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Sharing quantum steering via standard projective measurements
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We propose a scheme for the sharing of quantum steering among three observers, Alice, Bob, and Charlie,
using standard projective measurements. We show that in the unilateral sequential scenario, Alice can steer Bob’s
and Charlie’s states and conversely, Bob and Charlie can steer Alice’s state. Unlike the quantum steering sharing
achieved through weak measurements, we use the standard projective measurements to enable quantum steering
sharing. Quantum steering is demonstrated by the violations of the linear steering inequality among different
observer combinations. We find that Alice can simultaneously steer both Bob’s and Charlie’s states, and Bob
and Charlie can simultaneously steer Alice’s state, regardless of whether they are in maximally entangled states
or partially entangled states. The maximum double violation of the linear steering inequalities obtained from
partially entangled states may not be greater in some cases than that obtained from maximally entangled states.
Additionally, we verify hybrid quantum correlation sharing through the double violation of the Clauser-Horne-
Shimony-Holt (CHSH) inequality and the linear steering inequality. Our results provide an alternative perspective
for studying quantum steering and hybrid quantum correlation and may lead to applications in quantum random
access code, randomness certification, and self-testing processes.
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I. INTRODUCTION

The exploration of quantum correlation traces back to 1935
when Einstein, Podolsky, and Rosen (EPR) challenged the
completeness of quantum mechanics in the EPR paradox
[1]. Over the years, three types of nonclassical correlations
have emerged from the EPR paradox subsequently, includ-
ing quantum entanglement [2–6], EPR steering [7–13], and
Bell nonlocality [14–18]. On one hand, the quantum cor-
relations have deepened our understanding of fundamental
concepts in quantum mechanics. On the other hand, the quan-
tum correlations have demonstrated their promising capability
in quantum computing [19–23], quantum communications
[24–29], quantum metrology [30–34], and other pioneering
fields [35,36].

Among the quantum correlations, Bell nonlocality and
quantum steering are commonly detected by the violation
of certain inequalities via local measurements performed
by individual observers on a shared quantum state. Specif-
ically, optimal quantum correlations have been extensively
investigated in the literature through the largest violation
of inequalities. The measurements utilized to reveal opti-
mal quantum correlations are generally the so-called strong
measurements [37], which correspond to projective mea-
surements. Such measurements maximally perturb the state,
rendering it separable after the measurements. In this scenario,

*Contact author: chunfeng_wu@sutd.edu.sg
†Contact author: renchangliang@hunnu.edu.cn

quantum correlations cannot be collectively shared among
observers who perform sequential measurements.

In 2015, Silva et al. explored an alternative scenario in
which a single observer (named Alice) and multiple observers
(named Bobs) share an entangled pair, with the intermediate
Bobs performing weak measurements [38]. It was shown that
the Bell nonlocality of a pair of qubits may be shared among
more than two observers, and this result was experimentally
demonstrated in Ref. [39] two years later. This intriguing
finding not only broadened the understanding on the prop-
erties of quantum correlations, but also stimulated further
explorations about the recycling of Bell nonlocality [40–50].
Meanwhile, similar investigations have been extended to the
sharing of other types of quantum resources, like quantum
steering [51–59], quantum contextuality [60–62], quantum
entanglement [63–66], and network nonlocal sharing [67–70],
etc. From the perspective of practical application, the recy-
cling or sharing of different quantum correlations has been
shown to play vital roles in performing various quantum tasks,
such as quantum random access code [71–75], randomness
certification [76–80], and self-testing process [81,82].

In the references, most of the results have been achieved
with a common condition that the recycling of different
quantum correlations is through unsharp measurements. It
is also interesting to investigate the recycling or sharing
of quantum correlations without the constraint of unsharp
measurements. Very recently, Steffinlongo and Tavakoli pro-
posed a protocol for distributing Bell nonlocality among
Alice and a series of Bobs [83]. In their approach, Al-
ice and each Bob stochastically employ three distinct
types of projective measurement strategies. The experimental
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demonstration of the recycling of nonlocal resources with
projective measurements has then been realized by Xiao et al.
[84]. Subsequently, Zhang et al. achieved the nonlocal shar-
ing of arbitrary high-dimensional pure bipartite states using
projective measurements [85]. Here, inspired by [83], we in-
vestigate whether quantum steering can also be recycled using
only standard projective measurements. Specifically, we con-
sider the unilateral sequential scenario in which a two-qubit
entangled state is shared among Alice, Bob, and Charlie. This
is achieved by sending one qubit to Alice and another qubit to
Bob and Charlie sequentially. We first demonstrate that Alice
can steer Bob’s and Charlie’s states simultaneously through
the standard projective measurements, as well as Bob and
Charlie can steer Alice’s state simultaneously given a maxi-
mally entangled state. We then extend this analysis to partially
entangled states and still observe the quantum steering sharing
based on the standard projective measurements. In the latter
case, the double violation is greater in some cases than that for
maximal entangled states, as expected when randomly com-
bining the case of two projective measurements and the case
of two identity measurements. Finally, we discuss the hybrid
quantum correlation sharing through standard projective mea-
surements. The hybrid quantum correlation sharing can only
be observed when there is a double violation of the Clauser-
Horne-Shimony-Holt (CHSH) inequality (between Alice and
Bob) and the linear steering inequality (between Alice and
Charlie) for steering Charlie’s state.

The paper is organized as follows. In Sec. II we explain
the unilateral sequential model and criteria. In Sec. III A we
explore the ability of Alice to steer Bob’s and Charlie’s states,
while in Sec. III B we investigate hybrid quantum correlation
sharing. Conversely, it is shown that Bob and Charlie can also
steer Alice’s state in Sec. IV A, and hybrid quantum correla-
tion sharing is illustrated in Sec. IV B. The last section is for
the conclusion.

II. THE SCENARIO OF EPR-STEERING SHARING

Quantum steering is a distinct quantum correlation be-
tween Bell nonlocality and quantum entanglement [9]. Taking
the simplest case as an example, a two-qubit quantum state
ρAB is distributed to remote observers Alice and Bob. Sup-
posed Alice performs a measurement A on her qubit and
obtains the outcome a; Bob then obtains the corresponding
un-normalized conditional state ρa|A. If Bob can explain his
postmeasurement state ρa|A without assuming any type of
action at a distance, he will not believe that Alice can steer
his state through her measurement. In this case, the state
ρAB is said to be unsteerable or described by a local hid-
den state (LHS) model. However, if such a model does not
exist, Bob must acknowledge that Alice can influence his
state through some kind of “action at a distance.” In this
scenario, the state ρAB is considered steerable. Actually, the
LHS model description exists when the joint probability dis-
tribution P(a, b|A, B, ρAB) has the following decomposition:

P(a, b|A, B, ρAB) =
∑

λ

P(λ)P(a|A, λ)P
(
b|B, ρλ

B

)
, (1)

where P(λ) denotes the probability distribution of the hidden
variables λ, P(a|A, λ) signifies the probability distribution of

FIG. 1. The unilateral sequential scenario: a pair of entangled
qubits is distributed to Alice, Bob, and Charlie. One qubit is sent
to Alice, and the other one is sent sequentially to Bob and Charlie.
Before each round of the experiment, all observers need to share
relevant classical data strings λ, which are random variables whose
values follow some probability distribution {p(λ)}λ.

obtaining outcome a when the measurement is A under the
influence of λ, and P(b|B, ρλ

B ) denotes the probability distri-
bution of observing outcome b for measurement B conditioned
on the local hidden state ρλ

B.
In this work we aim to explore whether quantum steering

can be shared among three observers using only standard
projective measurements. Here, we mainly study the sim-
plest unilateral sequential scenario which is similar to that
in [83], as shown in Fig. 1. A two-qubit entangled source
ρ distributes qubits to Alice and Bob. They measure two
different dichotomic observables Âx and B̂y with binary out-
come a ∈ {−1, 1} and b ∈ {−1, 1}, where x ∈ {0, 1} and y ∈
{0, 1}. Then Bob performs unitary operation Ûy on his post-
measurement qubit and sends it to Charlie. Charlie performs
the measurement Ĉz with the corresponding outcome c ∈
{−1, 1}, where z ∈ {0, 1}. All observers perform independent
projective measurements, and the choice of measurement is
unbiased. After the measurements of all observers are com-
pleted, we can explore the quantum steering of two different
pairs based on the combination of observers (Alice-Bob and
Alice-Charlie). The quantum steering can be verified by the
violation of the linear steering inequality [11]. The linear
steering inequalities for Alice-Bob and Alice-Charlie are
given as

SL1 = 1√
2

∣∣∣∣∣
1∑

i=0

〈Ai ⊗ Bi〉
∣∣∣∣∣ � 1, (2)

SL2 = 1√
2

∣∣∣∣∣
1∑

i=0

〈Ai ⊗ Ci〉
∣∣∣∣∣ � 1, (3)

where SL1 and SL2 represent the linear steering parameters of
Alice-Bob and Alice-Charlie, respectively, and 〈Ai ⊗ Bi〉 =
Tr[Âi ⊗ B̂iρ], 〈Ai ⊗ Ci〉 = Tr[Âi ⊗ ĈiρAC]. As Charlie’s mea-
surement is not dependent on Bob’s measurement choices
and outcomes, the state shared between Alice and Charlie
is given by ρAC = 1

2

∑
b,y(I ⊗

√
Êb|y)ρ(I ⊗

√
Êb|y)†, where

Êb|y is Kraus operator and Êb|y = Ûb|yB̂b|y. If the Alice-Bob
pair and the Alice-Charlie pair can simultaneously violate the
linear steering inequalities, quantum steering sharing can be
achieved.
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In this scenario, if Bob performs two possible projective
measurements, it will destroy the entanglement of state ρ,
turning it into a separable state and thereby preventing the
sharing of quantum state resource information. However, if
Bob performs either two identity measurements or a projec-
tive measurement and an identity measurement, meaning that
one or both measurements fail, the postmeasurement state
will remain entangled, enabling the sharing of quantum state
resource information with Charlie. We adopt a measurement
protocol proposed in [83], which combines the case of two
projective measurements for Bob with λ = 1, the case of two
identity measurements for Bob with λ = 2, and the case of
a projective measurement and an identity measurement for
Bob with λ = 3 with some random probability distribution
{p(λ)}3

λ=1. This measurement protocol can achieve nonlocal
sharing, which has also been experimentally demonstrated
in [84]. Therefore, we explore quantum steering sharing by
employing this measurement protocol. At this time, the linear
steering inequality between Alice and Bob, as well as Alice
and Charlie, can be described as

S1 =
3∑

λ=1

p(λ)S(λ)
L1

� 1,

S2 =
3∑

λ=1

p(λ)S(λ)
L2

� 1, (4)

where (2) and (3) are also applicable to S(λ)
L1

and S(λ)
L2

, respec-
tively. We discuss two types of quantum steering sharing in
the following: one is Alice to steer the states of Bob and
Charlie, and the other is Bob and Charlie to steer Alice’s
state. Besides, we also discuss the hybrid quantum correlation
sharing composed of quantum steering and nonlocality.

III. ALICE TO STEER BOB’S AND CHARLIE’S STATES

In this section we study the ability of Alice to steer
the states of Bob and Charlie. Without loss of generality,
Alice’s two observables can be defined as Âx = cos θ ′σ1 +
(−1)x sin θ ′σ3, where {σ1, σ2, σ3} are the Pauli matrices.
Quantum steering sharing and hybrid quantum correlation
sharing are then illustrated by exploring the two linear steering
inequalities and the CHSH inequality together with one linear
steering inequality in the following.

A. The case of two linear steering inequalities

Considering a maximally entangled state ρ =
|ψ〉〈ψ |, |ψ〉 = 1√

2
(|00〉 + |11〉), the optimal measurement

settings for the above-mentioned three measurement cases are
shown below.

Case 1. When λ = 1, both measurements for Bob
are basis projections. Alice’s measurement choices are
Â(1)

0 = cos θσ1 + sin θσ3 and Â(1)
1 = cos θσ1 − sin θσ3.

Bob’s measurement choices are B̂(1)
0 =

√
2

2 σ1 −
√

2
2 σ3

and B̂(1)
1 =

√
2

2 σ1 +
√

2
2 σ3, and the corresponding

unitary operations are Û (1)
0 = I, Û (1)

1 = e− π
4 iσ2 . Charlie’s

measurement choices are Ĉ(1)
0 = Ĉ(1)

1 =
√

2
2 σ1 −

√
2

2 σ3.
I is the identity matrix. According to (2) and (3), we

obtain S(1)
L1

= | cos θ − sin θ |, S(1)
L2

= | cos θ |. To visually

observe the relationship between S(1)
L1

and S(2)
L1

, we define a

trade-off. That is, given a specific value of S(1)
L1

, there exists

a possible corresponding value of S(2)
L1

. So the trade-off is

S(1)
L2

= 1
2 (S(1)

L1
+

√
2 − (S(1)

L1
)2) in the range of S(1)

L1
∈ [1,

√
2],

and we easily obtain the classic trade-off S(1)
L2

= 1 in the range

of S(1)
L1

∈ [0, 1].
Case 2. When λ = 2, both measurements for Bob are iden-

tity measurements. Alice’s measurement choices are Â(2)
0 =√

2
2 σ1 +

√
2

2 σ3 and Â(2)
1 =

√
2

2 σ1 −
√

2
2 σ3. Bob’s measurement

choices are B̂(2)
0 = B̂(2)

1 = I , and the corresponding unitary
operations are Û (2)

y = I . Charlie’s measurement choices are

Ĉ(2)
0 =

√
2

2 σ1 +
√

2
2 σ3 and Ĉ(2)

1 =
√

2
2 σ1 −

√
2

2 σ3. We obtain
S(2)

L1 = 0, S(2)
L2 = √

2, where S(2)
L2 reaches the quantum bound

of the linear steering inequality.
Case 3. When λ = 3, one measurement is a basis pro-

jection and the other is an identity measurement for Bob.
Alice’s measurement choices are Â(3)

0 = cos δσ1 + sin δσ3

and Â(3)
1 = cos δσ1 − sin δσ3. Bob’s measurement choices are

B̂(3)
0 = I and B̂(3)

1 = σ1, and the corresponding unitary opera-
tions are Û (3)

y = I . Charlie’s measurement choices are Ĉ(3)
0 =√

2
2 σ1 +

√
2

2 σ3 and Ĉ(3)
1 =

√
2

2 σ1 −
√

2
2 σ3. We obtain S(3)

L1
=

1√
2
| cos δ|, S(3)

L2
= 1

2 |2 cos δ + sin δ|. Within range of S(3)
L1

∈
[
√

2
5 , 1√

2
], the trade-off is S(3)

L2
= √

2S(3)
L1

+ 1
2

√
1 − 2(S(3)

L1
)2.

S(3)
L2

reaches its maximum value
√

5
2 at S(3)

L1
=

√
2
5 .

From the above results, we clearly observe that the double
violation of the linear steering inequalities is not possible in
cases 1, 2, and 3, individually. However, the double viola-
tion can be obtained by stochastically combining these three
cases using the probability distribution {p(λ)}3

λ=1. We clearly
illustrate the three trade-offs in Fig. 2. Following this, we
will provide a step-by-step explanation of how to randomly
combine these trade-offs. First, we combine case 1 and case
3 with a straight line in the (S1, S2) plane. When this line
is tangent to both case 1 and case 3, we obtain the optimal
combination of case 1 and case 3. Then, we draw a tangent
line to case 3 that passes through the point of case 2 to obtain
the optimal combination of case 2 and case 3. Finally, we have
calculated that the tangent point obtained by combining case
2 and case 3 is to the right of the tangent point to the left
of the tangent line obtained by combining case 1 and case 3.
So the optimal trade-off which is defined to be the maximum
possible value of S2 for a given value of S1, consists of three
boundary regions: a mixture of case 2 and case 3, a mixture
of case 1 and case 3, and case 1 individually. The optimal
trade-off is numerically found as

S2 =

⎧⎪⎪⎨
⎪⎪⎩

(√
2 −

√
7
2

)
S1 + √

2 if 0 � S1 � 0.656,

−0.257S1 + 1.283 if 0.656 � S1 � 1.180,

1
2 (S1 +

√
2 − (S1)2) if 1.180 � S1 �

√
2.

(5)

As illustrated in Fig. 2, the area enclosed by the dark
green line and two black dashed lines represents the re-
gion where both linear steering inequalities are violated
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FIG. 2. Illustration of quantum steering sharing by two linear
steering inequalities. Plot all trade-offs: the optimal trade-off is rep-
resented by “Totf” (dark green line), S(3)

2 (red dot-dashed line), S(1)
2

(orange dot-dashed line), and S(2)
2 (black dot). The black dashed line

represents the classical bound 1 of the linear steering inequality. The
inserted figure at the left bottom corner highlights the region where
two linear inequalities are simultaneously violated, which is a closed
region enclosed by the dark green solid curve and two classical
boundaries (two black dashed lines).

simultaneously. The maximum double violation of the linear
steering inequalities is S1 = S2 ≈ 1.021. Subsequently, we
can obtain the optimal measurement settings that achieve the
maximum double violation via the numerical search method,
which maximizes the value of min{S1, S2}. Specifically, when
stochastically combining case 1 with case 3 at θ = − π

15 , δ =
π
8 , the maximum double violation is S1 = S2 ≈ 1.021. The
probability of case 1 is p(1) ≈ 0.690 and hence p(2) = 0
and p(3) ≈ 0.310. When stochastically combining case 1 with
case 2 at θ = − π

12 , δ = 0, the maximum double violation is
S1 = S2 ≈ 1.035. The probability of case 1 is p(1) ≈ 0.845
and so p(2) ≈ 0.155 and p(3) = 0. Moreover, if given a par-
tially entangled state of the form |φ〉 = cos α|00〉 + sin α|11〉,
the maximum double violation is S1 = S2 ≈ 1.021 at α = 23π

96
by stochastically combining case 1 with case 3. And the
maximum double violation is S1 = S2 ≈ 1.043 at α = 7π

36 by
stochastically combining case 1 with case 2. Therefore, it is
clearly shown that quantum steering can be recycled using
only standard projective measurements. More details of the
analysis are given in Appendix A. However, the double vi-
olations found in this situation are quite weak compared to
the violation S1 = S2 = 1.131 (see Appendix C for details).
This is because two-settings linear steering inequality has low
robustness [86,87]. As a result, the projective measurement
protocol imposes a non-negligible impact on the violation of
two-settings linear steering inequality. So the violation of the
linear steering inequalities decreases rapidly.

B. The case of the CHSH inequality and one linear
steering inequality

Next, we discuss an intriguing form of quantum correlation
sharing, which we refer to as hybrid quantum correlation shar-
ing test. This phenomenon comprises both quantum steering
and nonlocality. Specifically, the hybrid quantum correlation
can be tested by the CHSH inequality (between Alice and Bob

or Charlie) and the linear steering inequality (between Alice
and Charlie or Bob).

We first discuss the CHSH inequality for Alice and Bob
and the linear steering inequality for Alice and Charlie, ex-
pressing the CHSH inequality and the linear steering inequal-
ity as SC1 = 1

2 (〈A0 ⊗ B0〉 + 〈A0 ⊗ B1〉 + 〈A1 ⊗ B0〉 − 〈A1 ⊗
B1〉) � 1, SL2 = 1√

2
|〈A0 ⊗ C0〉 + 〈A1 ⊗ C1〉| � 1. Here, SC1

and SL2 denote the CHSH and the linear steering parameter,
respectively. Since the classical bound of the CHSH inequality
is 2 and the classical bound of the linear steering inequal-
ity is 1, to better explore the simultaneous violation of the
CHSH inequality and the linear steering inequality, the CHSH
inequality is weighted such that its classical bound is also
normalized to 1. For the maximally entangled state ρ, we
explain the optimal measurement settings for three cases of
measurements in the following.

Case 1. When λ = 1, both measurements are basis pro-
jections for Bob. Alice’s measurement choices are Â(1)

0 =
cos μσ1 + sin μσ3 and Â(1)

1 = cos μσ1 − sin μσ3. Bob’s mea-
surement choices are B̂(1)

0 = σ1 and B̂(1)
1 = cos(2μ)σ1 +

sin(2μ)σ3, and the corresponding unitary operations are
Û (1)

0 = I, Û (1)
1 = e−iμσ2 . Charlie’s measurement choices are

Ĉ(1)
0 =

√
2

2 σ1 −
√

2
2 σ3, Ĉ(1)

1 =
√

2
2 σ1 +

√
2

2 σ3. We obtain S(1)
C1

=
1
2 [3 cos μ − cos(3μ)], S(1)

L2
= | cos μ|3. The trade-off is S(1)

L2
=

[21/3+[−S(1)
C1

+
√

−2+(S(1)
C1

)2]2/3]3

4[−S(1)
C1

+
√

−2+(S(1)
C1

)2]
in the range of S(1)

C1
∈ [1,

√
2], and

we easily obtain the classic trade-off S(1)
L2

= 1 in the range of

S(1)
C1

∈ [0, 1].
Case 2. When λ = 2, both measurements are identity mea-

surements for Bob. Alice’s measurement choices are Â(2)
0 =√

2
2 σ1 +

√
2

2 σ3 and Â(2)
1 =

√
2

2 σ1 −
√

2
2 σ3. Bob’s measurement

choices are B̂(2)
0 = B̂(2)

1 = I , and the corresponding unitary
operations are Û (2)

y = I . Charlie’s measurement choices are

Ĉ(2)
0 =

√
2

2 σ1 +
√

2
2 σ3 and Ĉ(2)

1 =
√

2
2 σ1 −

√
2

2 σ3. We obtain
S(2)

C1
= 0, S(2)

L2
= √

2, where S(2)
L2 reaches the quantum bound

of the linear steering inequality.
Case 3. When λ = 3, one measurement is a basis projection

and the other is an identity measurement for Bob. Alice’s
measurement choices are Â(3)

0 = cos νσ1 + sin νσ3, Â(3)
1 =

cos νσ1 − sin νσ3. Bob’s measurement choices are B̂(3)
0 =

I, B̂(3)
1 = σ3, and the corresponding unitary operations are

Û (3)
y = I . Charlie’s measurement choices are Ĉ(3)

0 =
√

2
2 σ1 +√

2
2 σ3, Ĉ(3)

1 =
√

2
2 σ1 −

√
2

2 σ3. We obtain S(3)
C1

= sin ν, S(3)
L2

=
1
2 | cos ν + 2 sin ν|. Within the range of S(3)

L1
∈ [ 2√

5
, 1], the

trade-off is S(3)
L2

=
√

1−(S(3)
C1

)2

2 + S(3)
C1

. S(3)
L2

reaches its maximum

value
√

5
2 at S(3)

C1
= 2√

5
.

Similarly, we introduce randomness described by
{p(λ)}3

λ=1 to stochastically combine these three cases to
obtain the double violation of the CHSH inequality (between
Alice and Bob) and the linear steering inequality (between
Alice and Charlie). These three trade-offs are shown in Fig. 3.
It is easy to obtain that the tangent point resulting from the
combination of case 2, and case 3 lies to the left of the tangent
point obtained by combining case 1 and case 3. Therefore, the

012203-4



SHARING QUANTUM STEERING VIA STANDARD … PHYSICAL REVIEW A 110, 012203 (2024)

FIG. 3. Characterizing hybrid quantum steering sharing from the
CHSH inequality and the linear steering inequality. Plot all trade-
offs: Totf (dark green line), S(3)

2 (red dot-dashed line), S(1)
2 (orange

dot-dashed line), and S(2)
2 (black dot). The black dashed line rep-

resents the classical bound 1 of the linear steering inequality. The
inserted figure at the left bottom corner indicates the double violation
region of the CHSH inequality (between Alice and Bob) and the
linear steering inequality (between Alice and Charlie).

optimal trade-off for the maximally entangled state ρ consists
of four boundary regions: a mixture of case 2 and case 3,
case 3 individually, a mixture of case 1 and case 3, and case 1
individually. The optimal trade-off is numerically calculated
as

S2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −

√
7

2

)
S1 + √

2 if 0 � S1 �
√

7
8√

1−(S1 )2

2 + S1 if
√

7
8 � S1 � 0.978

−1.337S1 + 2.390 if 0.978 � S1 � 1.254

[21/3+(−S1+
√

−2+(S1 )2 )2/3]3

4(−S1+
√

−2+(S1 )2 )
if 1.254 � S1 �

√
2

.

(6)

As illustrated in Fig. 3, the simultaneous violation region of
the CHSH inequality (between Alice and Bob) and the linear
steering inequality (between Alice and Charlie) is enclosed by
the dark green line and two black dashed lines. The maximum
double violation of the CHSH inequality (between Alice and
Bob) and the linear steering inequality (between Alice and
Charlie) is approximately 1.023. Then using the numerical
search method, we can also obtain the optimal measure-
ment settings that maximize the double violation in different
combinations. When stochastically combining case 1 with
case 3 at μ = 7π

47 , ν = 27π
62 , the maximum double violation is

S1 = S2 ≈ 1.022, where the desired probability distribution is
p(1) ≈ 0.156, p(2) = 0, and p(3) ≈ 0.844. When stochasti-
cally combining case 1 with case 2, the maximum value of S1

and S2 is always 1. Without loss of generality, we also consider
a partially entangled state given as |φ〉, where α ∈ [0, π

4 ].
The common maximum value of S1 and S2 is approximately
1.030 at α = 2π

9 when stochastically combining case 1 with
case 3. We obtain S1 = S2 = 1 at α = π

4 when stochastically
combining case 1 with case 2 (see Appendix A for details).
It is clearly found that the hybrid quantum correlation shar-
ing can be observed when stochastically combining case 1
and case 3. However, in this study the maximum value of

the double violation is still weak compared to the violation
S1 = S2 = 1.131 (see Appendix C for details).

On the other hand, the CHSH inequality can be
used for Alice and Charlie, and the linear steering
inequality can be used for Alice and Bob, with
SL1 = 1√

2
|〈A0 ⊗ B0〉 + 〈A1 ⊗ B1〉| � 1, SC2 = 1

2 (〈A0 ⊗ C0〉 +
〈A0 ⊗ C1〉 + 〈A1 ⊗ C0〉 − 〈A1 ⊗ C1〉) � 1. Here, SL1 and
SC2 show the linear steering and the CHSH parameter,
respectively. There exist three trade-offs for the maximally
entangled state ρ under the projective measurement strategies.
Unfortunately, we find the common maximum value of S1

and S2 is always less than 1, regardless of stochastically
combining case 1 and case 2 or case 1 and case 3. Similar
results can be observed when considering partially entangled
state |φ〉, and it is not possible to find the double violation
of the CHSH inequality (between Alice and Charlie) and the
linear steering inequality (between Alice and Bob) for any
choice of α. The reason for such a result may be that the
performance of quantum steering verified by linear steering
inequality is so weak.

IV. BOB AND CHARLIE TO STEER ALICE’S STATE

In particular, quantum steering is directional, with one
party steering the other, but not vice versa [88]. Therefore,
we study the ability of Bob and Charlie to simultaneously
steer Alice’s state. Meanwhile, the two observables of Bob
and Charlie are defined in a general form.

A. The case of two linear steering inequalities

Considering the maximally entangled state ρ, we list out
the optimal measurement settings for three cases of projective
measurements below.

Case 1. When λ = 1, both measurements are basis pro-
jections for Bob. Alice’s measurement choices are Â(1)

0 =√
2

2 σ1 −
√

2
2 σ3 and Â(1)

1 =
√

2
2 σ1 +

√
2

2 σ3. Bob’s measurement
choices are B̂(1)

0 = cos χσ1 + sin χσ3 and B̂(1)
1 = cos χσ1 −

sin χσ3, and the corresponding unitary operations are Û (1)
0 =

I, Û (1)
1 = eiχσ2 . Charlie’s measurement choices are Ĉ(1)

0 =
Ĉ(1)

1 = cos χσ1 + sin χσ3. Under these measurement settings,
we obtain S(1)

L1
= | cos χ − sin χ |, S(1)

L2
= | cos χ |. The trade-

off is S(1)
L2

= 1
2 (S(1)

L1
+

√
2 − (S(1)

L1
)2) in the range of S(1)

L1
∈

[1,
√

2], and we easily obtain the classic trade-off S(1)
L2

= 1 in

the range of S(1)
L1

∈ [0, 1].
Case 2. When λ = 2, both measurements are identity mea-

surements for Bob. Alice’s measurement choices are Â(2)
0 =√

2
2 σ1 −

√
2

2 σ3 and Â(2)
1 =

√
2

2 σ1 +
√

2
2 σ3. Bob’s measurement

choices are B̂(2)
0 = B̂(2)

1 = I , and the corresponding unitary
operations are Û (2)

y = I . Charlie’s measurement choices are

Ĉ(2)
0 =

√
2

2 σ1 −
√

2
2 σ3 and Ĉ(2)

1 =
√

2
2 σ1 +

√
2

2 σ3. We obtain
S(2)

L1 = 0, S(2)
L2 = √

2, where S(2)
L2 reaches the quantum bound

of the linear steering inequality.
Case 3a. When λ = 3, one measurement is a basis pro-

jection and the other is an identity measurement for Bob.
Alice’s measurement choices are Â(3)

0 =
√

2
2 σ1 −

√
2

2 σ3 and
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FIG. 4. Revealing quantum steering sharing with case 3a by
resorting to two linear steering inequalities. The dark green line
represents the optimal trade-off, which is obtained through a rigor-
ous analysis for the maximally entangled state based on standard
projective measurements. The inserted figure at the left bottom
corner illustrates the double violation region of the linear steering
inequalities.

Â(3)
1 =

√
2

2 σ1 +
√

2
2 σ3. Bob’s measurement choices are B̂(3)

0 =
I and B̂(3)

1 = cos ωσ1 + sin ωσ3, and the corresponding uni-
tary operations are Û (3)

y = I . Charlie’s measurement choices

are Ĉ(3)
0 = 2√

5
σ1 − 1√

5
σ3 and Ĉ(3)

1 = 2√
5
σ1 + 1√

5
σ3. We ob-

tain S(3)
L1

= 1
2 | sin ω + cos ω|, S(3)

L2
= | 9+cos(2ω)

4
√

5
|. Within range

of S(3)
L1

∈ [ 1
2 , 1√

2
], the trade-off is S(3)

L2
= 9+2S(3)

L1

√
2−4(S(3)

L1
)2

4
√

5
. S(3)

L2

reaches its maximum value
√

5
2 at S(3)

L1
= 1

2 .
Case 3b. For λ = 3, there are other optimal measure-

ment settings available. Alice’s measurement choices are
Â(3)

0 = cos �σ1 + sin �σ3 and Â(3)
1 = − sin �σ1 + cos �σ3.

Bob’s measurement choices are B̂(3)
0 = I and B̂(3)

1 = σ1, and
the corresponding unitary operations are Û (3)

y = I . Char-

lie’s measurement choices are Ĉ(3)
0 = 2√

5
σ1 − 1√

5
σ3 and

Ĉ(3)
1 = 2√

5
σ1 + 1√

5
σ3. We obtain S(3)

L1
= 1√

2
| sin � |, S(3)

L2
=

√
10
4 | cos � − sin � |. Within range of S(3)

L1
∈ [ 1

2 , 1√
2
], the

trade-off is S(3)
L2

=
√

5
4 [2S(3)

L1
+

√
2 − 4(S(3)

L1
)2]. S(3)

L2
reaches its

maximum value
√

5
2 at S(3)

L1
= 1

2 .
Obviously, we have two analytical results when λ = 3. Let

us first discuss the former result shown in case 3a. We also
show these three trade-offs in Fig. 4. Since the tangent point
obtained by combining case 2 and case 3 lies to the right of
the tangent point to the left of the tangent line obtained by
combining case 1 and case 3, the optimal trade-off consists
of three boundary regions: a mixture of case 2 and case 3,
a mixture of case 1 and case 3, and case 1 individually. The
optimal trade-off can be obtained as

S2 =

⎧⎪⎪⎨
⎪⎪⎩

−0.503S1 + √
2 if 0 � S1 � 0.619

−0.218S1 + 1.238 if 0.619 � S1 � 1.161
1
2 (S1 +

√
2 − (S1)2) if 1.161 � S1 �

√
2

. (7)

It is shown in Fig. 4 that there exists the double violation
of the linear steering inequalities, which is indicated by the

FIG. 5. Demonstration of quantum steering sharing with case 3b
by two linear steering inequalities. The dark green line represents
the variation of the optimal trade-off values that are obtained for the
maximally entangled state using standard projective measurements.
The double violation region is specified in the inserted figure at the
left bottom corner.

region bounded by the dark green line and two black dashed
lines, and the maximum violation of the linear steering in-
equalities is approximately 1.016. Using the numerical search
method, we obtain the optimal measurement settings that
maximize the double violation of the linear steering inequal-
ities. The maximum double violation of the linear steering
inequalities is approximately 1.016 when stochastically com-
bining case 1 with case 3 at χ = − π

18 , ω = π
16 , with the

probability of case 1 as p(1) ≈ 0.750. For the stochastical
combination of case 1 and case 2 at χ = − π

12 , ω = 0, the
maximum value of S1 and S2 is approximately 1.035, where
the probability of case 1 is p(1) ≈ 0.845. For the partially
entangled state |φ〉, the maximum double violation of the
linear steering inequalities is S1 = S2 ≈ 1.017 at α = 10π

37 by
randomly mixing cases 1 and 3. And the maximum double
violation of the linear steering inequalities is S1 = S2 ≈ 1.043
at α = 7π

36 by randomly mixing cases 1 and 2 (see Appendix B
for details).

Moreover, we investigate the double violation of the linear
steering inequalities with the measurement settings given in
case 3b. Similarly, in Fig. 5, the tangent point obtained by
combining case 2 and case 3 lies to the right of the tangent
point to the left of the tangent line obtained by combining case
1 and case 3. Therefore, the optimal trade-off consists of three
boundary regions: a mixture of case 2 and case 3, a mixture of
case 1 and case 3, and case 1 individually. We give the optimal
trade-off as

S2 =

⎧⎪⎪⎨
⎪⎪⎩

√
5

2

(
1 −

√
11
5

)
S1 + √

2 if 0 � S1 � 0.565

−0.209S1 + 1.227 if 0.565 � S1 � 1.156
1
2 (S1 +

√
2 − (S1)2) if 1.156 � S1 �

√
2

.

(8)

In Fig. 5 we demonstrate the double violation by plotting
the trade-off values. The common maximum value of S1 and
S2 is approximately 1.015 from calculations. We then also ob-
tain the optimal measurement settings using numerical search-
ing. The maximum double violation is S1 = S2 ≈ 1.015 when
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integrating case 1 and case 3 in a random manner with p(1) ≈
0.767 at χ = − π

18 ,� = − 5π
18 . And the maximum double vi-

olation is roughly 1.035 when merging case 1 and case 2
randomly, with p(1) ≈ 0.845 at χ = − π

12 ,� = 0. Given the
partially entangled state |φ〉, the maximum double violation
is S1 = S2 ≈ 1.016 at α = 10π

37 based on the random combi-
nation of case 1 and case 3. And the maximum value of S1

and S2 is approximately 1.043 at α = 7π
36 with case 1 and case

2 integrated at random (see Appendix B for details). Simi-
larly, the violation obtained under projective measurements is
smaller compared to the violation S1 = S2 ≈ 1.131 obtained
under the weak measurement (see Appendix C for details).

B. The case of the CHSH inequality and one linear
steering inequality

The hybrid quantum correlation sharing controlled by Bob
and Charlie cannot be achieved in our protocol. Firstly, we
investigate the CHSH inequality between Alice and Bob, and
the linear steering inequality between Alice and Charlie. We
find three trade-offs for the maximally entangled state with
the projective measurement strategies. Regardless of stochas-
tically combining case 1 and case 2 or case 1 and case 3,
we cannot observe any violation with S1 = S2 < 1. For the
partially entangled state |φ〉, where α ∈ [0, π

4 ], we also obtain
S1 = S2 < 1. Secondly, the CHSH inequality between Alice
and Charlie and the linear steering inequality between Al-
ice and Bob are explored. Neither the maximally entangled
state ρ nor the partially entangled state |φ〉 can demonstrate
the hybrid quantum correlation sharing.

V. CONCLUSION

In this work we investigate quantum steering sharing and
hybrid quantum correlation sharing via the standard projec-
tive measurements. Specifically, for the maximally entangled
state ρ, Alice can simultaneously steer the states of Bob and
Charlie, and conversely, Bob and Charlie simultaneously steer
Alice’s state through the standard projective measurements.
We extend this analysis to the partially entangled state |φ〉,
where quantum steering sharing can still be observed. The
maximum double violation of the linear steering inequality
obtained from partially entangled states may not be greater
in some cases than that obtained from maximally entangled
states. This feature is different from [83], where the maxi-
mum double violation of the CHSH inequality obtained from
partially entangled states is always greater than that from max-
imally entangled states. Additionally, when Bob and Charlie
steer Alice’s state in case 3, the optimal trade-off exists in
two analytical results which are completely discussed. More-
over, the hybrid quantum correlation sharing is discussed
using standard projective measurements. For the maximally
entangled state ρ or partially entangled state |φ〉, we nu-
merically demonstrate that the hybrid quantum correlation
sharing can be realized when there is a double violation of
the CHSH inequality (between Alice and Bob) and one linear
steering inequality (between Alice and Charlie) for steering
Charlie’s state. The maximum double violation obtained from
partially entangled states is greater than that obtained from
maximally entangled states when randomly mixing case 1

and case 3. However, we cannot observe the simultaneous
violation of the CHSH inequality (between Alice and Bob)
and one linear steering inequality (between Alice and Charlie)
when randomly mixing case 1 and case 2. Overall, the whole
work indicates that the results obtained using the projective
measurement strategies consistently fall short of the violation
achieved under weak measurement, which is analogous to the
conclusion presented in [83]. These results not only provide
a perspective for studying quantum steering and hybrid quan-
tum correlation sharing, but also have potential applications in
other fields.

Discussion. We have achieved the quantum steering shar-
ing of Bob and Charlie with Alice through the standard
projective measurements, but there are still some unexplored
research fields. Firstly, is it possible to potentially reduce the
weakening effect of the projective measurement strategies on
the linear steering inequality by increasing the number of
observer’s measurement settings? Moreover, since it has been
proven in the unilateral sequential scenario that Alice can steer
the states of multiple Bobs [51] and multiple Bobs can steer
Alice’s state [54], the following are open questions: Can Alice
steer the states of multiple Bobs, and how many Bobs can
steer Alice’s state through the standard projective measure-
ment strategies? Additionally, in the bipartite scenario, Zhu
et al. [55] have already achieved quantum steering sharing.
Is it possible to achieve bilateral quantum steering sharing
under the standard projective measurement strategies? These
questions can give us ideas to better study quantum steering.
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APPENDIX A: ALICE STEERS BOB’S AND CHARLIE’S
STATES IN PARTIALLY ENTANGLED STATES

We mainly discuss the ability of Alice to steer the states of
Bob and Charlie under the partially entangled state |φ〉. This
state is defined as |φ〉 = cos α|00〉 + sin α|11〉.

1. The case of two linear steering inequalities

The optimal measurement settings are as follows:
Case 1. When λ = 1, both measurements are ba-

sis projections for Bob. Alice’s measurement choices are
Â(1)

0 = cos κσ1 + sin κσ3 and Â(1)
1 = cos κσ1 − sin κσ3. Bob’s

measurement choices are B̂(1)
0 =

√
2

2 σ1 −
√

2
2 σ3 and B̂(1)

1 =√
2

2 σ1 +
√

2
2 σ3, and the corresponding unitary operations are

Û (1)
0 = I, Û (1)

1 = e
π
4 iσ2 . Charlie’s measurement choices are
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DONG, CAI, WU, AND REN PHYSICAL REVIEW A 110, 012203 (2024)

Ĉ(1)
0 =

√
2

2 σ1 −
√

2
2 σ3 and Ĉ(1)

1 = −
√

2
2 σ1 +

√
2

2 σ3. We obtain
S(1)

L1
= | cos κ sin(2α) − sin κ|, S(1)

L2
= | sin κ|.

Case 2. When λ = 2, both measurements are iden-
tity measurements for Bob. Alice’s measurement choices
are Â(2)

0 =
√

2
2 σ1 +

√
2

2 σ3 and Â(2)
1 = −

√
2

2 σ1 +
√

2
2 σ3. Bob’s

measurement choices are B̂(2)
0 = B̂(2)

1 = I , and the correspond-
ing unitary operations are Û (2)

y = I . Charlie’s measurement

choices are Ĉ(2)
0 =

√
2

2 σ1 +
√

2
2 σ3 and Ĉ(2)

1 = −
√

2
2 σ1 +

√
2

2 σ3.
We obtain S(2)

L1
= | cos(2α)|, S(2)

L2
= | 1+sin(2α)√

2
|.

Case 3. When λ = 3, one measurement is a basis pro-
jection and the other is an identity measurement for Bob.
Alice’s measurement choices are Â(3)

0 = cos τσ1 + sin τσ3

and Â(3)
1 = cos τσ1 − sin τσ3. Bob’s measurement choices

are B̂(3)
0 = I, B̂(3)

1 = σ1, and the corresponding unitary op-
erations are Û (3)

y = I . Charlie’s measurement choices are

Ĉ(3)
0 =

√
2

2 σ1 +
√

2
2 σ3, Ĉ(3)

1 =
√

2
2 σ1 −

√
2

2 σ3. We obtain S(3)
L1

=
| sin(2α+τ )√

2
|, S(3)

L2
= 1

2 |2 cos τ sin(2α) + sin τ |.
We then also obtain the optimal measurement settings em-

ploying the numerical search method. The maximum double
violation is S1 = S2 ≈ 1.021 when integrating case 1 and case
3 in a random manner with p(1) ≈ 0.719 at κ = − 4π

9 , τ = π
8 ,

α = 23π
96 . And the maximum double violation is roughly 1.043

when merging case 1 and case 2 randomly, with p(1) ≈ 0.795
at κ = − 9π

22 , τ = 0, α = 7π
36 .

2. The case of the CHSH inequality and one linear
steering inequality

Similarly, we discuss the hybrid quantum correlation
sharing using the CHSH inequality and the linear steering
inequality under the partially entangled state |φ〉 here, and
the optimal measurement settings for three cases of projective
measurements are shown below.

Case 1. When λ = 1, both measurements are basis pro-
jections for Bob. Alice’s measurement choices are Â(1)

0 =
cos βσ1 + sin βσ3 and Â(1)

1 = cos βσ1 − sin βσ3. Bob’s mea-
surement choices are B̂(1)

0 = σ1 and B̂(1)
1 = cos(2β )σ1 +

sin(2β )σ3, and the corresponding unitary operations are
Û (1)

0 = I, Û (1)
1 = e−iβσ2 . Charlie’s measurement choices are

Ĉ(1)
0 =

√
2

2 σ1 −
√

2
2 σ3, Ĉ(1)

1 =
√

2
2 σ1 +

√
2

2 σ3. We obtain S(1)
C1

=
cos β[1 + sin(2α) − cos(2β )], S(1)

L2
= | sin(2α) cos3 β|.

Case 2. When λ = 2, both measurements are identity mea-
surements for Bob. Alice’s measurement choices are Â(2)

0 =
σ3 and Â(2)

1 = σ1. Bob’s measurement choices are B̂(2)
0 =

B̂(2)
1 = I , and the corresponding unitary operations are Û (2)

y =
I . Charlie’s measurement choices are Ĉ(2)

0 = σ3 and Ĉ(2)
1 = σ1.

We obtain S(2)
C1

= cos(2α), S(2)
L2

= | 1+sin(2α)√
2

|.
Case 3. When λ = 3, one measurement is a basis

projection and the other is an identity measurement for
Bob. Alice’s measurement choices are Â(3)

0 = cos γ σ1 +
sin γ σ3 and Â(3)

1 = − cos γ σ1 + sin γ σ3. Bob’s measurement
choices are B̂(3)

0 = I, B̂(3)
1 = σ1, and the corresponding uni-

tary operations are Û (3)
y = I . Charlie’s measurement choices

are Ĉ(3)
0 =

√
2

2 σ1 +
√

2
2 σ3, Ĉ(3)

1 = −
√

2
2 σ1 +

√
2

2 σ3. We obtain
S(3)

C1
= sin(2α + γ ), S(3)

L2
= 1

2 |2 cos γ sin(2α) + sin γ |.

We then also obtain the optimal measurement settings by
using the numerical search method. The maximum double
violation of the CHSH inequality and the linear steering in-
equality is S1 = S2 ≈ 1.030 when stochastically combining
case 1 with case 3 at β = π

6 , γ = π
11 , α = 2π

9 , with the prob-
ability of case 1 as p(1) ≈ 0.124. Moreover, regardless of the
angle {β, γ , α}, the common maximum value of S1 and S2

remains constant at 1 by randomly mixing case 1 and case 2.
Besides, the hybrid quantum correlation sharing can also

be tested by the double violation of the CHSH inequality
(between Alice and Charlie) and the linear steering inequality
(between Alice and Bob). There exist three trade-offs for
the partially entangled state |φ〉 under the standard projec-
tive measurements. Unfortunately, regardless of stochastically
combining case 1 and case 2 or stochastically combining case
1 and case 3, we can only obtain S1 = S2 < 1.

APPENDIX B: BOB AND CHARLIE STEER A SINGLE
ALICE IN PARTIALLY ENTANGLED STATES

Similarly, we study the ability of Bob and Charlie to si-
multaneously steer Alice’s state under the partially entangled
state |φ〉.

1. The case of two linear steering inequalities

The optimal measurement settings are as follows:
Case 1. When λ = 1, both measurements are basis pro-

jections for Bob. Alice’s measurement choices are Â(1)
0 =√

2
2 σ1 −

√
2

2 σ3 and Â(1)
1 =

√
2

2 σ1 +
√

2
2 σ3. Bob’s measurement

choices are B̂(1)
0 = cos εσ1 + sin εσ3 and B̂(1)

1 = cos εσ1 −
sin εσ3, and the corresponding unitary operations are Û (1)

0 =
I, Û (1)

1 = e( π
2 +ε)iσ2 . Charlie’s measurement choices are Ĉ(1)

0 =
cos εσ1 + sin εσ3 and Ĉ(1)

1 = − cos εσ1 − sin εσ3. We obtain
S(1)

L1
= | cos ε sin(2α) − sin ε|, S(1)

L2
= | sin ε|.

Case 2. When λ = 2, both measurements are iden-
tity measurements for Bob. Alice’s measurement choices
are Â(2)

0 =
√

2
2 σ1 +

√
2

2 σ3 and Â(2)
1 = −

√
2

2 σ1 +
√

2
2 σ3. Bob’s

measurement choices are B̂(2)
0 = B̂(2)

1 = I , and the correspond-
ing unitary operations are Û (2)

y = I . Charlie’s measurement

choices are Ĉ(2)
0 =

√
2

2 σ1 +
√

2
2 σ3 and Ĉ(2)

1 = −
√

2
2 σ1 +

√
2

2 σ3.
We obtain S(2)

L1
= | cos(2α)|, S(2)

L2
= | 1+sin(2α)√

2
|.

Case 3a. When λ = 3, one measurement is a ba-
sis projection and the other is an identity measurement
for Bob. Alice’s measurement choices are Â(3)

0 =
√

2
2 σ1 −√

2
2 σ3 and Â(3)

1 =
√

2
2 σ1 +

√
2

2 σ3. Bob’s measurement choices
are B̂(3)

0 = I, B̂(3)
1 = cos ησ1 + sin ησ3, and the correspond-

ing unitary operations are Û (3)
y = I . Charlie’s measure-

ment choices are Ĉ(3)
0 = 2√

5
σ1 − 1√

5
σ3, Ĉ(3)

1 = 2√
5
σ1 + 1√

5
σ3.

We obtain S(3)
L1

= 1
2 | sin(2α) cos η + sin η − cos(2α)|, S(3)

L2
=

| 3−cos(2η)+6 sin(2α)+sin(2α−2η)+sin(2α+2η)
4
√

5
|.

Case 3b. When λ = 3, there are other optimal measurement
settings available. Alice’s measurement choices are
Â(3)

0 = cos ζσ1 + sin ζσ3 and Â(3)
1 = − sin ζσ1 + cos ζσ3.

Bob’s measurement choices are B̂(3)
0 = I, B̂(3)

1 = σ1, and the
corresponding unitary operations are Û (3)

y = I . Charlie’s

012203-8



SHARING QUANTUM STEERING VIA STANDARD … PHYSICAL REVIEW A 110, 012203 (2024)

measurement choices are Ĉ(3)
0 = 2√

5
σ1 − 1√

5
σ3, Ĉ(3)

1 =
2√
5
σ1 + 1√

5
σ3. We obtain S(3)

L1
= 1√

2
|[cos(2α) −

sin(2α)] sin ζ |, S(3)
L2

= | [1+4 sin(2α)](cos ζ−sin ζ )
2
√

10
|.

Considering the former analytical result shown in case
3a, the maximum double violation of the linear steering in-
equalities is S1 = S2 ≈ 1.017 when stochastically combining
case 1 with case 3 at ε = − 15π

34 , η = π
15 , α = 10π

37 , with the
probability of case 1 as p(1) ≈ 0.711. For the stochastical
combination of case 1 and case 2 at ε = − 2π

5 , η = 0, α = 7π
36 ,

the maximum double violation of the linear steering inequal-
ities is S1 = S2 ≈ 1.043, where the probability of case 1 is
p1 ≈ 0.780.

In addition, considering the latter result given in case
3b, the maximum double violation is S1 = S2 ≈ 1.016 when
integrating case 1 and case 3 in a random manner with
p(1) ≈ 0.744 at ε = − 4π

9 , ζ = − 5π
18 , α = 10π

37 . And the max-
imum double violation is roughly 1.043 when merging case 1
and case 2 randomly, with p(1) ≈ 0.780 at ε = − 2π

5 , η = 0,
α = 7π

36 .

2. The case of the CHSH inequality and one linear
steering inequality

The results obtained from the partially entangled state |φ〉
are similar to those obtained from the maximally entangled
state ρ, and neither of them can achieve hybrid quantum cor-
relation steering. When using the CHSH inequality (between
Alice and Bob) and the linear steering inequality (between Al-
ice and Charlie), there exist three trade-offs under the standard
projective measurements. Regardless of randomly combining
case 1 and case 2 or case 1 and case 3, we cannot observe any
violation with S1 = S2 < 1. When using the CHSH inequality
(between Alice and Charlie) and the linear steering inequality
(between Alice and Bob), we also cannot observe the hybrid
quantum correlation sharing.

APPENDIX C: QUANTUM STEERING SHARING FOR THE
MAXIMALLY ENTANGLED STATE THROUGH WEAK

MEASUREMENTS

Here, we adopt a weak measurement process similar
to those previously used in [38,42]. Considering the same
scenario, Alice and Bob share the maximum entanglement
state ρ. Alice performs strong measurements on one of
the qubits. Bob then performs weak measurements on the
other qubit and relays it to Charlie, who performs strong
measurements. In this scenario, each observer independently
performs two dichotomous measurements and the choice of
measurement is unbiased. Alice’s two observables are defined
as Âx, where x ∈ {0, 1} with Â0 = cos θ1σ1 + sin θ1σ3 and
Â1 = cos θ2σ1 + sin θ2σ3. Bob’s two observables are defined
as B̂y, where y ∈ {0, 1} with B̂0 = cos θ3σ1 + sin θ3σ3 and
B̂1 = cos θ4σ1 + sin θ4σ3. And Charlie’s two observables are
defined as Ĉz, where z ∈ {0, 1} with Ĉ0 = cos θ5σ1 + sin θ5σ3

and Ĉ1 = cos θ6σ1 + sin θ6σ3. The corresponding outcomes
are denoted as {a, b, c} ∈ {−1, 1}. After the measurements
of all observers are completed, we can obtain the joint
probability distribution P(a, b, c|x, y, z). According to this
joint probability distribution, we can obtain the marginal prob-
ability distribution P(a, b|x, y) of the Alice-Bob pair, and

the marginal probability distribution P(a, c|x, z) of the Alice-
Charlie pair.

To obtain the joint probability P(a, b, c|x, y, z), we will
introduce the measurement process. Alice performs a strong
measurement Âx on her received qubit with the outcome a,
the state changes to ρa

Âx
= Û a

Âx
ρ(Û a

Âx
)†, where Û a

Âx
= �̂a

Âx
⊗

I, �̂a
Âx

= I+a×Âx
2 . Then, Bob performs a weak measurement

on his received another qubit with b, the reduced state
can be given as ρb

B̂y
= F

2 × ρa
Âx

+ 1+b×G−F
2 [Û +

B̂y
ρa

Âx
(Û +

B̂y
)†] +

1−b×G−F
2 [Û −

B̂y
ρa

Âx
(Û −

B̂y
)†], where Û b

B̂y
= I ⊗ �̂b

B̂y
. F is the qual-

ity factor which represents the undisturbed extent of the state
of Bob’s qubit after he measured, and G is the precision
factor, which is the strength of the weak measurement and
quantifies the information gained from Bob’s measurements.
Subsequently, Charlie performs a strong measurement Ĉz

with outcome c, and the state changes to ρc
Ĉz

= Û c
Ĉz

ρb
B̂b

(Û c
Ĉz

)†,

where Û c
Ĉz

= I ⊗ �̂c
Ĉz

. We can obtain the whole joint prob-
ability distribution, which is P(a, b, c|x, y, z) = Tr[ρc

Ĉz
]. Ac-

cording to this joint probability distribution, we can obtain
the marginal probability distribution of the Alice-Bob pair
and the marginal probability distribution of the Alice-Charlie
pair, which can be given as P(a, b|x, y) = ∑

c P(a, b, c|x, y, z)
and P(a, c|x, z) = ∑

b P(a, b, c|x, y, z). Then we can analyze
the correlations of Alice-Bob and Alice-Charlie based on the
marginal probability distribution. Quantum steering sharing
and hybrid quantum correlation sharing are then illustrated by
exploring the two linear steering inequalities and the CHSH
inequality together with one linear steering inequality.

First, let us discuss the scenario where Alice steers the
states of Bob and Charlie. To better observe the phenomenon
of quantum steering, both measurement directions of Bob
and Charlie are set vertically, i.e., θ4 = π

2 + θ3, θ6 = π
2 + θ5.

Using the optimal solution, we can obtain the two maximal
linear steering parameters, which are SL1 = √

2G, SL2 = 1+F√
2

,
where the optimal settings are θ1 = θ3 = θ5 = 0, θ2 = π

2 . For
the weak measurements, there are two typical pointer distribu-
tions, the optimal pointer and the square pointer [38], where
the relation between the quality factor F and the precision fac-
tor G satisfies G2 + F 2 = 1 or G + F = 1, with G, F ∈ [0, 1].
We employ the square pointer G2 + F 2 = 1. It is found that
when G = 0.8, the maximum value is SL1 = SL2 = 1.131.

Moreover, the hybrid quantum correlation is discussed by
the CHSH inequality (between Alice and Bob) and the linear
steering inequality (between Alice and Charlie). Charlie’s two
measurement directions are set vertically, i.e., θ6 = π

2 + θ5.
Using the optimal solution, we can obtain the maximal CHSH
and the maximal linear steering parameter, which are SC1 =√

2G, SL2 = 1+F√
2

, where the optimal settings are θ1 = 0, θ2 =
π
2 , θ3 = π

4 , θ4 = −π
4 , θ5 = 0. Obviously, when G = 0.8, the

maximum value is SC1 = SL2 = 1.131.
If Bob and Charlie aim to steer Alice’s state, Alice’s two

measurement directions are set vertically, i.e., θ2 = π
2 + θ1.

Using the optimal solution, we can obtain the two maxi-
mal linear steering parameters, which are SL1 = √

2G, SL2 =
1+F√

2
, where the optimal settings are θ1 = θ3 = θ5 = 0,=

θ6 = π
2 . Similarly, when G = 0.8, the maximum value is

SL1 = SL2 = 1.131.
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