) because

〈∇ · g(·; O)‖; s〉 = −s(O), (31)
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while

〈∇x ·
∫ x′

C[O]

δz dz; s〉 = −
〈∫ x′

C[O]

δz dz; ∇s

〉

= −
∫ x′

C[O]

dz · 〈δz; ∇s〉

= −
∫ x′

C[O]

dz · ∇zs(z)

= −s(x′) + s(O). (32)

The conclusion then is that the electric polarization field, P,
must also be thought of as a distributional solution to (8)
defined by

P =
N∑
i

Pi ≡
N∑
i

eig(.; Xi ). (33)

In view of Schwartz’s theorem [4] there is no distributional
transcription for (5), so what does EP mean?

In [1,2] the Fourier transform of P was “regulated” by a
function χ̂a(k) obtained by Fourier transformation of some
function that “broadens out” the δ functions in the charge
density for point particles. Taking the Fourier transform of
g(x; x′), (14), as

ĝ(k; x′)‖ = −i
k
k2

eik·x′
(34)

the idea was to regularize (34) by putting

ĝ(k, x′)‖ → ĝa(k, x′)‖ = −ik
χ̂a(k)

k2
eik·x′

. (35)

χ̂a(k) was chosen as a real function and required to have the
properties

|χ̂a(k)| � 1, χ̂a(0) = χ̂0(k) = 1,∫ ∞

0
χ̂a(k)2 dk = π

2a
, k = |k|, (36)

which are such that the unmodified equations can be recovered
in the limit a → 0. The regulator in [1,2] was

χ̂λ(k) = e−λk, λ = a

π
, k = |k|. (37)

From (36) we see that χ̂a is square integrable so that

χa(|x|) = 1

(2π)3

∫
χ̂a(|k|)e−ik·x d3k (38)

is defined.
Combining (37) and (38) the integral is elementary with

the result

χλ(x) = λ

π2

1

(x2 + λ2)2
, x = |x|. (39)

Although this satisfies [cf. (A36)]∫
R3

χλ(x) dx = 1 (40)

we see that χλ(x) is nonzero on all of R3 and does not de-
cay sufficiently fast at ∞ to be an element of the Schwartz
space, S . We conclude the calculations of EP in [1,2] do not

resolve the ambiguity in the multiplication of the distribution
P required for the evaluation of EP.

III. THE POLARIZATION FIELD REVISITED

The Colombeau framework offers a way to regularize the
Green’s function, g, discussed in Sec. II and eliminate the
infinities. The aim is to find a replacement for the scalar
product

Jx′x′′ =
∫

g(x; x′) · g(x; x′′) d3x. (41)

As before the substitutions x′ → Xi, x′′ → X j in J when mul-
tiplied by eie j/2ε0 gives EP for two charges at Xi, X j .

Instead of working with

g(x; x′) = 1

(2π)3

∫
g(k; x′)e−ik·x d3k (42)

as in Sec. II, we view it as a tempered distribution in
the variable x and transform it into a generalized function
R(g; sλ; x; x′). This amounts to choosing a Schwartz function
according to the requirements discussed in the Appendix. We
denote the mollifier as s, and the main conditions are that its
Fourier transform ŝ should be smooth and compact, that is,
ŝ ∈ D, with ŝ(k) = 1 in a finite neighborhood of k = 0.

A representative of g can be constructed by convolution
with a suitable mollifier

R(g; sλ; x; x′) = g(x; x′) ∗ sλ

= 1

λ3

∫
s

(
z − x

λ

)
g(z; x′) d3z

=
∫

s(u)g(x + λu; x′) d3u (43)

after an obvious change of integration variable. Combin-
ing (42) and (43) and performing the integration over u (a
Fourier transform) yields

R(g; sλ; x; x′) = 1

(2π)3

∫
g(k; x′)ŝ(λk)e−ik·x d3k. (44)

This is an embedding of the vector g in the Colombeau set
G. It is possible to show that all moderate embeddings (43)
are equivalent modulo infinitesimal quantities that depend on
λ (see Proposition 2.1.2 in [14]), so that there is no single
choice of s here.

In terms of the generalized vector function R the integrand
in (41) is replaced by the density

R(g; sλ; x; x′) · R(g; sλ; x; x′′), (45)

and Jx′x′′ is the integral of this density over the whole of R3.
At this point we follow [14] and perform this integration with
the inclusion of a “damper” in the integrand, setting

J (s)λx′x′′ =
∫

R(g; sλ; x; x′) · R(g; sλ; x; x′′)ψ̂ (λx) d3x, (46)

where ψ̂ (x) is a smooth real Schwartz function on R3

with compact support (ψ̂ ∈ D), and identical to 1 in a
0-neighborhood. The physical interpretation of the inclusion
of the damper is that it has the same effect as restricting the
integration over the spatial coordinates to a large but finite
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volume [14]. Such a restriction is understood tacitly for (1)
since otherwise the integrals would not be finite.

Written out in full (46) is

J (s)λx′x′′ = 1

(2π)6

∫∫∫
g(k1; x′) · g(k2; x′′)ŝ(λk1)ŝ(λk2)

× e−i(k1+k2 )·xψ̂ (λx) d3x d3k1 d3k2. (47)

Because of the presence of the mollifiers/damper the integra-
tions can be done in any order, so we choose to integrate over
x first. By inverse Fourier transformation we have

1

(2π)3

∫
d3xe−i(k1+k2 )·xψ̂ (λx) = 1

λ3
ψ

(
k1 + k2

λ

)
. (48)

If we were to put λ = 0 the function ψ would reduce to
a Dirac δ function and one of the wave vector integrations
would be trivial, (k1 = −k2), For λ > 0 this simplifying re-
sult is not immediate, but with the aid of a proposition in [14]
it can be recovered [its basis lies in (A47)].

Taking account of (48) we now write (47) in the form

J (s)λx′x′′ = 1

(2π)3

∫
d3k1ŝ(λk1)

∫
d3k2ŝ(λk2)

× M(k1, k2)
1

λ3
ψ

(
k1 + k2

λ

)
(49)

with

M(k1, k2) = g(k1; x′) · g(k2; x′′). (50)

Then by Proposition 1.4.2 in [14] the integration over k2 for
fixed k1 is∫

d3k2 ŝ(λk2)M(k1, k2)
1

λ3
ψ

(
k1 + k2

λ

)
= ŝ(−λk1)M(k1,−k1) + O(λq+1) (51)

so that J (s)λx′x′′ reduces to

J (s)λx′x′′ = 1

(2π)3

∫
g(k; x′) · g(−k; x′′)ŝ(λk)ŝ(−λk) d3k

(52)

with an infinitesimal remainder. As noted in the Appendix, a
product of Schwartz functions is another Schwartz function,
so we can simplify (52) to

J (s)λx′x′′ = 1

(2π)3

∫
g(k; x′) · g(−k; x′′)ŝ(λk) d3k (53)

for some test function ŝ(λk) ∈ D. This result is of the same
form as the “regulated” version of these calculations in [1,2];
the crucial difference is that the classical function χ̂λ(k), de-
fined by point values, is replaced by a family of mollifiers
{ŝ(λk)}.

We will assume that s(x) is real and x = |x|, so that its
Fourier transform is also radial. The angular integrations are
then elementary and one is left with

J (s)λr = 1

2π2

∫ ∞

0
h(kr)ŝ(kλ) dk, r = |x′′ − x′|. (54)

Here the function h(kr) depends on the particular choice
of Green’s function, g(x; x′), that was made originally, for

example,

(1) : g = g‖ → h(kr) = sin(kr)

kr
,

(2) : g = gC → h(kr) = 2[krSi(kr) + cos(kr) − 1]. (55)

In case (1), the purely longitudinal Green’s function, we
have

h(0) = 1, h(x) < 1 for x > 0 (56)

so J (s)‖r for r = 0 and λ > 0 has a finite real bound since
ŝ is enough to ensure convergence of the integral. Hence
the calculation of EP, which simply involves interpreting r
as |X2 − X1| yields a finite real generalized number for the
self-energy of the charges. On the other hand, for r �= 0 one
can take λ as an infinitesimal, i.e., in the neighborhood of 0,
and so replace ŝ by 1, and then the energy EP will appear as
the familar Coulombic form

EP = e1e2

4πε0r
, r = |X2 − X1|, X2 �= X1 (57)

since the remaining integral yields simply π/2r.
Case (2) is not so straightforward as explicit formulas

depend on the particular form of ŝ. However, it is evident
that at r = 0, h = 0 so the integral vanishes; for r > 0 the
result is finite since the mollifier ensures that the integral is
convergent. Hence when EP is calculated one will get an 1/r
dependence modulated by some r-dependent coefficient. This
is due to the introduction of a transverse component for the
polarization field; of course one has to remember that P⊥

also enters in the interaction terms in (1). In the conventional
perturbation theory one can show a formal cancellation of part
of the transverse contributions and one is left with (57), and
perhaps that will be true in a more rigorous treatment of the
fields in (1) along the lines sketched.

IV. THE HAMILTONIAN

Maxwell’s equations for the field of a point charge at rest
at the origin of the coordinates reduce to simply Gauss’s Law:

ε0∇ · E = ρ, ρ(x) = eδ3(x). (58)

The “solution” that vanishes at ∞ is

E(x) = ex̂
4πε0x2

, (59)

which leads to a divergent energy integral

E = 1

2
ε0

∫
E(x) · E(x) d3x = ∞. (60)

As noted earlier, this application of Gauss’s law involves the
same mathematics as the equation defining the polarization
field and is subject to the same critique. The electric field
should be viewed as a tempered distribution and the discus-
sion in Sec. III applies verbatim. In the Colombeau algebra the
solution of (58) leads to the usual Coulombic expression for
|x| �= 0, and a finite generalized number at the origin. As for
the particle’s dynamics, Hamilton’s equations for the charge
should be a pair of first-order differential equations for its
position and momentum variables; they are, however, patho-
logical since they include a term proportional to the particle’s

012204-5



R. GUY WOOLLEY PHYSICAL REVIEW A 110, 012204 (2024)

acceleration, ẍ, which leads to a runaway solution for the
orbit [2].

The situation in QED is rather different. In the usual
treatment, the transverse electromagnetic field variables
A (the Coulomb gauge vector potential), E⊥

, B are repre-
sented as Fourier series derived from the standing waves in
a “box” of finite volume  [2]. On passing to the contin-
uum limit these quantities satisfy the bracket relation (4). As
operator-valued quantities the transverse electric field opera-
tor, for example, is given the Fourier expansion

E(x)⊥ =
∫ (

Ê(k)eik·x + H.c.
)

d3k, (61)

where

Ê
⊥

(k) = i

√
h̄kc

(2π)32ε0
c(k). (62)

The vector c(k) satisfies k · c = 0 and so can be expressed in
terms of components with respect to the usual “polarization”
unit vectors that span the plane orthogonal to the propagation
direction k. The components are the familiar annihilation,
c(k)σ , and creation, c(k)+σ , operators for a photon with mo-
mentum k and polarization σ, (σ = 1, 2), with commutator

[c(k)σ , c(k′)+σ ′] = δ(k − k′)δσσ ′ . (63)

There is a similar expansion for the magnetic field operator B
(k̂ = k/|k|)

B̂(k) = i

√
h̄k

(2π)32ε0c
k̂ ∧ c(k). (64)

In QED if either E⊥ or B is applied to the field’s vacuum
state |0〉, the resulting state contains the factor

√
k exp(−ik ·

x) for each mode and, with an infinite number of modes, it
is not square integrable, so the state does not belong to Fock
space; unsurprisingly

〈0|E⊥ · E⊥|0〉 = ∞. (65)

In terms of the photon operators the free-field Hamiltonian
is [16]

H0 =
∫

h̄ck

(
c(k)+c(k) + 1

2
δ3(0)

)
d3k (66)

so that even in the vacuum state the field energy is infinite,

H0|0〉 = 1

2
h̄cδ3(0)

∫
k d3k. (67)

The δ function arises from the integration over all space (R3),
and the momentum integral diverges for large k. Although the
practical response is simply to wave away the offending infi-
nite contribution, this does not really dispose of the underlying
reasons for its occurrence, which manifest themselves again
when interactions are introduced. Unlike a classical field, the
fluctuations in the quantized field do not die out as length
scales are reduced [7] so one cannot assume the field variable
to be continuous. In mathematical terms the field is neither
absolutely integrable nor square integrable; consequently the
conventional Fourier representations (61) and (64) are not
defined.

The field variables are, however, locally integrable on any
compact subspace of R3 and so may be viewed as tempered
distributions in the space variable x. Indeed, the usual re-
sponse to the difficulties of infinities in electrodynamics is to
give up the idea that the fields are continuous vector-valued
functions/operators, and reinterpret them as distributions [17].
As we have seen this means “smearing” the field variables
with a function belonging to the Schwartz space, S; in the
notation of the Appendix this is explicitly

E → TE, s → 〈TE; s〉 =
∫
R3

E(x)s(x) dx (68)

as in (A21), and similarly for the magnetic field B. That
such a step is necessary is also evident from the appearance
of a “Dirac δ function” in the commutator (4). The Dirac δ
is a distribution, and since Eq. (4) is an equality the l.h.s.
of the commutator must also involve distributions. Likewise
with (63). But this does not solve the problem of giving mean-
ing to the nonlinear terms in the Hamiltonian (1). In order to
solve the problem of multiplication they can be embedded in
the Colombeau algebra in exactly the same way as g in (43)
and (44), that is, by convolution with a suitable mollifier sλ(x)
followed by integration over the variable u. The result is that
the integrand in (61) is modified simply by inclusion of the
factor ŝ(λk).

The work in [14] is concerned with translating the formal
calculations of a model quantum field theory—the original
Heisenberg-Pauli (HP) quantum theory of a scalar boson
field—into the Colombeau algebra to start a mathematically
rigorous justification for what is done conventionally. The
boson field operator and its conjugate are reinterpreted as
distributions in the space variable x and then transformed into
elements of the Colombeau algebra. The “free-field” part of
the HP Hamiltonian is closely related to the free-field part of
the QED Hamiltonian (1) since both involve only quadratic
combinations of the field operators; they can be written as
Hamiltonian densities which when integrated over all space
(R3) gives the Hamiltonian as the energy (i.e., the energy
operator when quantized).

V. DISCUSSION

The nonrelativistic Hamiltonian (1) is of interest in its
own right; for example, the question as to whether it has
a ground state, which cannot be answered by perturbation
theories, is important for understanding the stability of mat-
ter [17]. Besides there is no Lorentz invariant account of
atoms, molecules, condensed matter, etc., interacting with the
electromagnetic field, so (1) cannot be viewed simply as some
limit of the Lorentz invariant theory of electrons and photons.

The infinities found in nonrelativistic quantum electrody-
namics based on the Hamiltonian (1) are due to the neglect
of the true mathematical nature of the field operators (elec-
tromagnetic and matter polarization) that it is formulated in
terms of. Since the familiar Coulomb gauge form is simply a
special case of (1) this remark is quite general. Even without
considering interactions there is the infinite zero-point energy
of the free electromagnetic field. At nonrelativistic energies
the electrons and nuclei appear to have no structure, and it is
natural to describe them as “pointlike.” Having said that there
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is something paradoxical about associating mass to entities
that have no extension in space. This tension manifests itself
in the appearance of the Dirac “δ function” in the formalism,
an object that needs to be handled with great care. Calcula-
tion treating the operators as ordinary continuous functions in
the point-particle model leads to an infinite “electromagnetic
mass,” and to the problems for the energy EP discussed in
Sec. II [2].

In practice one uses the observed values for the charge and
mass parameters of the particles (a necessary step to be sure)
and simply drops the troublesome infinite terms as they arise
in perturbation theory. Nonperturbative analysis of nonrela-
tivistic QED is almost invariably based on the Coulomb gauge
Hamiltonian, and divergent momentum integrals are simply
cut off to maintain nonrelativistic energies and ensure that the
Hamiltonian is self-adjoint [2,17].

The Colombeau algebra discussed here offers a means to
address these foundational problems at the expense of an
unfamiliar mathematical framework. The zero-point energy
of the free HP Hamiltonian was shown to be finite in [14],
and one can reasonably expect the same result for the free
quantized electromagnetic field since it is also quadratic in
the field operators; the self-interactions of charged particles
could also be expected to be finite. This is only a qualitative
result, however; these calculations do not lead to a precise (or-
dinary) numerical value for the self-energies because there is
no unique Schwartz function to be used in integrals like (43).
The nonrelativistic perturbation theory can be approached via
a diagrammatic technique and perhaps divergent terms could
be dealt with using the Hörmander criterion; that has yet to be
done.

One further unresolved question that involves the distribu-
tional nature of the polarization field should be mentioned.
The Hamiltonian (1) is related to the familiar Coulomb gauge
Hamiltonian by the Power-Zienau-Woolley transformation
with the operator

Λpzw = exp

(
− i

h̄

∫
P(x) · A(x) d3x

)
, (69)

where A is the Coulomb gauge vector potential. Power and
Zienau noted that the transformation could be thought of
as a redefinition of the modes of the field that incorporates
the atomic system as a whole as a source of the field [18].
One can view the PZW transformation as a coherent state
boson translation which, for any polarization field, creates
a corresponding Fock space from the original Fock space
of the Coulomb gauge theory. The resulting coherent state
operators involve a mixture of the original particle and field
variables and make sense only for the interacting system.
The integration in (69) has always been interpreted using the
usual product for continuous functions. For point charges and
using (6) one finds that the transformed space and the original
Fock space have orthogonal vacuum states,

〈0|�pzw|0〉 = 0. (70)

This imples that unitarity is lost in this limiting case [1,2].
The underlying reason must be that the polarization field is
a distribution, and the vector potential does not belong to
the Schwartz space. How this should be resolved is an open
question.
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APPENDIX: FUNCTIONS, FUNCTIONALS
AND GENERALIZED FUNCTIONS

Informally, a classical function f is a relation that takes an
input (the “argument”), commonly denoted by x, and outputs
a value f (x), expressed symbolically as

y = f (x) or x �→ f (x) (A1)

so that the pair (x, y) [or (x, f (x))] belongs to the set of pairs
defining f . The domain of a function f is the set of all values
for which the function is defined; the range is the set of values
f (x), that is, the set of output values. If xi is in the domain
of f so that f (xi ) is defined and equal to limx→xi f (x), f is
continuous at x = xi. Such functions belong to a set C (in the
usual terminology). Functions that have (partial) derivatives
of all orders are said to be smooth; they belong to a subset
of C denoted C∞, and one has the obvious inclusion C∞ ⊂ C.
Smooth functions are particularly important in the discussion
here. Sometimes there are points xi outside the domain of f
such that the values f (x) of f tend to ∞, as x tends to xi. This
situation is often realized in physically interesting cases; the
electrostatic potentials of a point charge (∝ 1/|x|) and a point
dipole (∝ 1/|x|2) which are infinite at the origin, xi = 0, are
important examples in electromagnetic theory.

A function belongs to the space of absolutely integrable
functions, L1(Rn), if∫

Rn

| f (x)| dx < ∞ (A2)

and to the space of square integrable functions, L2(Rn), if∫
Rn

| f (x)|2 dx < ∞. (A3)

The classical theory of the Fourier transform shows that for
functions that satisfy (A2) the transform is defined properly by

(F f )(x) �→ f̂ (k) =
∫
Rn

f (x)eikx dx. (A4)

If f̂ is absolutely integrable, the inverse transform F−1 is
defined to be

f (x) = 1

(2π)n

∫
Rn

f̂ (k)e−ixk dk. (A5)

If f is also square integrable the inverse transform always
exists, a fact that is very important in quantum mechanics
where the Fourier transform expresses the unitary transfor-
mation connecting position and momentum representations.
Heisenberg’s Uncertainty Principle is a special case of a gen-
eral rule that the more localized one member of a Fourier
transform pair ( f , f̂ ) is, the more spread out its transform part-
ner is. For functions that satisfy (A3), but not (A2), the Fourier
transform and its inverse are still defined formally by (A4)
and (A5) though only via an indirect approach (Parseval-
Plancherel theorem) since in this case (A4) is not a convergent
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integral. The convolution of two functions s, χ is defined as

(s ∗ χ )(x) =
∫
Rn

s(y − x)χ (y) dy; (A6)

the convolution theorem states that the Fourier transform of
the l.h.s. satisfies

F(s ∗ χ ) = (Fs)(Fχ ). (A7)

In much broader mathematical settings the input in (A1)
may itself be a function f , and we write

F �→ F [ f ] or f �→ 〈F, f 〉; (A8)

we then speak of F as a functional. The definite integral, F ,
of a continuous function f over some region  where f is
defined

〈F, f 〉 =
∫



f (ω) dω (A9)

is such a functional relation; in this case it is a linear one.
The reason why these “abstract” details are of interest is

that there are familiar physical quantities that do not satisfy
either of the conditions (A2) or (A3) such as the Coulomb
potential 1/|x| with n = 3 mentioned earlier. One has only the
more limited statement that it is locally integrable,∫



1

|x| dx < ∞, (A10)

where the integral is taken over any compact subset, , in R3.
An elementary calculation shows the difficulty; if we define
the Coulomb potential as

V (x) = 1

|x| , (A11)

its Fourier transform should be

V̂ (k) =
∫

1

|x|eik·x d3x (A12)

in accordance with (A4). Using polar coordinates

d3x = x2 dx sin(θ ) dθ dφ, (A13)

the angular integration is immediate and we are left with

V̂ (k) = lim
R→∞

4π

∫ R

0

sin(kx)

kx
x dx

= 4π

|k|2 [1 − cos(|k|R)]

∣∣∣∣
R→∞

; (A14)

this limit does not exist.
A widely used “remedy” is to express the Coulomb poten-

tial, V , as a limit of the Yukawa potential which does have a
classical Fourier transform,∫

e−m|x|

|x| eik·x d3x = 4π

|k|2 + m2
; (A15)

the m → 0 limit of this integral gives just 4π/|k|2, which is
taken to be the transform of the Coulomb potential. Notice,
however, a sleight of hand here; obviously the Coulomb po-
tential is related to the Yukawa potential by

lim
m→0

e−m|x|

|x| = 1

|x| = V (x). (A16)

However,

lim
m→0

∫
e−m|x|

|x| eik·x d3x = 4π

|k|2 ,∫
lim
m→0

e−m|x|

|x| eik·x d3x →?, (A17)

since the second integral obtained by reversing the order of
limit and integration has no meaning as seen in (A14)! What
then to do?

The Schwartz space, S(Rn), is the vector space of smooth,
complex-valued functions on Rn that, together with all their
derivatives, decrease at infinity faster than any polynomial; the
(n-dimensional) function f (x) = g(x)e−x2

for any polynomial
g(x) is an example. More precisely this means that such a
function f has the property that for any partial derivative ∂α

and any integer m, there is a constant Cα,m > 0 such that for
all x

(1 + |x|)m|(∂α f )(x)| � Cα,m. (A18)

We denote a general element of S by s = s(x); they are es-
sential elements of the mathematical theory of “generalized
functions.” From their definition we see that Schwartz func-
tions satisfy (A2); hence their Fourier transforms {ŝ} are well
defined, and they also are elements of S . The same is true for
the sum, product, and convolution of two Schwartz functions.
The subset of elements, {x �→ φ(x)}, of S that are not only
smooth but also have compact support are usually referred to
as “test functions.” This subset is also a vector space that is
usually denoted D.

A distribution is a particular type of linear functional and
can be thought of as a development of the classical idea of
a function summarized above. Instead of f “acting on” point
values to give an outcome, a distribution “acts on” elements of
a set of functions [3]. A regular distribution is a continuous,
linear functional on the set of smooth functions with compact
support, that is, the elements {φ} of the set D; it is associated
with a locally integrable function f according to the pairing
formula

φ �→ 〈T f ; φ〉 =
∫
Rn

f (x)φ(x) dx. (A19)

In general the result of such an integration is a complex
number. The collection of continuous, linear functionals on D
is a vector space denoted D′. A simpler notation which main-
tains the distinction between a distribution and the function
it is associated with is to write the distribution in a different
typeface so that, for example, using fraktur

f ≡ T f . (A20)

A tempered distribution may be defined in the same way
as (A19) except that the integrand involves the elements {s}
of the Schwartz space S ,

s �→ 〈T f ; s〉 =
∫
Rn

f (x)s(x) dx. (A21)

Such functionals belong to a vector space denoted S ′. The
tempered distributions are important because they provide the
basis for the modern account of the Fourier transform for
functions that fall outside the classical definition described
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earlier. The Fourier transform of a tempered distribution T is
another tempered distribution, T̂, acting on s as

〈T̂, s〉 = 〈T, ŝ〉, (A22)

where ŝ is the usual classical Fourier transform of s.
The framework expressed by (A22) can be applied to give

a meaning to the Fourier transform of the Coulomb potential.
In R3 the Coulomb potential, (A11) is locally integrable and
bounded at infinity, so we may view it, and its Fourier trans-
form, as tempered distributions, specifically

〈TV , s〉 =
∫

1

|x| s(x) d3x. (A23)

From (A22) we have

〈T̂V , s〉 =
∫
R3

1

|x| ŝ(x) dx = lim
R→∞

∫
|x|<R

1

|x| ŝ(x) dx. (A24)

Now for R > 0∫
|x|<R

1

|x| ŝ(x) dx =
∫

|x|<R

1

|x|
∫

eix·ks(k) d3k d3x

=
∫

d3ks(k)
∫

|x|<R

1

|x|eix·k d3x

=
∫

d3ks(k)
4π

|k|2 [1 − cos(|k|R)] (A25)

from (A14). The difference from the earlier calculation is that
the integral involving the cosine factor in (A25) vanishes for
R → ∞, as follows from the properties of s and an integration
by parts. Hence∫

R3
T̂V s(x) dx =

∫
R3

4π

|k|2 s(k) dk, (A26)

where now the Fourier transform of the Coulomb potential
is understood as the distribution associated with the function
k �→ 4π/|k|2.

The convolution of a tempered distribution with a function
s ∈ S is given by

s′ ∗ 〈T, s〉 = 〈T, s̃′ ∗ s 〉, (A27)

where s̃′(x) = s′(−x) is the reflection of s′ about the origin.
The distributional derivative is defined in similar fashion by
passing the differentiation through to the Schwartz function;
we set

(T f )′ = −〈T f ; s′〉. (A28)

If f is a differentiable function, the derivative of the distribu-
tion associated with it, T f , is defined to be the distribution
associated with the usual derivative of the function f ; that
is, the r.h.s. of (A28) is simply〈T f ′ ; s〉. This follows from an
integration by parts and recognition that the boundary term
vanishes because s belongs to the Schwartz space.

It should be noted that there are numerous distributions
that have no associated function and cannot be represented
as in (A21); familiar examples are the Cauchy principal
value and the Dirac δ function, which perhaps is the most
well-known generalized function. The “δ function,” δ(x), was
introduced by Dirac for handling the continuous spectrum in

quantum mechanics with the definition∫
R
δ(x) dx = 1, δ(x) = 0, x �= 0 (A29)

but with no value defined at x = 0. Integral equations rep-
resent an example of a functional relationship where corre-
sponding to a function f there is a function g defined by

g(x) =
∫
R

K (x, y) f (y) dy (A30)

for some kernel K . The kernel of the identity transformation
is formally the Dirac δ function since

f (x) =
∫
R
δ(z − x) f (z) dz (A31)

provided f is continuous at x, a relation given by Dirac [19].
Equation (A31) defines what is usually called the “sifting”
property of the δ function. Equation (A28) is valid irrespective
of whether the distribution is defined by the integral formula;
thus distributional derivatives of the Dirac δ function are well
defined.

That the conventional description of the Dirac δ function
is problematic can be seen as follows; the definition, (A29),
is consistent with the criterion (A2) for a function to be
integrable. However, the associated tempered distribution
Tδ defined by (A21) is trivial, Tδ = 0, since an inte-
gral over an interval of zero length (the point 0) is zero
whatever s(x) is; instead the precise definition of the δ func-
tion relies on its action on elements s of S with (A31)
replaced by

〈δx0 , s〉 = s(x0). (A32)

Just as a classical function f is defined by the complete col-
lection of its values f (x) at all points {x} in its domain, so the
“δ function” δ(x − x0) is defined by the set of values {s(x0)}
of all the functions {s} in S; however, by analogy with (A21)
one commonly writes∫

R
δ(x − x0)s(x) dx = s(x0). (A33)

This is a purely formal statement since there is no function
δ satisfying (A29) according to the classical definition of a
function, and the “integral” in (A33) cannot be interpreted in
the usual way as a Riemann or Lebesgue integral. To indicate
that the “δ function” is a distribution we write it as δ.

The Fourier transform of the delta distribution is simply a
constant, the value of which depends on how the factor of 2π

is shared between the transform and its inverse. The tempered
distribution Tδ is the identity operation for convolution in the
sense that

s′ ∗ 〈Tδ, s〉 = 〈Tδ, s′ ∗ s〉 =
∫
R

s′(y)s(y) dy ≡ 〈Ts′ , s〉. (A34)

Distributions can be given a concrete realization in the
following way which is an alternative view to the “abstract”
description earlier. For simplicity of exposition we restrict the
discussion to distributions on R. Let s(x) ∈ S be a normalized
function in the Schwartz space∫

s(x) dx = 1, (A35)
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and note that its translations, s(z − x), also belong to the set
of Schwartz functions, S . By dilation of s with a parameter
0 < λ < 1, we obtain the scaled function

sλ = 1

λ
s
( x

λ

)
(A36)

with the same normalization. sλ can be viewed as a repre-
sentation of the Dirac δ which has been “broadened out” or
mollified about x = 0. It has area 1 [normalization (A35)], ap-
proximate height 1/2λ, and approximate width 2λ. A function
such as (A36) is called a mollifier.

Given a continuous function or distribution f we can con-
struct “representatives” of it as a sequence of functions that are
smooth in the variable x using the convolution integral with sλ,

Fλ(s, x) =
∫
R

1

λ
s

(
z − x

λ

)
f (z) dz, (A37)

which is an obvious echo of the sifting property of the Dirac
δ (A31). With a change of integration variable we have

Fλ(s, x) =
∫
R

s(y) f (x + λy) dy, (A38)

which is such that

f = lim
λ→0

Fλ(s) (A39)

irrespective of the particular Schwartz function s in the
convolution. Such representatives are very convenient when
derivatives of distributions are required, but as they stand there
is a severe limitation, namely, representatives when multiplied
together do not give a representative of a distribution.

As an example, consider the Dirac δ which is the λ → 0
limit of sλ, (A36). According to the above discussion its
square should be available from the square of its represen-
tative, so taking ξ ∈ S we should have for a distribution

〈δ2, ξ 〉 = lim
λ→0

∫
R

ξ (x)
1

λ
s
( x

λ

)2
dx = lim

λ→0

ξ (0)

λ

∫
R

s(z)2 dz,

(A40)

which is evidently ∞. Thus δ2 does not belong to the space of
distributions, D′. This illustrates a quite general result: there
is no multiplication on all of D′ giving a result that is in D′.

As another example, take (A21) again for two functions,
f1, f2, on some set  ⊂ Rn. When considered as distributions
they are the linear forms

〈T f1 , s〉 =
∫



f1(x)s(x) dx, 〈T f2 , s〉 =
∫



f2(x)s(x) dx.

(A41)
Their product is then

s �→
∫



f1(x)s(x) dx
∫



f2(x)s(x) dx, (A42)

while the classical product of f1, f2 interpreted as a distribu-
tion leads to

s �→
∫



f1(x) f2(x)s(x) dx, (A43)

which in general is not the same as (A42); thus the notion of
“product” is ambiguous. The idea of a distribution as a gen-
eralization of the classical notion of a function has been very

fruitful in analysis; however. some nonlinear problems require
new mathematics that goes beyond the notion of a distribution
as a linear form so that the problem that multiplication is not
defined for distributions can be overcome [4].

An essential mathematical notion that is required for this
development is that of “embedding” elements of a set into an-
other set. Roughly speaking the relationship between two sets
X and Y is an embedding if the map f : X → Y [x → f (x)
in the notation of (A1)] has the properties:

(1) For every x1, x2 ∈ X such that x1 �= x2, f (x1) �= f (x2),
that is, different elements of X correspond to distinct elements
of Y .

(2) If some property holds for x1, x2, . . . , xn the same
property holds for f (x1), f (x2), . . . , f (xn).

A subgroup in a larger group, the integers in relation to the
rational numbers, the rationals in relation to real numbers are
all examples of embeddings.

The aim is to define an embedding that gives a set, G,
of generalized functions containing the distributions and or-
dinary functions such that the usual rules of differentiation
apply, and multiplication is defined; such a set is called a
differential algebra. The Schwartz impossibility theorem [4]
is the demonstration that there is no differential algebra in
which the ordinary product of continuous functions is equal
to the corresponding product of generalized functions they are
related to [5]. Colombeau’s insight was to recognize that the
Schwartz theorem did not apply to smooth functions (C∞).
Using the properties of the Schwartz space he demonstrated
that the product of two smooth functions embedded in G
coincides with their ordinary product (in C∞).

The technical details of this novel mathematics can be
found in the cited literature [5–14]. The first step in construct-
ing an element of an algebra of generalized functions from f
(function or distribution) is the definition of representatives
as in (A37); such representatives can be freely multiplied.
Colombeau’s aim was to replace f by some Fλ (a generalized
function) with an infinitesimal error for finite λ, and this
requires further restrictions on the admissible functions {s}.
Note, however, that there is not a single s to be considered;
the construction is available to any element of the set of
mollifiers. For ease of presentation the following is restricted
to the one-variable case (R); it can easily be extended to many
variables (Rn). If one puts λ = 0 the conventional account in
terms of functions and/or distributions is recovered.

(1) Let Fsλ be the Fourier transform of (A36); from (A4)
and (A37) it is

Fsλ := ŝλ(k) ≡ ŝ(λk). (A44)

A mollifier s is said to be “suitable” if the transform ŝ(k) = 1
in a finite neighborhood of k = 0 and not just at the point
0. Such a transform has height 1, approximate area 2/λ and
approximate width 2/λ. It can be viewed as a “cutoff” for
large k values that vanishes smoothly as k → ∞; for this
reason the Fourier transforms {ŝ} are referred to as dampers.
As with the mollifiers a product of dampers belongs to the set
of dampers. A Fourier transform of an element of S belongs
to S; in the following we will require the further condition
that the transform ŝ be a test function, that is, it has compact
support (ŝ ∈ D ⊂ S ) [14] [see below, (A48)].
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(2) Since Fλ(s, x) is smooth it has a Taylor series expan-
sion in powers of λ with remainder

Fλ(s, x) = f (x) + · · · λm

m!
f m(x)

∫
R
yms(y) dy + Ox(λm+1),

(A45)

where as usual f m(x) is the mth derivative of Fλ evaluated at
x. It follows that

Fλ(s, x) − f (x) =
∑
m=1

λm

m!
f m(x)

∫
R
yms(y) dy + Oz(λm+1).

(A46)

(3) Colombeau showed that it is possible to construct a
set of Schwartz functions {s} such that their first m moments
vanish [11], ∫

R
yks(y) dy = 0, 1 � k � m. (A47)

This means that the sum term in (A46) can be made to vanish
and Fλ(x) = f (x) + Ox(λm+1). Hence the remainder can be
made as small as we please for m large enough for any λ.

(4) An equivalent formulation of the conditions (A47) can
be expressed in terms of the Fourier transformation [5]; using
the “hat” notation (A4), for the transform of any function s(x)
in the Schwartz space S, we have the relations

ŝ(0) =
∫
R

s(x) dx, (−i)nDnŝ(0) =
∫
R

xns(x) dx, (A48)

where D stands for any derivative operator. Taking s(x) with
ŝ(0) = 1, the conditions (A47) are satisfied for any m as large
as we like. All the mollifiers can be assumed to belong to
the set

A∞ = {s(x) ∈ S, ŝ ∈ D, with ŝ(0) = 1}, (A49)

where “0” implies a finite neighborhood of zero, not just the
point 0. This is the viewpoint adopted in [14].

(5) Among the functionals Fλ(s; x) we focus on two cat-
egories, Fλ(s; x) ∈ EM , called moderate, and Fλ(s; x) ∈ N ,
called negligible. The precise distinction between these two
categories can be found in the references to the Colombeau

algebra cited previously. The important point is that the
Colombeau algebra G is the quotient EM/N . The moderate
functionals have polynomial growth in 1/λ as λ → 0, whereas
the negligible ones decay faster than any power of λ as λ → 0.
Heuristically, the moderate functionals are the ones of interest,
and the negligible ones effectively play the role of the gener-
alized number “0” in the algebra. The important point is that
the product of two moderate functionals is again moderate,
whereas if the product contains at least one negligible func-
tional the result is negligible. Two functionals are said to be
“equivalent” if their difference, F − F ′, is negligible.

A generalized function is associated with a distribution T f

if it has a representative Fλ belonging to the class of moderate
functionals such that

lim
λ→0

Fλ = T f ∈ D′. (A50)

Every distribution can be converted to a moderate family
through the construction of a representative by convolution
as above. However, not every moderate family is the regu-
larization of a distribution. The square of the Dirac δ is not
a distribution, (A40), but its representative (A36) squared is
moderate. Whereas there is only one Dirac δ distribution in
D′ there is an infinity of Dirac δ like generalized functions
in G, and likewise for any other distribution. Colombeau em-
phasized that “equivalent” functionals in G are not necessarily
equal, in the sense of the classical equality denoted by =,
because they may differ by infinitesimal quantities; rather
there is a weak equality for which he proposed the relational
symbol ≈ [13].

The general idea then is that the functions { f } are trans-
formed to {Fλ} as in (A37) with mollifiers taken from (A49),
and the appropriate Fλ is used in all calculations with λ finite
until the end of the calculation. If the model is linear, the
results will be the same as though one stayed within distri-
bution theory, which is recovered in the limit λ → 0. In linear
or nonlinear models which result in divergences as λ → 0,
the parameter λ can be kept finite, and the results will be
“generalized numbers” or “generalized functions,” genuinely
new mathematical objects.
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