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Characterizing high-dimensional entangled states holds pivotal significance in quantum information science
and technology. Recent theoretical progress has been made to extend the Collins-Gisin-Linden-Massar-Popescu
(CGLMP) inequality into a general scenario with multisetting and multidimensional systems. Here, by employ-
ing two-photon orbital angular momentum entanglement, we conduct an experiment to demonstrate the CGLMP
inequality across multiple settings and outcomes. Our experimental results violate the CGLMP inequality by
more than 12 standard deviations, demonstrating that the maximum violation increases with both dimension
and setting. Furthermore, we reveal, both theoretically and experimentally, the logical connection between
the CGLMP inequality and the general Hardy’s paradox. Intriguingly, our analysis establishes that, even in
high-dimensional systems, Hardy’s paradox can be regarded as a special instance of Bell inequality, with their
respective bounds aligning under the no-signaling principle and the information causality principle. Our work
may advance the foundational understanding of quantum correlations in high-dimensional quantum systems.

DOI: 10.1103/PhysRevA.110.012202

I. INTRODUCTION

In 1935 Einstein, Podolsky, and Rosen (EPR) formulated
a renowned argument questioning the completeness of quan-
tum mechanics [1]. In 1964 Bell refuted the EPR argument
against quantum mechanics and showed that certain correla-
tions arising from the measurements of a quantum system by
distant observers cannot be accounted for within a classical,
deterministic local model grounded in “elements of reality”
[2]. Following Bell’s contributions, various versions of Bell
inequalities were developed, expanding our understanding
of nonlocality [3–8]. In 2002, Collins and co-workers ex-
tended Bell inequality to high-dimensional systems, namely
Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality
[4]. Subsequently, Dada and co-workers established an ex-
perimental verification of CGLMP inequality, observing
violations of Bell-type inequalities up to 12-dimensional sys-
tems [5]. In 2008, Zohren and co-workers proposed a novel
version of the CGLMP inequality, effectively simplifying the
intricate logic of the original CGLMP inequality and revealing
that the optimal state is far from maximally entangled [6].
Recent progress was also made to generalize this simplified
version of CGLMP inequality to multisetting scenarios [7],
while the CGLMP inequality for multisetting and multidimen-
sional systems has not yet been conducted in experimental
implementations.

Exploring the experimental test of the CGLMP inequality
for a broader (k, d) scenario, i.e., k-setting d-dimensional
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system, involves significant theoretical and experimental
advancements. From a theoretical perspective, it deepens
our understanding of nonlocal quantum correlations [9,10],
sharpens the contradiction between quantum mechanics and
classical theory [6,7], and significantly reduces the critical
detection efficiency needed for more robust tests of quan-
tum nonlocality [11–13]. From an application standpoint, the
significance of the general (k, d ) version of the CGLMP
inequality becomes pronounced in circumstances where the
conventional Bell inequality falls short. First, quantum key
distribution (QKD) protocols based on high-dimensional
quantum states offer advantages in terms of security and in-
formation capacity [14,15]. Exploring the CGLMP inequality
in QKD protocols can develop new tests and criteria for
assessing the security of high-dimensional QKD protocols,
enabling the implementation of more robust and efficient
quantum cryptographic systems [16,17]. Moreover, the Bell
inequality with a large k can further improve the security
of QKD protocols [18]. Second, quantum computation using
high-dimensional states can reduce circuit complexity and
offer significant advantages in various applications within
the noisy intermediate-scale quantum (NISQ) era [19–21].
Recent advancement introduced a protocol for black-box
equivalence checking of quantum circuits, leveraging the
CGLMP inequality as a pivotal quantum property [22]. Third,
high-dimensional quantum states are valuable in quantum
metrology, as they enable enhanced precision and sensitivity
in measurements [23,24]. The CGLMP inequality plays a key
step in this context, serving as a tool for examining and vali-
dating the quantum properties of high-dimensional states [25].
In this article, we leverage high-dimensional orbital angular
momentum (OAM) entanglement in two-photon systems to
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FIG. 1. Experimental setup for demonstrating the CGLMP in-
equality with high-dimensional OAM entanglement. Top and bottom
insets are examples of intensity and phase of measurement modes
and the desired holograms displayed in SLM.

experimentally demonstrate the violation of the simplified
version of CGLMP inequality across scenarios with multiple
settings and outcomes. Our experimental observations reveal a
significant increase in the violation of the CGLMP inequality
as the dimension d and setting k increase, highlighting a
sharper contradiction between quantum mechanics and clas-
sical theory. Additionally, we juxtapose our theoretical and
experimental findings with those derived from the Clauser-
Horne inequality of the general Hardy’s paradox [26], thereby
establishing a logical connection between them. Specifically,
our analysis emphasizes that, within the high-dimensional
systems, Hardy’s paradox can be regarded as a specific in-
stance of Bell inequalities. This connection ensures that the
boundaries of these two nonlocal theories remain consistent
under the no-signaling principle and the information causality
principle.

II. EXPERIMENTAL SETUP AND RESULTS

In contrast to the spin angular momentum of light, the
orbital angular momentum (OAM) of light possesses an
intrinsic capability for high-dimensional quantum informa-
tion processing [27–29]. Here, we adopt high-dimensional
OAM entanglement states to prove the simplified version
of CGLMP inequality within scenarios involving multiple
settings and outcomes. Our experimental configuration is il-
lustrated in Fig. 1. We generate OAM entangled photons by
pumping a β-barium borate (BBO) crystal under frequency-
degenerate type-I spontaneous parametric down-conversion
(SPDC). Lenses (f1 = 100 mm and f2 = 400 mm) form a
4f system and image the plane of the BBO on the spatial
light modulator (SLM). Each SLM is loaded with specially
designed holographic gratings for the precise preparation of
the optimal measurement OAM states [as defined in Eq. (4)
and Eq. (5)] and for carrying out entanglement concentra-
tion. After interacting with the SLMs, photons are coupled
into a single-mode fiber (SMF) using collecting lenses (f3 =
1000 mm and f4 = 2 mm) and detected by single photon
detectors. Both single photon detectors are connected to a
coincidence circuit for acquiring the coincidence counts.

In recent years, there has been a burgeoning interest in
characterizing high-dimensional entangled states [30], driven
by the recognition of their significance in quantum infor-
mation science. One elegant and logically straightforward

method is through Bell inequality with k settings and d out-
comes, such as the simplified version of CGLMP inequality,
expressed as [6,7]

P(Ak � Bk ) +
k∑

i=2

P(Ai < Bi−1)

+
k∑

i=2

P(Bi−1 < Ai−1) + P(A1 < Bk ) � 1, (1)

where P(Ai < B j ) = ∑
s<t P(Ai

s, B j
t ) represents the joint con-

ditional probability that the result of Ai is strictly smaller
than the result of B j . Here, i, j ∈ {1, 2, . . . , k} and s, t ∈
{0, 1, . . . , d − 1}, and thus P(Ai

s, B j
t ) is the probability that,

when Alice and Bob measure in settings i and j, respectively,
Alice’s measurement returns outcome s and Bob’s measure-
ment returns outcome t . It is noteworthy that extending Bell
inequality to high-dimensional multisetting scenarios not only
contributes to more efficient and robust quantum communi-
cation tasks [30] but also brings measurement results closer
to the no-signaling bound [7]. Here, we propose a simple
transformation of the CGLMP inequality, making it equivalent
in form to the Clauser-Horne inequality of the general Hardy’s
paradox. This transformation enables us to conduct theoret-
ical and experimental comparison between Bell inequality
and Hardy’s paradox in a broader (k, d ) scenario and thus
guide us to a deeper understanding of quantum nonlocality.
For a given (k, d ) scenario, by substituting P(Ak � Bk ) =
1 − P(Ak < Bk ) into Eq. (1), we can construct a simplified
version of the CGLMP inequality (also the Clauser-Horne
inequality of the general Hardy’s paradox; see more details
in the Discussion section)

S(k,d ) = P(Ak < Bk ) −
k∑

i=2

P(Ai < Bi−1)

−
k∑

i=2

P(Bi−1 < Ai−1) − P(A1 < Bk ) � 0. (2)

The proof of the inequality (2) is straightforward, starting with
the evident statement ∩k

i=2({Ai � Bi−1} ∩ {Bi−1 � Ai−1}) ∩
{A1 � Bk} ⊆ {Ak � Bk} [6,7], where {Ai � B j} represents the
mathematical set of the outcomes of Ai greater than or equal
to the outcomes of B j . Taking the complement of both sides,
it holds that

{Ak < Bk} ⊆ ∪k
i=2({Ai < Bi−1} ∪ {Bi−1 < Ai−1}) ∪ {A1 < Bk}.

(3)

It is worth noting that, within a given Bell scenario,
classical probability distributions manifest as convex com-
binations of entirely deterministic probability distribu-
tions, wherein probabilities are trivial, being either zero
or one. Consequently, randomness is construed not as
an inherent attribute but rather as a statistical phe-
nomenon within classical probability frameworks. Thus it
logically follows that P(Ak < Bk ) �

∑k
i=2 P(Ai < Bi−1) +∑k

i=2 P(Bi−1 < Ai−1) + P(A1 < Bk ), thereby completing the
proof.

Here, by exploring two-photon OAM entanglement
generated via SPDC, we can translate the inequality (2)
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into an experimental implementation. In SPDC, the high-
dimensional OAM entangled state is represented as
|�〉AB = ∑

� c�|�〉A|−�〉B, where c� denotes the probability
amplitude of detecting one signal photon (A) with �h̄ OAM
and its corresponding idler photon (B) with −�h̄ OAM [31].
In our pursuit to investigate a larger yet finite subspace for
formulating the CGLMP inequality with OAM, we consider
the optimal Bell states, |ψd〉 = ∑d−1

m=0 λm|�m〉A|−�m〉B,
within a designated d-dimensional OAM subspace, where
λm represents real numbers satisfying the normalization
condition

∑d−1
m=0 λ2

m = 1. In this scenario, Alice and Bob
can each perform k sets of measurement, on which the
measurement outcomes range from 1 to d . Their von
Neumann measurements are defined as |Ai

s〉〈Ai
s| and |B j

t 〉〈B j
t |,

respectively. The optimal measurements can be derived by
performing extensive numerical analysis using semidefinite
programs [7] as

∣∣Ai
s

〉 = 1√
d

d−1∑
m=0

exp

[
I

2π

d
m(s + αi )

]
|�m〉A, (4)

∣∣B j
t

〉 = 1√
d

d−1∑
m=0

exp

[
I

2π

d
m(−t − β j )

]
|−�m〉B, (5)

where s and t represent the outcomes of Alice’s and Bob’s
measurements, respectively, and I = √−1 is an imaginary
number. Then, the probability P(Ai < B j ) in a specific d-
dimensional OAM subspace can be expressed as

P(Ai < B j ) =
d−2∑
s=0

d−1∑
t=s+1

∣∣〈Ai
s

∣∣〈B j
t

∣∣ψd
〉∣∣2

. (6)

Here we choose αi = i/k − 1/2k for i = 1, 2, . . . , k, β j =
j/k for j = 1, 2, . . . , k − 1, and βk = 0; then, from the
derivation procedure in Ref. [7], we obtain the Bell expression
S(k,d ) as

S(k,d ) = 1 −
d−1∑

m,n=0

Mmnλmλn. (7)

Here, M is the d × d matrix defined by Mmm = k −
(k − 1)/d and Mmn = −k sin[η(k − 1)/k]/[d sin(η)], for
m 	= n, where η = π (m − n)/d . Thus the problem of finding
the maximal quantum violation of the inequality (2) reduces
to finding the smallest eigenvalue of M and the entangled state
responsible for this violation is the corresponding eigenvector
of M. After some algebra, we derive the optimal entangled
states that yield the maximum value of S, as elaborated in
Appendix A.

Our experimental design encompasses a broad multisetting
and multidimensional scenario, denoted as (k, d ), where we
consider various combinations such as k = 2, 3, 4, 5, and d =
2, 3, 4, 5, 6 within the OAM subspaces. Through theoretical
calculations, we find that, for a given dimension d , if the
chosen approximate state resembles any of the four optimal
states corresponding to k = 2, 3, 4, and 5, then, in these four
cases, the theoretical values of Bell expression achieved by the
approximate state closely approach the maximum achievable
values by optimal states. Therefore, for each d-dimensional
OAM subspace, we experimentally prepare an approximate
state |ψapp

d 〉. Subsequently, if its theoretical values of Bell
expression in the k = 2, 3, 4, and 5 scenarios closely approach
the maximum achievable values (see Appendix A for more
details), we proceed with utilizing this state for measure-
ments. These approximate states are denoted as

∣∣ψapp
2

〉
AB = 0.7071|+1〉A|−1〉B + 0.7071|−1〉A|+1〉B, (8a)∣∣ψapp

3

〉
AB = 0.5960|+1〉A|−1〉B + 0.5288|+2〉A|−2〉B + 0.6042|−1〉A|+1〉B, (8b)∣∣ψapp

4

〉
AB

= 0.5392|+1〉A|−1〉B + 0.4613|+2〉A|−2〉B + 0.4521|−2〉A|+2〉B + 0.5404|−1〉A|+1〉B, (8c)∣∣ψapp
5

〉
AB = 0.5030|+1〉A|−1〉B + 0.4200|+2〉A|−2〉B + 0.3671|+3〉A|−3〉B + 0.4301|−2〉A|+2〉B + 0.5009|−1〉A|+1〉B, (8d)∣∣ψapp

6

〉
AB = 0.4700|+1〉A|−1〉B + 0.4011|+2〉A|−2〉B + 0.3493|+3〉A|−3〉B + 0.3530|−3〉A|+3〉B

+ 0.3880|−2〉A|+2〉B + 0.4701|−1〉A|+1〉B. (8e)

An additional challenge arises from the fact that the
original OAM entangled states generated via SPDC deviate
from these approximate states. To address this experimen-
tal issue, we employ entanglement concentration [5,26] to
adapt the original state into the desired approximate state.
In this procedure, we utilize local operations to adjust the
weight amplitudes of each OAM mode by modifying the
diffraction efficiencies of the blazed phase gratings. This
way, we ensure a precise compensation of the weight am-
plitudes for OAM modes between the desired approximate
states and the experimental states. Next, by substituting
the OAM bases presented in Eq. (8) into Eq. (4) and
Eq. (5), we can obtain the optimal measurements. For
example for |ψapp

3 〉, the optimal measurements can be re-
formulated with the OAM basis presented in Eq. (8b) as

|Ai
s〉 = 1√

3
(|+1〉A + ω

s+αi
3 |+2〉A + ω

2(s+αi )
3 |−1〉A) and |B j

t 〉 =
1√
3
(|−1〉B + ω

−t−β j

3 |−2〉B + ω
2(−t−β j )
3 |+1〉B), where ω3 =

exp(I2π/3). By loading these OAM superposition states on
the SLMs and recording the coincidence counts accordingly,
we obtain the approximate Bell expressions, as shown in
Fig. 2. Notably, all of these results violate the inequality
(2) by more than 12 standard deviations. In Appendix B,
we present a detailed exposition of measurement results that
demonstrate a favorable agreement with quantum-mechanical
predictions, thereby confirming the substantial enhancement
of the maximum violation of the CGLMP inequality with
increased dimension d and setting k. However, it is important
to acknowledge that, due to inherent imperfections in state
preparation and measurement, the experimental values of the
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FIG. 2. Bell expression S(k,d ) in (k, d ) scenario: (a) |ψ app
2 〉,

(b) |ψ app
3 〉, (c) |ψ app

4 〉, (d) |ψ app
5 〉, and (e) |ψ app

6 〉. The red plot repre-
sents the experimental Bell expression, while the blue plot depicts the
theoretically predicted violations based on approximate entangled
states. Additionally, the green triangle represents the LHV (local
hidden variables) limit in comparison with the experimental results.
The purple plot represents the theoretical predictions for the Clauser-
Horne inequality of the general Hardy’s paradox and the orange plot
bars showcase the corresponding experimental results.

Bell expression in Fig. 2 tend to be lower than the theoretical
values.

III. DISCUSSION

Since Bell proposed the Bell inequality [2], various nonlo-
cal theorems have emerged, including Hardy’s paradox [26],
Cabello’s theorem [32], “all-versus-nothing” proof [33,34],
and GHZ theorem [35]. Each of these theorems represents
an independent logical framework to demonstrate nonlocality.
An intriguing question arises: are these theories intercon-
nected and is there a standardized mathematical framework
that can unify them? This, in itself, poses an intriguing ques-
tion and promises to uncover deeper physical insights. To
address part of this question, specifically unifying Bell in-
equality and Hardy’s paradox in the general (k, d ) scenario,
we conduct a thorough theoretical and experimental compar-
ison between the CGLMP inequality and the general Hardy’s
paradox for general (k, d ) systems. It is notable that while
Bell inequalities and Hardy’s paradox may initially seem
conceptually disparate, with Bell inequalities primarily con-
cerned with the statistical expectations of measurements and
Hardy’s paradox exploring the logical ramifications of pos-
sible and impossible events, recent theoretical developments
within the (2, 2) scenario have revealed Hardy’s paradox
as a specialized subset of Bell inequalities [36]. Here, we
focus on the connection between them in the general (k, d )
scenario. Note that the inequality (2) is equivalent to the
Clauser-Horne inequality of the general Hardy’s paradox
[26]. In essence, the general Hardy’s paradox is equiva-
lent to the CGLMP inequality with the exception that the
Hardy scenario must obey 2k − 1 additional constraints on
the measurements performed. More specifically, by intro-
ducing the constraints {Ai < Bi−1} = ∅, for i = 2, 3, . . . , k,

{Bi−1 < Ai−1} = ∅, for i = 2, 3, . . . , k, and {A1 < Bk} = ∅,
into Eq. (3), we can straightforwardly obtain an empty set
{Ak < Bk} = ∅. This implies that if P(Ai < Bi−1) = 0, for
i = 2, 3, . . . , k, P(Bi−1 < Ai−1) = 0, for i = 2, 3, . . . , k, and
P(A1 < Bk ) = 0 hold, we can straightforwardly obtain an
exactly zero probability P(Ak < Bk ) = 0, which is the main
deduction of the general Hardy’s paradox [26,37]. Thus we
assert that, within any (k, d ) scenario, the general Hardy’s
paradox can be regarded as a special instance of the CGLMP
inequality, offering a pathway to demonstrating nonlocality
without invoking inequalities. Consequently, the maximal vi-
olation of the CGLMP inequality imposes an upper limit on
the maximal fraction for the general Hardy’s paradox, thereby
exhibiting greater robustness against noise generated by dele-
terious environmental effects [38].

To analyze the quantum properties of the connections,
we typically exploit maximally entangled states, denoted
as |ψmax

d 〉 = 1√
d

∑d−1
m=0 |�m〉A| − �m〉B, to compute the upper

bound of the Bell expression. After some algebra in Ap-
pendix C, we calculated the Bell expression S for |ψmax

d 〉 as

Sψmax

(k,d ) = 1

d3

d−1∑
m=1

(d − m)sin2
(

π
2k

)
sin2

[
π

(−m + 1 − 1
2k

)/
d
]

− (2k − 1)

d3

d−1∑
m=1

(d − m)sin2
(

π
2k

)
sin2

[
π

(−m + 1
2k

)/
d
] . (9)

In the limit of large k, owing to limk→∞ sin2(π/2k) = 0,
all other probabilities tend to zero, except for the first terms
with m = 1, i.e., the first terms P(Ak

s < Bk
t ) in Eq. (2) with

t = s + 1. This indicates that the inequality (2) approaches the
general Hardy’s paradox in the limit of large k, with the Bell
expression (or maximal successful probability) being bounded
by

Sψmax

(∞,d ) = lim
k→∞

1

d3

(d − 1)sin2(π/2k)

sin2(−π/2kd )
= d − 1

d
. (10)

Notably, we find the value is also the no-signaling bound for
both the CGLMP inequality [7] and Hardy’s paradox [39],
suggesting that, in scenarios with numerous measurement
settings, quantum theory converges towards the no-signaling
bound. This theoretical finding provides compelling evidence
that, even in high-dimensional systems, the no-signaling
bounds for CGLMP inequality and the general Hardy’s para-
dox coincide. In the limit of large k and d , the maximal
successful probability can reach 100%, extremely surpassing
the bounds set by Hardy’s original test [40] and approaching
the framework of GHZ theorem [35] and all-versus-nothing
proof [33,34].

Additionally, analogous properties have been extensively
studied in two-dimensional systems. In the (k, 2) scenario,
the maximal violation of Bell inequalities consistently occurs
with maximally entangled state; thereby we can obtain the
analytical maximum values of Bell expression by substituting
d = 2 into Eq. (9). Specifically, we have

Smax
(k,2) = 1

2
− k sin2

( π

4k

)
. (11)
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FIG. 3. Summary of theoretical findings. The subscripts B, d and
H, d stand for Bell inequality and Hardy’s paradox, respectively, in
the d-dimensional system. SB and SH represent Bell expression and
Hardy’s fraction.

Based on the relation between joint probabilities
and correlation functions, P(Ai

s, B j
t ) = 1

4 〈[I2 + (−1)sAi]
⊗ [I2 + (−1)t B j]〉 (I2 is the two-dimensional identity matrix),
S(k,2) can be reformulated in terms of the generalized CHSH
inequality as S(k,2) = [SCHSH(k) − 2(k − 1)]/4. As a result,
Smax

(k,2) relates to Tsirelson’s bound of generalized CHSH
inequality [41], i.e., Smax

CHSH(k) = 2k cos(π/2k). Combining
with the no-signaling bound of CHSH inequality [42], we
find that the no-signaling bound of S(2,2) is 0.5, which
matches the maximum successful probability of Hardy’s
nonlocality under the no-signaling principle [43]. Besides,
Smax

(2,2) = (
√

2 − 1)/2 (also related to SCHSH(2) = 2
√

2)
corresponds to the information causality bound [44] for
both the Bell inequality [45] and Hardy’s paradox [46].
Therefore, within our formulation of the CGLMP inequality
and the general Hardy’s paradox, the link between these
two nonlocality arguments becomes clear upon considering
the following key facts. (1) The general Hardy’s paradox
represents a special case of the Bell inequality, with all
correlations violating Hardy’s paradox also violating Bell
inequality. (2) In the limit of large k, these two nonlocality
arguments become nearly equivalent, sharing a common
bound that matches the no-signaling bound. (3) There
is compelling evidence that the bounds for these two
nonlocality arguments are nearly identical under certain
fundamental principles. Figure 3 summarizes the theoretical
findings in the paper.

To elucidate the link between the CGLMP inequality and
the general Hardy’s paradox, we further compare our exper-
imental result with the Clauser-Horne inequality of Hardy’s
paradox as discussed in our previous work. Building upon the
experimental observations outlined in Ref. [26], we investi-
gate a (k, d ) scenario in two specific cases: (1) k = 2, 3, 4, 5,
and d = 3, as depicted in Fig. 2(b), and (2) k = 2, and d =
2, 3, 4, 5, 6, as illustrated in Fig. 4. It becomes evident that
both theoretical and experimental findings underscore the no-
tion that the maximum violation of the CGLMP inequality
imposes constraints on the upper limit of Hardy’s fraction.

IV. CONCLUSIONS

To summarize, we have presented an experiment to
demonstrate CGLMP inequality for multisetting and

FIG. 4. Comparison of Bell expression and the Clauser-Horne
inequality of the general Hardy’s paradox in (2, d ) scenario. The
experimental Bell expression (red plot) compares the theoretically
predicted violations (blue plot) by approximate entangled states and
the LHV limit (green triangle) with the experiments. The purple plot
is the theoretical prediction for the Clauser-Horne inequality of the
general Hardy’s paradox, while the orange plot bars are experimental
results.

multidimensional systems by exploiting two-photon
entangled OAM states. The experimental results in the (k, d )
scenario with k ranges from 2 to 5 and d ranges from 2 to 6
revealed a remarkable increase in the maximum violation of
the CGLMP inequality with higher dimensions and settings.
Moreover, our comprehensive theoretical and experimental
analysis provides the logical connection between the CGLMP
inequality and the general Hardy’s paradox. The intriguing
results emerge that, even within high-dimensional systems,
Hardy’s paradox can be considered as a specific instance of
the CGLMP inequality. Consequently, both the no-signaling
bound and the information causality bound between these
two nonlocal structures are found to be equivalent. Besides,
in the limit of large k and d , the CGLMP inequality, as well
as the general Hardy’s paradox, approaches the framework of
“all-versus-nothing” proof. Identifying connections between
nonlocal theorems is valuable, as it deepens our understanding
of nonlocal quantum correlations and unifies their boundaries
under some fundamental principles. Furthermore, it enables
the reconstruction of suitable nonlocal logical frameworks
in practical applications. For instance, one can construct a
stronger Hardy-type paradox based on the CH inequality
to enhance the probability of nonlocal events [47]. Our
findings not only advance the foundational understanding
of quantum nonlocality but also hold practical implications
for high-dimensional quantum systems. They open up new
avenues for further exploration and utilization of quantum
nonlocality, particularly in device-independent quantum
information tasks, such as quantum key distribution [48–50]
and random number generation [51,52], promising enhanced
security and efficiency in quantum technologies and protocols.
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APPENDIX A: COMPARISON OF VIOLATIONS OF
CGLMP INEQUALITIES BETWEEN OPTIMAL STATES
AND APPROXIMATE STATES IN THE (k, d ) SCENARIO

For each d-dimensional OAM subspace, we experimen-
tally prepare an approximate state |ψapp

d 〉, which yields
a good approximation of the optimal violation of the
CGLMP inequality in (k, d ) scenarios with k = 2, 3, 4, 5.
In the following, we use diagonal matrices, Hopt

(k,d ) =
diag(λ0, λ1, . . . , λd−1) to represent optimal states, |ψopt

(k,d )〉,
calculated by numeric strategy from Eq. (7). Then, we list the
optimal states |ψopt

(k,d )〉 and maximum values of Bell expression

S(k,d ) between optimal states |ψopt
(k,d )〉 and approximate states

|ψapp
d 〉 in (k, d ) scenarios with k range from 2 to 5 and d range

from 2 to 6. In two-dimensional systems, the optimal states
are always maximally entangled states, as shown in Eq. (8a).
In three-dimensional systems, the optimal states are

Hopt
(2,3) = diag(0.6169, 0.4888, 0.6169), (A1a)

Hopt
(3,3) = diag(0.6070, 0.5129, 0.6070), (A1b)

Hopt
(4,3) = diag(0.6015, 0.5257, 0.6015), (A1c)

Hopt
(5,3) = diag(0.5974, 0.5351, 0.5973). (A1d)

The comparison of violations of CGLMP inequalities
between optimal states and approximate state are very
close (Sopt

(k,d ) − Sapp
(k,d ) < 0.01), as shown in Table I. In four-

dimensional systems, the optimal states are

Hopt
(2,4) = diag(0.5686, 0.4204, 0.4204, 0.5686), (A2a)

Hopt
(3,4) = diag(0.5521, 0.4418, 0.4418, 0.5521), (A2b)

Hopt
(4,4) = diag(0.5416, 0.4546, 0.4546, 0.5416), (A2c)

Hopt
(5,4) = diag(0.5345, 0.4630, 0.4630, 0.5345). (A2d)

TABLE II. Comparison of violation between optimal states and
approximate state in four dimensions.

Entangled states S(2,4) S(3,4) S(4,4) S(5,4)∣∣ψopt
(k,4)

〉
0.3648 0.5048 0.5722 0.6111∣∣ψ app

4

〉
0.3591 0.5028 0.5720 0.6102

TABLE III. Comparison of violation between optimal states and
approximate state in five dimensions.

Entangled states S(2,5) S(3,5) S(4,5) S(5,5)∣∣ψopt
(k,5)

〉
0.4063 0.5556 0.6254 0.6649∣∣ψ app

5

〉
0.3987 0.5519 0.6216 0.6572

The comparison of violations of CGLMP inequalities
between optimal states and approximate state are very
close (Sopt

(k,d ) − Sapp
(k,d ) < 0.01), as shown in Table II. In five-

dimensional systems, the optimal states are

Hopt
(2,5) = diag(0.5368, 0.3860, 0.3546, 0.3860, 0.5368),

(A3a)

Hopt
(3,5) = diag(0.5151, 0.4033, 0.3795, 0.4033, 0.5151),

(A3b)

Hopt
(4,5) = diag(0.5012, 0.4136, 0.3943, 0.4136, 0.5012),

(A3c)

Hopt
(5,5) = diag(0.4918, 0.4201, 0.4042, 0.4201, 0.4918).

(A3d)

The comparison of violations of CGLMP inequalities
between optimal states and approximate state are very
close (Sopt

(k,d ) − Sapp
(k,d ) < 0.01), as shown in Table III. In six-

dimensional systems, the optimal states are

Hopt
(2,6) = diag(0.5137, 0.3644, 0.3214, 0.3214,

0.3644, 0.5137), (A4a)

Hopt
(3,6) = diag(0.4878, 0.3780, 0.3452,

0.3452, 0.3780, 0.4878), (A4b)

Hopt
(4,6) = diag(0.4714, 0.3856, 0.3594, 0.3594,

0.3856, 0.4714), (A4c)

Hopt
(5,6) = diag(0.4603, 0.3903, 0.3685, 0.3685,

0.3903, 0.4603). (A4d)

The comparison of violations of CGLMP inequalities be-
tween optimal states and approximate state are very close
(Sopt

(k,d ) − Sapp
(k,d ) < 0.01), as shown in Table IV.

APPENDIX B: DETAILED MEASUREMENTS RESULT
OF BELL EXPRESSION

In this Appendix, we provide an exhaustive presentation of
the measurement outcomes depicted in Fig. 2 across various
dimensions of OAM subspaces. Specifically, Fig. 5 illustrates
the results obtained for the two-dimensional OAM subspace

TABLE IV. Comparison of violation between optimal states and
approximate state in six dimensions.

Entangled states S(2,6) S(3,6) S(4,6) S(5,6)∣∣ψopt
(k,6)

〉
0.4374 0.5927 0.6637 0.7030∣∣ψ app

6

〉
0.4274 0.5894 0.6621 0.6988
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FIG. 5. Probabilities of CGLMP inequality in multisetting two-dimensional OAM subspaces with settings (a) k = 2, (b) k = 3, (c) k = 4,
and (d) k = 5.The empty bars (purple edges) are the theoretical values, while the solid bars (light yellow) are the experimental results. AiB j

and B jAi stand for P(Ai < B j ) and P(B j < Ai ), respectively.

[Fig. 2(a)], while Fig. 6 showcases the corresponding find-
ings for the three-dimensional OAM subspace [Fig. 2(b)].
Furthermore, Figs. 7, 8, and 9 depict the measurement re-
sults for the four-dimensional [Fig. 2(c)], five-dimensional
[Fig. 2(d)], and six-dimensional [Fig. 2(e)] OAM sub-
spaces, respectively. It is noteworthy that all presented results
exhibit a reasonable agreement with quantum-mechanical
predictions.

APPENDIX C: BELL EXPRESSION FOR THE
MAXIMALLY ENTANGLED STATES |ψmax〉

According to Ref. [4], the probability P(Ai
s, B j

t ) can be
calculated by taking measurements (4) and (5) into |ψmax

d 〉 as

P
(
Ai

s, B j
t

) = 1

d3

sin2[π (s − t + αi − β j )]

sin2[π (s − t + αi − β j )/d]
. (C1)

FIG. 6. Probabilities of CGLMP inequality in multisetting three-dimensional OAM subspaces with settings (a) k = 2, (b) k = 3, (c) k = 4,
and (d) k = 5. The empty bars (purple edges) are the theoretical values, while the solid bars (light yellow) are the experimental results. AiB j

and B jAi stand for P(Ai < B j ) and P(B j < Ai ), respectively.
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FIG. 7. Probabilities of CGLMP inequality in multisetting four-dimensional OAM subspaces with settings (a) k = 2, (b) k = 3, (c) k = 4,
and (d) k = 5. The empty bars (purple edges) are the theoretical values, while the solid bars (light yellow) are the experimental results. AiB j

and B jAi stand for P(Ai < B j ) and P(B j < Ai ), respectively.

By combining with P(Ai < B j ) = ∑d−2
s=0

∑d−1
t=s+1 P(Ai

s, B j
t ),

we find that, in all the terms of P(Ai < B j ), the situation
s − t = −m will occur d − m times; then the probability
P(Ai < B j ) can be calculated as

P(Ai < B j ) =
d−1∑
m=1

1

d3

(d − m)sin2[π (αi − β j )]

sin2[π (−m + αi − β j )/d]
. (C2)

Besides, we choose the optimal parameters: αi = i/k − 1/2k
for i = 1, 2, . . . , k, β j = j/k for i = 1, 2, . . . , k, and βk = 0.

As each term in Eq. (2) satisfies α − β = ±1/2k, except
for αk − βk = 1 − 1/2k, we can calculate Bell expression in
terms of (C2) as

Sψmax

(k,d ) = 1

d3

d−1∑
m=1

(d − m)sin2
(

π
2k

)
sin2

[
π

(−m + 1 − 1
2k

)/
d
]

− (2k − 1)

d3

d−1∑
m=1

(d − m)sin2
(

π
2k

)
sin2

[
π

(−m + 1
2k

)/
d
] . (C3)

FIG. 8. Probabilities of CGLMP inequality in multisetting five-dimensional OAM subspaces with settings (a) k = 2, (b) k = 3, (c) k = 4,
and (d) k = 5. The empty bars (purple edges) are the theoretical values, while the solid bars (light yellow) are the experimental results. AiB j

and B jAi stand for P(Ai < B j ) and P(B j < Ai ), respectively.
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FIG. 9. Probabilities of CGLMP inequality in multisetting six-dimensional OAM subspaces with settings (a) k = 2, (b) k = 3, (c) k = 4,
and (d) k = 5. The empty bars (purple edges) are the theoretical values, while the solid bars (light yellow) are the experimental results. AiB j

and B jAi stand for P(Ai < B j ) and P(B j < Ai ), respectively.
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