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Nonlinear electrodynamics for the vacuum of Dirac materials:
Photon magnetic properties and radiation pressures
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We investigate the magnetic properties of photons propagating through Dirac materials in a magnetic field,
considering both vacuum and medium contributions. Photon propagation properties are obtained through
a second-order expansion of nonlinear Euler-Heisenberg electrodynamics at finite density and temperature
considering Dirac material parameters (Dirac fine structure constant, band gap, and Fermi velocity). Total mag-
netization (including electron and photon contributions) and photon-effective magnetic moment are computed.
Observables such as photon energy density, radiation pressure, and Poynting vector are obtained by an average
of components of the energy-momentum tensor. All quantities are expressed in terms of Lagrangian derivatives.
Those related to the vacuum are valid for any value of the external magnetic field, and both the weak- and
strong-field limits are recovered. We discuss some ideas of experiments that may contribute to testing in Dirac
materials the phenomenology of the strong magnetic field in the quantum electrodynamic (QED) vacuum and
how nonlinear corrections on the magnetization, radiation pressure, and birefringence are amplified up to 103

times QED corrections.
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I. INTRODUCTION

Maxwell’s theory predicts that plane-polarized light prop-
agates in a vacuum, or empty space, at the speed of light c.
Quantum electrodynamics (QED), however, presents a dif-
ferent picture of the vacuum. According to this theory, the
vacuum is not empty but rather a “sea” of virtual electron-
positron pairs, with their negative energy states occupied and
positive energy states unoccupied. This model explains how,
in the presence of an external magnetic field, the speed of
light remains c when propagating parallel to the magnetic
field but is lower than c when propagating perpendicular to
it. In this case, light changes its plane of polarization, re-
sulting in the wave splitting into two polarized modes that
move at different speeds (and frequencies). This phenomenon,
known as Cotton-Mouton birefringence, is a consequence of
the interaction between the magnetic field and the virtual
electron-positron pairs [1,2].
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Viewed through the lens of quantum field theories, the
vacuum is considered the ground state of these theories. QED
consists of virtual pairs of electrons-positrons, while for quan-
tum chromodynamics, it involves virtual quarks-antiquarks.
The shift from Maxwell’s concept of vacuum to QED’s dy-
namic sea of virtual particle pairs redefines its conceptual
meaning and aims to understand its properties and complexity.

The vacuum of QED in the presence of a strong electro-
magnetic field behaves as a medium, and virtual pairs interact
with magnetic fields. Thus, the properties of light propagating
in a QED vacuum can be studied using nonlinear optic tools,
based on Maxwell’s theory with all the magnitudes described
in terms of a medium electric permittivity and magnetic per-
meability depending on the nonlinear of the external electric
and magnetic field.1 Besides birefringence,2 QED predicts
other exotic properties such as the Casimir effect, vacuum in-
stability (close to the critical fields, Bc = m2c2

eh̄ = 4.41 × 1013

G and Ec = m2c3

eh̄ = 1.3 × 1018 V/m, where electron-positron
pair creation occurs [4–6]), anisotropy pressures, etc. [3]. All
these vacuum phenomena predicted 90 years ago are still
awaiting experimental confirmation. Testing the vacuum prop-
erties of QED requires large magnetic and/or electric fields.

1Vacuum electric permittivity and magnetic permeability are re-
lated with the speed of light [3].

2In the presence of a strong electric field, birefringence also appears
and is called Kerr birefringence.
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So far, technological barriers limit the generation of such
high fields in the laboratory. The magnetic fields achieved
in laboratories do not exceed a few tesla (around 5 T =
5 × 104 G) [3,7]. For instance, vacuum birefringence is a
tiny effect, even though it manifests for any magnetic field
strength. At the weak-field limit, birefringence depends on a
quadratic ratio between the magnetic field and the parameter
ξ , �nQED ∼ (B/ξ )2, where �nQED defined the difference be-
tween the refractive indices of the transverse modes modes.3

The polarization of vacuum with laser (PVLAS) experiment
[8] was designed to confirm the QED prediction of vacuum
birefringence. The strength of the magnetic field of the exper-
iment was 2.5 × 104 G, so �nQED = 2.5 × 10−23, turning its
measurement into a challenge. The experiment was improved,
and it obtained a bound close to the prediction �nPVLAS ∼
(12 ± 17) × 10−23 for the same magnetic field [8].

But in the universe, we can find entities like neutron stars,
whose magnetic fields are close to the critical field, and even
more in the case of magnetars [9–11]. Short-time huge mag-
netic fields may also be found in heavy-ion colliders, which
can reach the order of 1018 G [12]. In both scenarios, neutron
stars and heavy-ion colliders have reported indirect vacuum
magnetic birefringence [10,11]. The work [10] claims the first
evidence of vacuum birefringence by measuring the degree
and angle of polarization of the photons coming from the
pulsar RX J1856.5-4 and comparing them with the theoret-
ical results, but the uncertainties in their measurements are
significant enough to trust in this measurement fully.

These observations have boosted the search for the phe-
nomenon directly based on other experimental setups. One
plausible alternative is the design of experiments with scat-
tering of the pulsating laser [13]. It is predictable that with
the developed technology of lasers, soon the power of lasers
will reach an intensity around I ∼ 1028 Wm−2 [14,15] that
corresponds to an electric (magnetic) field close to the critical
field, which may make it easier to detect the effect of the
birefringence of vacuum and to test the pair’s creation from
the vacuum.

Besides, another exciting and new alternative to probe vac-
uum properties would be experiments designed with Dirac
materials, as their critical fields Ec = �2

evF
∼ 103 V/cm and

Bc = �2

ev2
F

∼ 104 G = 1 T are accessible in laboratories.4 A
very hopeful work [16] has studied the contribution to
the magnetization of the vacuum for three different three-
dimensional (3D) Dirac materials and the possibility of testing
in experiments.

Dirac materials, including Weyl metals, topological mate-
rials, and graphene, are characterized by electrons that behave
as relativistic fermions with a linear dispersion relation. This
unique property gives these materials distinctive optical, mag-
netic, and transport properties. The pioneer theoretical work
of Dirac materials is Ref. [17], but the boom of these ma-
terials only appeared with the fantastic finding of graphene

3ξ = 8α2 h̄3

45m4c5 ∼ 8α

45B2
c
, with α the fine structure constant.

4Where � and vF are the band gap or energy gap and the Fermi
velocity of the material, respectively.

by Novoselov [18]. This experiment led to a boom of exper-
imental and theoretical work to look for other materials or
properties, and consequently, to technological applications.

The discovery of Dirac materials has been gratifying news
for the quantum field theory because it has opened the door
to test in tabletop experiments, theories, and phenomena re-
quiring a large scale of energies and expensive experiments in
particle accelerators [19]. Consequently, the tools of quantum
field theory have been extended to condensed matter physics.
In line with this direction, the investigation of photon propaga-
tion parallel to an external magnetic field in electron-positron
plasma [20–22] was expanded to include graphene-like sys-
tems. This extension encompassed the study of the Faraday
and quantum Hall effects [23–25]. Leveraging previous cal-
culations [20–22] from one-loop QED perturbative studies
of 3D electron-positron plasma in a magnetized medium, a
“dimensional reduction” to two dimensions was performed
while also considering the specific properties of graphene-like
systems. In this paper, we proceed similarly, extrapolating
to Dirac materials physics the results of the study of photon
propagation transverse to the external magnetic field. We have
used the extended to finite temperature and density of the
effective Euler-Heisenberg (EH) nonlinear electrodynamics to
study the properties of electron-hole plasma. In particular, we
use an approximated version of the extended EH Lagrangian,
which corresponds to an expansion up to second order on
the photon field [26] in the limit of ω � 2mc2, where m
is the electron mass. From this Lagrangian, we investigate
the magnetic and dielectric properties of a photon traveling
in the Dirac vacuum and the observables, energy densities
and pressures, and Poynting vector resulting from the energy-
momentum tensor. We also study the magnetic properties of
Dirac materials in the medium and compare them with those
of photons, finding that they are the primary contributors to
overall magnetization.

Our work introduces several novel aspects that deserve
highlighting. Firstly, we extend the effective Euler-Heisenberg
action to finite density and temperature to discuss the mag-
netic properties of 3D Dirac materials. Additionally, we
examine the magnetization of photons propagating transverse
to an external magnetic field. To achieve this, we expand
the Euler-Heisenberg Lagrangian up to the second order on
the photon field, considering nonlinear contributions from
both vacuum and medium. This approach allows us to derive
the magnetization of the Dirac materials described by elec-
trons (Dirac vacuum and medium) as a zero-order term of the
expansion and the magnetization of photons interacting with
the magnetic field via the vacuum or medium. Secondly, we
consider the photons propagating in a Dirac vacuum while
accounting for arbitrary magnetic field values, which allows
for the recovery of both weak and strong magnetic field lim-
its. Thirdly, we calculate the energy-momentum tensor and
observables for photons propagating in the vacuum in terms
of derivatives of the effective Lagrangian. This formulation
makes it possible to extend our approach straightforwardly to
other nonelectrodynamics. Furthermore, the extension of this
calculation to finite temperature and density is also straight-
forward.

Our study is also essential for the interest that awakens the
magnetic properties of Dirac materials (including the vacuum
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properties) and for eventually testing the properties of the
strong-field QED regime. As we have already commented,
critical fields for the Dirac materials are experimentally reach-
able. Hence, these materials could imitate the birefringence,
anisotropic pressures, and other exotic properties of the vac-
uum of QED at the regime of the strong magnetic field.

The paper is organized as follows: In Sec. II, a brief
overview of Dirac materials characteristics is illustrated. In
Sec. III, we extrapolate the extended effective Lagrangian of
QED in the presence of electromagnetic fields to 3D Dirac
materials. Section IV is devoted to studying the electron and
photon magnetic properties in the presence of an external
magnetic field. In Sec. V, we calculate the photon magnetic
moment. The solution of the Maxwell equation and dispersion
equation of photon propagating in the 3D Dirac vacuum is
presented in Sec. VI. In Sec. VII, the energy-momentum ten-
sor is presented, and observables like energy density pressures
and Poynting vector are obtained. Finally, we conclude the
work, and some calculations are presented in the appendices.
We used natural units in the paper, except for some cases for
clarity.

II. A BRIEF OVERVIEW OF DIRAC MATERIALS
CHARACTERISTICS

The crystalline structure of Dirac materials is characterized
by “Dirac points” or wells, with a small band gap around
them. The electrons behave like relativistic particles, with
free electrons as Dirac fermions exhibiting an extremely high
Fermi speed, about 106 m/s. The electrons could be described
by a linear relationship according to ε ≈ vF p between the
energy and momentum of its electrons in the conduction and
valence band for low energies [16,27]. Dirac materials with
zero mass (gap) are known as Weyl fermions, and one of
the most well known is graphene [28]. This one, a highly
conductive material with no energy gap in its Dirac points
(� = 0), is distinguished from conventional semiconductors
by its absence of this gap (� �= 0). These energy gaps can be
controlled by manipulating the width of the graphene ribbon
and introducing defects or doping, among other factors. By
employing these techniques, small energy gaps are observed,
ranging approximately from 100 meV to 250 meV [29–33].
Our study considers a nonzero gap graphene energy with an
energy gap of 100 meV [34].

Formally, graphene is not a two-dimensional (2D) Dirac
semimetal actually, with the top of the valence and bottom
of the conduction band. The insulator just touches before gap-
ping up again after band inversion, resulting in a graphene-like
semimetallic state. Besides graphene and topological insula-
tors with 2D Dirac surface states, there is a 3D semimetal with
a Dirac point in the bulk 3D Brillouin zone linear dispersion in
all three k directions. The theoretical prediction and the exper-
imental proof in Bi-based materials did not take long [35–38].
These materials are also called (3D) Dirac semimetals.

Our study will focus on these materials by considering a
simple model. We know that the crystal structure of these
materials is sufficiently complicated with various nodes, but
as a first approximation, we consider the following points:

(1) All nodes are equal and we assume a constant energy
gap independent of all the parameters of the material.

TABLE I. Comparison of QED and four Dirac materials for
different parameters like band gap (�), Dirac structure constant
(αD) over α, critical magnetic field (Bc), critical electric field
(Ec), and bound of the dimensionless external magnetic field b =
Be/Bc imposed to ensure the validity of nonlinear electrodynamics.
Some values of QED are listed as a reference and the Dirac ma-
terials: Pb1−xSnxTe [16,27,40,41], Bi1−xSbx [16,27,41,42], Ta3As4

[16,27,43], and graphene [18,24,34].

� (meV) αD/α Bc (T) Ec (V/cm) bmax

QED 109 1 4.4 × 109 1.3 × 1016 1291
Pb1−xSnxTe 31.5 580 5.6 2.9 × 104 2.22
Bi1−xSbx 7.75 188 0.036 5.7 × 102 6.86
Ta3As4 21 357 0.95 7.9 × 103 3.61
Graphene 100 301 15.4 1.5 × 105 4.28

(2) We neglect the contribution to magnetization due to
material impurities.

(3) We are assuming that the properties of the materials
are stable for values of the magnetic or electric field above the
critical field of each material.

With this model, we will proceed to study the propagation
of photons, extrapolating the results of QED to 3D Dirac
materials.. It means shifting the values of the critical fields
in Dirac materials to be defined as [16,27]

Ec(�, vF ) = vF Bc(�, vF ) = �2

evF
, (1)

where the speed of light has been replaced by the Fermi
velocity of the material (c → vF ≈ 106 m/s), and the fine
structure constant has been changed to an effective or Dirac
fine structure constant (α → αD), defined as αD = e2/vF ∼
1–4. Here, the band gap or energy gap of the material is
defined as � = m∗mv2

F , where m∗ ∼ 0.01–0.5 is the effective
mass of electrons and holes [16,27].

Table I presents a comparison of QED and four materi-
als that we use in our study: graphene, tantalum arsenide
(Ta3As4), bismuth antimony (Bi1−xSbx), and lead tin tellurium
(Pb1−xSnxTe). Also, we have listed the values of 3π/αD for
each material, which are related to the maximum allowed val-
ues of the magnetic field to get accurate corrections to phase
velocity in the strong-field limit v2

p ≈ 1 − αD
3π

b > 0, where
b = Be/Bc, Be is the external constant magnetic field and
bmax = 3π/αD. This bound ensures the validity of one-loop
approximation and the effective nonlinear electrodynamics
[26,39]; above this strength, we have to include two-loop
corrections.

Each material will be defined only by its Fermi speed and
energy gap so that several materials can have the same charac-
teristics. We are referring, for example, to the graphene-type
material that has its Fermi speed and energy gap given, but it
can be another material with the same characteristics.

III. NONLINEAR ELECTRODYNAMICS FOR DIRAC
MATERIALS, LAGRANGIAN

In this section, we extrapolate the extended effective La-
grangian of QED in the presence of electromagnetic fields
to 3D Dirac materials. The extending effective Lagrangian
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corresponds to considering finite temperature and density and
the possibility of evaluating thermodynamical potential in the
presence of external and constant magnetic fields. Besides,
we can study the propagation of photons in 3D materials
by doing an expansion of the effective Lagrangian up to the
second order of the photon fields. This treatment allows us to
calculate the magnetization of the electrons (zero order of the
expansion) and photons (terms of the first and second order
of the expansion) and consider both the vacuum and medium
contribution.

We start from the Lagrangian of QED where fermions are
coupled with an electromagnetic vector field Aμ,5

L(ψ̄, ψ, Aμ) = ψ̄ (/∂ − e/Aμ − m)ψ + 1
4 FμνFμν, (2)

where ψ̄ , ψ are the fermion spinors; /∂ = γ ν∂ν , /Aμ = γ μAμ,
γμ are the Dirac matrices; Aμ is the four-potential vector
of the electromagnetic field; and Fμν is the electromagnetic
tensor. We start from the grand partition function defined as
Z = Tr{ekBT (H−μN )}, where kB is the Boltzmann constant, T
is the temperature, H is the Hamiltonian, μ is the chemical po-
tential, and N is the number of particle density. The partition
function in the path integral language corresponds to

Z =
∫

Dψ̄DψeikBT
∫ 1

0 dτ
∫

d3xL(Aμ,ψ ), (3)

where we use Euclidean space-time with τ = it a variable in
the interval 0 to kBT .

In one-loop approximation, the effective Lagrangian at
finite temperature and density6 in the presence of an electro-
magnetic field reads as

Le f f = kBT Tr{ln Z} = ikBT ln det G−1(x, x′), (4)

where G−1(x, x′) is the inverse electron Green function in
the presence of electromagnetic fields and determinant and
logarithm are functional operations. Doing the functional
operations over the propagator in integral representation, fol-
lowing the steps described in Refs. [39,44,45] from Eq. (4),
one arrives at the general effective Lagrangian [39,44,45]

Leff (ã, b̃, μ, T ) = − F − 1

8π2

∫ i∞

0

ds

s3
e−i(m2−iε)s

× [(es)2ãb̃ coth(eãs) cot(eb̃s)]

×
(

1 + 2
∞∑

k=1

e− iek2β2

4 h(s,ã,b̃) cosh(μβk)

)
,

(5)

where β = 1/kBT , ã = [(F2 + G2)1/2 + F]1/2, b̃ = [(F2 +
G2)1/2 − F]1/2, and F and G are the secular invariants de-
rived from the gauge and Lorentz invariants of the generic
electromagnetic fields (E, B),

F = 1

4
FμνFμν = 1

2

(
− ε0E2

e + B2
e

μ0

)
, (6)

5We used Minkowski flat space with the convention gμν = ημν =
{+1,−1, −1, −1}.

6The thermodynamical potential of the electron-hole plasma is � =
Leff .

G = 1

4
Fμν ˜Fμν =

√
ε0

μ0
(−Ee · Be), (7)

where μ0 and ε0 are electrical permittivity and magnetic per-
meability, respectively.7 Ee,(i) and Be,(i) are the components
of electromagnetic tensors defined as Ee,(i) = F0i, Be,(i) =
− 1

2εi jkF jk with i = 1, 2, 3; F̃μν = εμναβFαβ/2 is the dual
tensor; and εμνα and εμναβ are the totally antisymmetric Levi-
Civita tensors of rank 3 and 4, respectively.

The first term of the effective Lagrangian is the unrenor-
malized nonlinear EH Lagrangian, while the second one
corresponds to the temperature and density correction. In a
medium, Lorentz symmetry is broken, and the reference frame
would be specified by the medium velocity uμ. Hence, the
general effective Lagrangian apart from the electromagnetic
field invariants ã, b̃ includes uμ = (1, 0, 0, 0) by the covariant
form of the electric field Eμ

e = Fμνuν , Eμ
e = (0, Ee) so that

ε2
u = |Ee|2. The function h(s) that appears in the exponent of

the second term is

h(s, ã, b̃) = ã
b̃2 + ε2

u

ã2 + b̃2
cot(eãs) + b̃

ã2 − ε2
u

ã2 + b̃2
coth(eb̃s), (8)

and it relates the electromagnetic invariants with medium
velocity (details of the extended effective Lagrangian can be
seen in Refs. [39,44,45]).

The effective Lagrangian Eq. (5) is reduced to constant
external magnetic field, taking b̃ → 0 and G = 0 (Ee = 0) and
leaving only the invariant F = B2

e/2.
In that case, the first term of the Lagrangian depends only

on the magnetic field, while the second term additionally
depends on temperature and chemical potential, with

Leff (Be) = − 1

8π2

∫ ∞

ε

ds

s3
[2e−m2s(eBes) coth(eBes)], (9)

= eBe

4π2

∫ ∞

−∞
d p3

∑
σ,n

|Eσn|, (10)

where Leff (Be) has to be renormalized, and with the Maxwell
classical terms we get the Euler-Heisenberg effective nonlin-
ear Lagrangian [4]. Its expression is

LR
eff (Be) = − F − 1

8π2

∫ ∞

ε

ds

s3

[
2e−m2s(eBes) coth(eBes)

− 1 − (eBes)2

3

]
. (11)

The Leff (Be, T, μ) remains as [39]

Leff (Be, μ, T ) = − 1

8π2

∫ ∞

ε

ds

s3
2e−m2s[(eBes) coth(eBes)]

×
[ ∞∑

k=1

e− ek2β2

4s cosh(μβk)

]
(12)

= eBe

4π2

∫ ∞

−∞
d p3

∑
σ,n

1

β
ln(1 + e−β|Eσn−μ|)(1 + e−β|Eσn+μ|),

(13)

7Throughout the paper, for simplicity, we take μ0 = ε0 = 1.
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where Eσn = √
p2

3 + m2 + eBe(2n + 1 + σ ), σ is the spin and
the number k corresponds to the sum over the Matsubara
frequencies.

We can analyze their contributions separately as

Leff (Be, T, μ) = LR
eff (Be) + Leff (Be, T, μ). (14)

We want to point out that Eqs. (10) and (13) show the equiv-
alence in one loop of the effective Lagrangian [44] obtained
by proper time Schwinger method Eqs. (9) and (12), respec-
tively, and that obtained using the functional approach in
imaginary time formalism for electron propagator interact-
ing with the magnetic field at finite temperature and density
[46]. (Appendix provides details on how to transition from
one to the other.) Although both representations are equiv-
alent, depending on the specific calculation, one might be
more advantageous than the other. For instance, the integral
representation using the proper time method is simpler for reg-
ularizing the effective Lagrangian. Conversely, for calculating
integrals at the limit of zero temperature and nonzero chemical
potential, the partition function of electron-positrons is more
suitable and straightforward.

Usually, when one studies electron-positron plasma in an
external magnetic field, the vacuum contribution is ignored
because it is only relevant close to the critical field. However,
for Dirac materials, the critical fields are reachable in labo-
ratories, so studying the relevance and the presence of their
contribution is very timely for backing up the QED vacuum
properties.

Let us move to Dirac material language. Without loss
of generality [16,27], we change m and α in the effective
Lagrangian by � and αD, Eqs. (5)–(13), i.e., from now on
Leff → LD(αD,�).

Experiments on Dirac materials typically involve densities
higher than temperatures of around 102 meV, while the tem-
peratures are approximately 10 K (<1 meV) [41,43]. So, the
degenerate limit (T � μ) is suitable, holes are neglected, and
the integral over p3 in Eq. (13) yields the following expression
for the effective Lagrangian [47]:

LD = e�2

4π2vF

nμ∑
n=0

anb
∫

| E ′
σn − μ′ | θ (E ′

σn − μ′)d p′
3,

(15)

= e�2

4π2vF

nμ∑
n=0

anb

[
μ′ p′

f − (1 + 2nb)ln

(
μ + p f

�n

)]
,

(16)

where an = 2 − δ0n, b = Be/Bc, d p′
3 = d p3/�,

E ′
σn = √

p2
3/�

2 + 1 + (2n + 1 + σ )b, μ′ = μ/�, p′
f =

1/vF

√
μ′2 − �′2

n , �′2
n = 1 + 2nb, p f = 1/vF

√
μ2 − �2

n is
the Fermi momentum, �2

n = �2 + 2eBnvF , and nμ is the
maximum number of Landau levels taken from the integer
part of nμ = μ2−�2

2eBevF
= μ2−1

2b .

A. Photon propagation in the presence of a constant
magnetic field

We aim to investigate the properties of photons propagating
perpendicular to an external and constant magnetic field along

the x3 direction in a 3D Dirac material. To undertake this
study, we employ nonlinear electrodynamics (nonperturbative
QED), beginning with the extension of Euler-Heisenberg’s
effective Lagrangian to finite temperature and density regimes
in the infrared limit (ω << 2m2).

Therefore, we start from effective Lagrangian Eq. (5),
making the prescription for the vector potential [26] Aμ =
Aext

μ + aμ, where aμ represents the four-potential of the pho-
ton and Aext

μ is the potential associated with the external and
constant magnetic field Be, and the corresponding electromag-
netic field tensor is Fμν = fμν + FB

μν , where

fμν = ∂μaν − ∂νaμ, FB
μν = ∂μAext,ν − ∂νAext,μ, (17)

with B = Be + Bw and E = Ew, where Bw and Ew are the
wave magnetic and electric field, respectively. The invariants
become

F = 1

4
FμνFμν + 1

4
f μν fμν = 1

2

(− E2
w + B2

w

)+ B2
e

2
, (18)

G = 1

4
Fμν ˜Fμν + 1

4
f μν ˜f μν + 1

4
f μν ˜Fμν + 1

4
Fμν ˜f μν

= −Ew · Be. (19)

As the photon propagates in constant magnetic field, E →
0, i.e., and b̃ → 0 and h(s) = 1/s. We expand up to the
second order of the photon fields the extended effective Euler-
Heisenberg Lagrangian [26,39].

The explicit expression of the expansion has the form

LD(Be, Ew, Bw, T, μ) =L(e−Be )
D (Be, T, μ) |Ew=Bw=0

+ L(ph)
D (Be, Ew, Bw, T, μ), (20)

where L(e−Be )
D (Be, T, μ) |Ew=Bw=0 is the zero order of the

expansion, and it corresponds to the effective Euler-
Heisenberg Lagrangian for electrons in the presence of
constant magnetic field written in the previous heading as
Eqs. (10) and (13), L(e−Be )

D (Be, T, μ) |Ew=Bw=0= LR
D(Be) +

LD(Be, T, μ), while L(ph)
D (Be, Ew, Bw, T, μ) is a quadratic

nonlinear effective Lagrangian and it includes the interaction
of photons with the magnetic field via virtual pairs (vacuum)
and through electrons (medium) and, in the considered ap-
proximation, looks like

L(ph)
D = 1

4

(
1 − L f ,D

F
)

f μν fμν + L f ,D
FF
8

(
f μνF B

μν

)2
+ L f ,D

GG
8

(
f μνF̃ B

μν

)2
, (21)

where the coefficients of the expansion are L f ,D
F = LD

F +
L(μ,T ),D
F , and LD

F is the renormalized EH effective action equa-
tions L f ,D

FF = LD
FF + L(μ,T ),D

FF and L f ,D
GG = LD

GG + L(μ,T ),D
GG .

The presence of finite temperature and density, which
characterize the medium, appear as temperature- and density-
dependent expansion coefficients in addition to those that
depend solely on the magnetic field, such as LD

F , LD
FF , and

LD
GG . These latter are regularized integrals dependent on ar-

bitrary values of the external magnetic field [26,39,48–50].
They represent quantum corrections up to second order to
the classical Lagrangian photon field f μν fμν , proportional
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to αD. We can rewrite Eq. (21) by separating the vac-
uum from the medium photon interaction, L(ph)

D = L(ph−Be )
D +

L(ph−Be−e)
D , where

L(ph−Be )
D = 1

4

(
1 − LD

F
)

f μν fμν + LD
FF
8

(
f μνF B

μν

)2
+ LD

GG
8

(
f μν F̃ B

μν

)2
, (22)

L(ph−Be−e)
D = 1

4
L(μ,T ),D
F f μν fμν + L(μ,T ),D

FF
8

(
f μνF B

μν

)2
+ L(μ,T ),D

GG
8

(
f μνF̃ B

μν

)2
. (23)

The integrals concerning Lagrangian derivatives are outlined
in Appendices A 1 and A 2. For a detailed explanation of the
calculations, see Refs. [39,44].

Let us note that all the Lagrangians Eqs. (5), (21), and
(23) preserve the parity conservation, because there are no
odd powers of the invariant G in these expressions, since both
coefficients LFG = LG = 0.

IV. MAGNETIC PROPERTIES OF PHOTON PROPAGATION
IN DIRAC MATERIALS, MAGNETIZATION

Let us start from Eq. (20) to study the total magnetization
resulting from electrons and photons interacting with the mag-
netic field via vacuum (virtual pairs) and medium (electrons).
This is obtained by M(T )(Be) = − ∂LD

∂Be
[24] and it has the

form

M(T ) = M(e)(Be, T, μ) + M(ph)(Be, T, μ), (24)

M(e)(Be, T, μ) = M(Be )(Be) + M(e−Be )(Be, T, μ), (25)

M(ph)(Be, T, μ) = M(ph−Be )(Be) + M(ph−Be−e)(Be, T, μ).
(26)

In the degenerate gas limit (at finite density and zero tempera-
ture), the Dirac material magnetization (due to electrons) can
be calculated from Eq. (16) and it reads as

M(e−Be )(Be, μ)

= M0

nμ∑
n=0

3an

2

[
μ′ p′

F − (1 + 4nb)ln

(
μ + p f

�n

)]
, (27)

where M0 = e�2/(6π2vF ) [47]. The corresponding magne-
tization of the vacuum is obtained from Eq. (9), which arises
from the interaction of virtual pairs with the magnetic field.
The integral can be solved for weak-field (WF) and strong-
field (SF) limits, yielding

M(Be )SF(Be) = M0 b[ln(b) + 1], M(Be )WF(Be) = M0 b3.

(28)

This vacuum magnetization M(Be )(Be) agrees with Ref. [16]
for Ee = 0.

Photon magnetization due to the photon interaction with
the vacuum is

M(ph−Be )(Be) = 〈LD
GG (Be)(Ew · Be)Ew

+ LD
FF (Be)(Bw · Be)Bw

〉
, (29)

and with medium

M(ph−Be−e)(Be, T, μ) = 〈L(μ,T ),D
GG (Be)(Ew · Be)Ew

+ L(μ,T ),D
FF (Be)(Bw · Be)Bw

〉
. (30)

Note that 〈...〉 indicates the average over space-time, which
applies only to the photon field since it is the only quantity
dependent on space-time, as a plane wave.

The magnetization of photons exhibits the same structure
in both vacuum and medium: a linear dependence on the mag-
netic field and a quadratic dependence on the photon fields E2

w

and B2
w. The distinction between vacuum and medium arises

from the expressions of the second Lagrangian derivatives
with respect to the external magnetic field. These derivatives
for the vacuum correspond to finite integrals that are func-
tions of the magnetic field, LD

FF and LD
GG , while L(μ,T ),D

FF and

L(μ,T ),D
GG depend on temperature, density, and magnetic field

[see Appendices A 1 and A 2 for their expressions].
The explicit expressions are in Appendix. For each po-

larization mode, i = 2, 3, the photon magnetization in the
medium could be separated as

M(2) (ph−Be−e) = LGG
(μ),DBe

〈
E2

w

〉
,

M(3) (ph−Be−e) = LFF
(μ),DBe

〈
B2

w

〉
, (31)

while for vacuum,

M(2)(ph−Be ) = LD
GGBe

〈
E2

w

〉
,

M(3)(ph−Be ) = LD
FFBe

〈
B2

w

〉
. (32)

Equation (32) reproduces the photon vacuum magnetization in
the weak and strong magnetic field limits [51,52] as follows:

M(2),W F
(ph−Be ) = 7ξD

2
Be
〈
E2

w

〉
x̂3, M(3),W F

(ph−Be ) = 2ξDBe
〈
B2

w

〉
x̂3,

(33)

M(2),SF
(ph−Be ) = αD

3π

〈
E2

w

〉
Bc

x̂3, M(3),SF
(ph−Be ) = αD

3π

〈
B2

w

〉
Be

x̂3. (34)

Figure 1 shows a comparison between the vacuum mag-
netization M(Be ) [Eq. (28)] and the photon magnetization
M(ph−Be ) [Eq. (32)] as a function of the external magnetic
field for the Dirac materials of Table I. We used Eω/Ec = 0.01
and Ew = vF Bw to satisfy the expansion requirement (Ew �
Ec and Bw � Bc). It is observed that the photon magnetiza-
tion is always lower than the electron vacuum magnetization.
While the photon magnetization varies between 10−6 μT and
10−3 μT for different materials, the contribution of electron
vacuum magnetization is three to six orders of magnitude
greater. In both cases, the magnetization increases with the
strength of the external magnetic field and tends to remain
constant when the magnetic field reaches the corresponding
critical field for each material.

The contribution of the vacuum to the total magnetiza-
tion is tiny at weak magnetic field scales; however, at higher
magnetic field values, this contribution increases and be-
comes nearly constant. The photon magnetization M(ph−Be )

of Bi1−xSbx for Be/Bc = 0.1 is approximately on the order of
10−14 T, whereas for Pb1−xSnxTe, it is on the order of 10−12 T
for the same external magnetic field value.

Figure 2 illustrates the behavior of electron magnetization
for the Dirac materials listed in Table I. We have plotted it
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FIG. 1. Vacuum magnetization M(Be ) due to the interaction of
virtual pairs with the magnetic field (represented by the bottom
four curves) and photon magnetization M(ph−Be ) resulting from their
interaction with the magnetic field through virtual pairs (represented
by the top four curves) are shown for mode i = 2. The magneti-
zation is plotted as a function of the dimensionless magnetic field
b = Be/Bc for each Dirac material: Bi1−xSbx , Pb1−xSnxTe, Ta3As4,
and graphene. The value of Ew is normalized using the electrical
critical field, Eω/Ec = 0.01, and Eω = vF Bω. The curves are plotted
up to the maximum value of the magnetic field according to the
validity in the one-loop approximation, bmax, in Table I.

as a function of magnetic field and chemical potential, reveal-
ing similar paramagnetic behavior across all Dirac materials.
In both figures, the oscillations (a characteristic behavior of
magnetized quantum gases) arise from the Hass–van Alphen
effect, associated with fermion transitions between Landau
levels.

The magnetization increases with the band gap and tends
to stabilize when the magnetic field exceeds 4 T. Furthermore,
magnetization shows a strong dependence on the increase
of chemical potential across all materials. In our model, the
magnetization of each material depends solely on the band gap
and Fermi velocity. However, it is known that magnetization
should also be influenced by the band structure (geomet-
rical factors) and chemical composition. Then, our model
tends to overestimate the magnetization, yielding large values
M(e−Be ) > mT. Nevertheless, this value could be a reference
for comparison with photon magnetization.

Figure 3 depicts the magnetization of photons interacting
with the magnetic field through electrons M(ph−Be−e), using
Eq. (31), as a function of the magnetic field and chemical
potential specifically for Ta3As4. Both figures exhibit the
Hass–van Alphen effect, resulting from the quantization of
Landau levels. Similar to the M(e−Be ), the photon magnetiza-
tion also increases with the chemical potential. Nevertheless,
in the figure, we can see that the photon medium magne-
tization M(ph−Be−e) matches within the expected range for
Dirac materials, from 0.1 μT to 10 μT [16,27]. However, it
generally varies depending on factors like the material’s Fermi
velocity and band gap.

Finally, let us compare the photon and electron contri-
butions to magnetization in Fig. 4. Here, we plot the four
contributions of the total magnetization as functions of the
external magnetic field for Ta3As4.

We observe that the leading contribution of magneti-
zation stems from the electron field M(e−Be ) being the
most important in the resulting total magnetization. The
relation is between M(Be )

M(e−Be ) ∼ 10−3 and M(ph−Be )

M(Be−ph−e) ∼ 10−3,
while the magnetization due to photon propagation is just a
tiny quantity in comparison with the material magnetization
M(ph−Be )

M(e−Be ) ∼ 10−9.
To measure this quantity, one requires greater precision and

new techniques, such as those provided by superconducting
quantum interference device (SQUID) magnetometry, whose
sensitivity can reach up to 10−15 T/Hz1/2 [16,53]. We hope
that these techniques will aid in the detection of vacuum
magnetization. However, separating vacuum and medium
contributions remains a challenge.

V. EFFECTIVE PHOTON MAGNETIC MOMENT

Let us study the effective magnetic moment of a photon
probe propagating in a magnetized Dirac vacuum, defined
from the variation of the magnetic energy E = M(ph−Be )Be =
LFF 〈E2

w〉B2
e + LGG〈E2

w〉B2
e of the photon propagating in a

Dirac vacuum with respect to the magnetic field. We translate
to Dirac material language the results obtained in Ref. [26].
The explicit expression for the two modes | μ

(2,3)
ph | reads as

∣∣μ(2)
ph

∣∣ = αD

16π

1

b3

{
3 − 12ζ (1,1)

(
−1,

1

2b

)
+ 3ψ

(
1

2b

)}
+ b

[
−3 + ln �

(
1

2b

)(π

b

)2
+ ψ (1)

(
1 + 1

2b

)
+ 2b2

]} | k⊥ |
Bc

, (35)

∣∣μ(3)
ph

∣∣ = αD

8π

1

b4

{
−ψ (1)

(
1 + 1

2b

)
+ b

[
4 − 4ψ

(
1 + 1

2b

)
+ 2ψ

(
1

2b

)]

+ b2

[
4 − 2 ln(2π ) + 4 ln

(
�

(
1

2b

)(π

b

)1/2
)]} | k⊥ |

Bc
, (36)

where ψ (1) = ∂hψ , ψ is the polygamma or digamma function
(first derivative of ln �). ζ (1,1)[s, h] = ∂hζ

′ with ζ ′ = ∂sζ [s, h]
and ζ [s, h] is the Hurwitz zeta function [54]. Considering
the form of ψ and ζ ′ in weak- and strong-field limits (see
details in Ref. [26]). Modes (2) and (3) yield | μ

WF (2)
ph |=

αD
4π

28
45

Be
B2

c
| k⊥ | and | μ

WF (3)
ph |= 4

7 | μ
WF (2)
ph |, while for strong-

field limit, only mode (2) contributes to the effective magnetic

moment, and it goes to a constant value, | μ
SF (2)
ph |= αD

3π

〈E2
w〉

Bc

and | μ
SF (3)
ph |= 0. Note that the effective photon magnetic

moment | μ
SF (2)
ph |∼ 10−1μe is a decimal of the electron mag-

netic moment (μe), contrasting to the QED value, which is
two orders lower.
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FIG. 2. (Left) Magnetization of electron interacting with magnetic field M(e−Be ) as a function of the magnetic field Be in tesla for a fixed
value of μ/� = 3. (Right) Electron-field magnetization vs the chemical potential μ in meV for a fixed value of the external magnetic field
Be = 1 T. In both figures have been depicted the magnetization of studied Dirac materials: Bi1−xSbx , Pb1−xSnxTe, Ta3As4, and graphene.

In Fig. 5 left, we depict the photon’s effective magnetic
moment as a function of b for polarization modes (2) and
(3) of Dirac materials. For comparison, we have depicted
the magnetic moment for light propagating in a magnetized
vacuum of QED. One can see that for the Dirac material,
the effective magnetic moment for Pb1−xSnxTe is one order
below the QED magnetic moment, while for Bi1−xSbx it is
three orders lower than the value of QED. On the right side
of Fig. (5), we plot for Pb1−xSnxTe the effective magnetic
moment, considering the results for arbitrary values of the
magnetic field, and we have plotted it for weak and strong
limit for both modes. Then, for a magnetic field, Be � 2Bc,
the effective magnetic moment of photons polarized on mode
(2) tends asymptotically to a constant value [51,52,55]. Mode
(3) slowly decreases with the magnetic field strength, being
zero, its strong-field limit value.

VI. DYNAMICS PROPERTIES OF PHOTON
PROPAGATING IN A DIRAC VACUUM

We study in this section the equation of motion of the pho-
ton traveling in the Dirac vacuum L(ph−Be )

D using the minimum
action principle, which reads as

∂μ

(
∂LD

∂ fμν

)

= −1

2

(
1 − LD

F
)
∂μ f μν + ∂μ

{LD
FF
2

[F σρ fσρ (Fμν )]

+ LD
GG
2

[F̃ σρ fσρ (F̃μν )]

}
= 0, (37)

FIG. 3. (Left) Magnetization of photon due to the photon interaction with magnetic field via a medium (electrons) M(ph−Be−e) as a function
of the magnetic field Be in tesla for a fixed value of Ew/Ec = 0.01 with different modes i = 2, 3 and chemical potentials. (Right) Magnetization
of the photon interacting with the magnetic field via a medium (electrons) M(ph−Be−e) as a function of the chemical potential μ in meV for a
fixed value of Ew/Ec = 0.01 with different modes i = 2, 3 and external magnetic fields. All figures have depicted the magnetization only for
Ta3As4.
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FIG. 4. Comparison of the second polarization mode (2) mag-
netization for electron and photon considering both vacuum and
medium contribution (M(Be ), M(e−Be ), M(ph−Be ), M(ph−e−Be )) as
a function of the external magnetic field in tesla for a fixed value
of chemical potential μ/� = 3. The figures have been depicted for
Ta3As4. The value of Ew is normalized using the electrical critical
field, Eω/Ec = 0.01, and Eω = vF Bω.

where the dual tensor f̃μν satisfies the Bianchi equa-
tion ∂μ f̃μν = 0, or second pair of the Maxwell equation for
Ew and Bw,

∇ · Bw = 0,
∂Bw

∂t
= −∇ × Ew, (38)

with i = 1, 2, 3. The modified Maxwell equation in terms of
constitutive vectors Dw and Hw is

∂Dw

∂t
= −∇ × Hw, ∇ · Dw = 0, (39)

where

Dw,i = εi j (Be)Ew, j, Hw,i = −(μ−1)i j (Be)Bw, j . (40)

In our study, we are considering an external magnetic field
in the x̂3 direction Be = Bex̂3, and the photon propagates in x̂2

(Fig. 6). In that case, only nonzero components of the electric
permittivity and magnetic permeability tensors are

ε⊥ = μ⊥ = 1 − LF , ε‖ = (1 − LF + 2FLGG ), (41)

μ‖ = (1 − LF − 2FLFF ). (42)

Dispersion equation of photon propagating in a Dirac vacuum

Considering the photon propagation transverse to the mag-
netic field (Fig. 6) of a plane wave as Ew = E0e−i(k⊥·x2−ωt),
from the Maxwell equations we can obtain the dispersion
equation of photons as

(k2
⊥μ−1

⊥ ‖ + ω2ε‖ ⊥)E‖ ⊥
w = 0. (43)

The solution of Eq. (43) describes two physical transverse
polarization modes of the photon field: mode (2), Ew ‖ Be, and
mode (3), Bw ‖ Be.

The dispersion relation for each polarization mode has the
form

ω(2) �| k⊥ |
(

1 − LD
GGB2

e

2

)
,

ω(3) �| k⊥ |
(

1 − LD
FFB2

e

2

)
, (44)

in agreement with Refs. [51,56,57]. The appearance of
Cotton-Mouton birefringence [1] brings the existence of two
refraction indexes associated with the two different polariza-
tion modes: n‖ for mode (2) and n⊥ for mode (3),

n‖,⊥ = | k⊥ |
ω(2,3)

=
√

ε‖,⊥
μ⊥,‖

. (45)

The difference between the refraction index �n = n‖ − n⊥
takes the form

�n =
(
LD
GG − LD

FF
)
B2

e

2
. (46)

In the weak-field limit, it is reduced to �nWF
CM = 3/4ξDB2

e , in-
stead of the strong limit �nSF

CM = αD
3π

( Be
Bc

− 1). Since the phase
velocity v‖,⊥ = 1/n‖,⊥, in the strong-field limit the condition,
vSF

⊥ = 1 − αD
3π

( Be
Bc

) > 0, fixes the validity of one-loop approx-
imation up to values of the magnetic field [39] b � 3π/αD.

The phase velocity as a function of the magnetic field is
plotted for a second mode for four Dirac materials in Fig. 7.
We have depicted curves for Bi1−xSbx, graphene, Ta3As4,
and Pb1−xSnxTe. The graphic shows that Pb1−xSnxTe has the
lowest velocity with the high effective fine structure constant.
The dispersion equation in the weak magnetic field limit
[20,26,51,58] is obtained as

ωWF,(2) �| k⊥ |
(

1 − 7

4
ξDB2

e

)
,

ωWF,(3) �| k⊥ | (1 − ξDB2
e ), (47)

while for strong magnetic field limit, the result is

ωSF,(2) �| k⊥ |
(

1 − αD

3π

Be

Bc

)
, ωSF, (3) �| k⊥ |

(
1 − αD

3π

)
.

(48)

VII. PHOTON ENERGY-MOMENTUM TENSOR:
ENERGY DENSITY, POINTING VECTOR,

AND RADIATION PRESSURES

The energy-momentum tensor (EMT) was calculated and
widely discussed in our previous work [26] for photon propa-
gating in a magnetic field. It was obtained from the effective
Euler-Heisenberg Lagrangian of QED by the Hilbert method,
which by construction provides a symmetric EMT tensor.
Besides, it was proved that the EMT is gauge invariant and
conserved [26]. Hilbert’s method for calculating the EM ten-
sor consists of varying the effective Lagrangian with respect to
the metric tensor gμν and then recovering the flat space doing
gμν → ημν Euclidean metric. Proceeding in a similar way as
in Ref. [26], we get the EMT from the photon Lagrangian
L(ph−Be )

D . tγ ρ
H accounts for the interaction of the photon field

with the background field in a Dirac vacuum, and it has the
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FIG. 5. Photon effective magnetic moment as a function of magnetic field strength and Be/Bc. The left figure shows the magnetic moment
for two Dirac materials: Pb1−xSnxTe and Bi1−xSbx . We have plotted the corresponding one for QED for both modes. For each case, modes (2)
and (3) are depicted. The right figure shows for Pb1−xSnxTe the comparison of the magnetic moment for an arbitrary value of the magnetic field
with the corresponding two limits weak (dashed-dotted red line) and strong (dashed-dot-dot blue line) field limits for both modes, respectively.

form

tγ ρ

H = 2√−g

δL(ph−Be )
D

δgγ ρ

∣∣∣∣∣
g=η

. (49)

Performing the derivatives and recovering the flat space, its
form to Dirac material yields

tH γ ρ = (1 − LD
F
)

f γ

λ f λρ + LD
FF
2

f μνFμν

(
F γα f ρ

α + Fρα f γ
α

)
+ LD

GG
2

f μνF̃μν

(
F̃ γα f ρ

α + F̃ρα f γ
α

)
+ ηγρ

4

[(
1 − LD

F
)

fμν f μν + LD
FF
2

f μνFμν f αβFαβ

+ LD
GG
2

f μνF̃μν f αβ F̃αβ

]+ LD
F
(
F γα f ρ

α + Fρα f γ
α

)
+ ηγρ

2
LD
F f μνFμν. (50)

The external magnetic field makes EMT fully anisotropic
[26]. The average of the diagonal part of the tensor corre-
sponds to energy density and anisotropic pressures, while the
nondiagonal components account for the Poynting vector.

FIG. 6. Two physical transverse polarization modes of the pho-
ton field, mode (2), Ew ‖ Be, and mode (3), Bw ‖ Be. The external
magnetic field Be in the x̂3 direction Be = Bex̂3, and the photon
propagates in x̂2.

The energy density 〈t00〉 for both modes is positive [27],
and the explicit expressions for photon energies for both
modes are

ED (2)
w �

(
1 − LD

F + 3

2
LD
GGB2

e

)〈
E2

w

〉
,

ED (3)
w �

(
1 − LD

F − 1

2
LD
FFB2

e

)〈
E2

w

〉
. (51)

However, as the Hamiltonian of the effective theory is

HD = DwEw − L(ph−Be )
D =

(
1 − LD

F
)

2

(
E2

w − B2
w

)
− LD

FF
2

(B · Bw )2 + LD
GG
2

(B · Ew )2, (52)

only the energy density for mode (3) becomes the eigenvalue
of the Hamiltonian [27].

FIG. 7. Phase velocity for both second and third mode of prop-
agation of the photon as a function of the dimensionless magnetic
field. The nonlinear effect decreases the phase velocity with the Be

increase. We have plotted curves for four Dirac materials: Bi1−xSbx ,
Pb1−xSnxTe, Ta3As4, and graphene. As we can see, the lowest veloc-
ity is obtained for Pb1−xSnxTe (dashed and short-dashed orange) due
to its effective fine structure constant being the highest.
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The anisotropic pressures take the form

pD (2)
1,w =

(
1 − 1

2
LD
GGB2

e

)〈
E2

w

〉
,

pD (3)
1,w =

(
1 − 1

2
LD
FFB2

e

)〈
E2

w

〉
,

pD (2)
2,w =

(
1 − LD

F + LD
GGB2

2

)〈
E2

w

〉
,

pD (3)
2,w =

(
1 − LF − 3

2
LD
FFB2

)〈
E2

w

〉
, (53)

pD (2)
w,‖ �

(
1 − 3

2
LD
GGB2

e

)〈
E2

w

〉
,

pD (3)
w,‖ �

(
1 + 1

2
LD
FFB2

e

)〈
E2

w

〉
, (54)

while the Poynting vector has the form

PD (2)
w � (1 − LD

F + LD
GGB2

e

)〈
E2

w

〉
,

PD (3)
w � (1 − LD

F − LD
FFB2

e

)〈
E2

w

〉
. (55)

We can rewrite the above quantities in terms of vacuum pho-
ton magnetization. In particular, the Poynting vector takes the
form

PD (2,3)
w = P0 ± 1

2
Mph−Be(2,3)

D Be, (56)

where P0 contains the nonlinear correction that emerges from
the scalar invariant F with P0 = (1 − LD

F )〈E2
w〉, while the

second term comes from the pseudo-scalar invariant G and it
is proportional to the magnetization (32).

Let us highlight that classical electrodynamics as well as
nonlinear isotropic electrodynamics with Lagrangian only de-
pendent on the scalar invariant F lead the target pressure p2

w

to be equal to the Poynting vector. However, the presence of
the magnetic field in EH nonlinear Lagrangian involves both
invariant F and the pseudo-scalar invariant G. As we have
discussed before, G leads to anisotropies due to the rotation
symmetry being broken. Besides, it also leads to p2

w �= Pw.
On the other hand, the radiation pressure behaves differ-

ently depending on the propagation mode. For mode (2) it is
higher than the corresponding “classical pressures,” while for
mode (3) it becomes lower than the classical value.

Let us imagine an experiment to detect nonlinear radiation
pressure. For this purpose, let us assume a monochromatic
light emitter (laser), a polarizer that allows polarization in both
physical transverse modes, an external magnetic field Be in
the direction x̂3 of the order of Be = 0.5Bc, and a sheet of
Ta3As4 as a 3D Dirac material of thickness �l . The sheet is
located parallel to the magnetic field in the x1x3 plane. The
pressure of the incident beam on the sheet would depend on
LD
GG or LD

FF for a chosen polarization beam being greater
or lower than the radiation pressure exerted by the same
beam when there is no magnetic field, Fig. 8. The nonlinear
pressure correction will be proportional to the magnetization.
Considering the laser beam intensity, I ∼ 〈E2

w〉, the radiation

pressure will be |PD (2)
w /I − 1| ≈ 2.1 × 10−2 for mode (2) and

|PD (3)
w /I − 1| ≈ 2.2 × 10−2 for mode (3). In the context of

QED, it is notable that the correction factor is considerably

FIG. 8. Proposed experiment for measuring the pressure of the
radiation over the Dirac material with (left) and without (right) ex-
ternal magnetic field. The radiation pressures over the sheet could be
measured using Eq. (56).

smaller, roughly on the order of 10−5. Specifically, in mode
(2), the ratio |PQED,(2)

w /I − 1| ≈ 6.0 × 10−5, while in mode
(3), it is around 6.1 × 10−5.

Of course, employing a comparable experimental setup
allows for the measurement of different phases and phase
velocities (birefringence) of the photon beam traversing the
sheet compared to one propagating without it, both trans-
versely propagating in the magnetic field. The birefringence
is characterized by the difference between LD

GG and LD
FF , as

was pointed out in Eq. (46).

VIII. CONCLUSIONS

In this paper, we extrapolate on one side and extend on
the other our previous studies on photon propagation in a
constant magnetic field of the QED to the context of 3D Dirac
materials.

We start from the expansion up to the second order of
the photon fields of the extended Euler-Heisenberg effective
nonlinear Lagrangian, considering low-energy photons ω �
2mc2 (ω � 2�) and replacing the fine-structure constant α

by αD, which depends on the Fermi velocity vF instead of c,
to describe 3D Dirac materials.

Extended effective Lagrangian to finite temperature and
density is used to study the properties of a photon propa-
gating in a magnetized medium by expanding the effective
Lagrangian up to the second order in the photon fields, al-
lowing us to study the thermodynamic properties of electrons
in the presence of the magnetic field and photon propagating
in 3D Dirac materials. The first term of the expansion, the
zero-order term (at Ew = Bw = 0), is the effective Lagrangian
of Euler-Heisenberg or the thermodynamic potential of elec-
trons. So, we obtained the magnetization of the electron and
the virtual pairs interacting with the magnetic field by com-
puting the derivative of LD with respect to the magnetic field.
Alternatively, the first- and second-order terms of the expan-
sion describe the properties of the photon interacting with the
magnetic field via the medium and virtual pairs (vacuum).

The magnetization of a Dirac material (due to electrons)
depends on αD and the energy gap �. The magnetic prop-
erties have been illustrated for the Dirac materials: Bi1−xSbx,
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Pb1−xSnxTe, Ta3As4, and graphene-like, and the properties are
determined by the value of the energy gap of each material.

As we expected mathematically and physically, since the
medium magnetization comes from the first term of the
expansion in series of effective Lagrangian, the electron
magnetization is higher than the photon magnetization. In ad-
dition, the magnetization caused by the interaction of photons
with the magnetic field is three or more orders of magnitude
lower, depending on the material characteristics. Electron and
photon magnetization preserve the paramagnetic behavior. We
noted that with the increase of the magnetic field, the vacuum
magnetization grows, becoming almost constant. Its contribu-
tion changes the magnetization by a quantity that could be
detected at magnetic field values reachable in the laboratory.
This conclusion reinforces the importance of considering the
vacuum properties when studying Dirac materials.

We have obtained the dispersion law, the phase veloc-
ity, the refractive index of photons propagating in the Dirac
vacuum, electric permittivity, and the magnetic susceptibility
that the photon feels. The results agree with those obtained
in Ref. [27]. We have discussed the energy density, point-
ing vector, and radiation pressures of the photon propagating
transverse to the magnetic field starting from the energy-
momentum tensor calculated “à la Hilbert” for effective
nonlinear electrodynamics for Dirac material at zero temper-
ature and density. These quantities depend on the polarization
mode. We have discussed that in our framework, the pressure
target in the direction x2 does not coincide with the Poynting
vector. That is a consequence of the symmetry breaking that
the magnetic field produces.

Although our model for Dirac materials is simplified from
the viewpoint of material science, it has all the wealth of
quantum theories. It could be used to study other phenomena
that appear in QED and their analogies in Dirac materials.
On the other hand, the photon vacuum properties were stud-
ied for arbitrary magnetic field values, reproducing the weak
and strong magnetic field limits. Besides, our study could be
extended to other nonlinear Lagrangians that contribute to
extracting some general properties of Dirac materials.

Dirac materials present a promising avenue for probing
QED properties, since nonlinear corrections in magnetization,
radiation pressure, and birefringence are amplified up to 103

times QED corrections. Dirac materials may be a medium
where the vacuum properties of QED may be tested.
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APPENDIX: EFFECTIVE LAGRANGIAN OF QED
AT CONSTANT MAGNETIC FIELD FROM IMAGINARY

TIME FORMALISM TO PROPER TIME

Let us show the fundamental tricks to get the equivalent
representation of Leff (Be) and Leff (Be, μ, T ) from one-loop
QED in the presence of a magnetic field in imaginary time for-

malism to Schwinger’s proper method. We also show how to
regularize the ultraviolet divergence of Leff (Be). At a constant
magnetic field, the propagator of an electron in momentum
space has the form

G−1
n (p) = p · γ − m, (A1)

with the notation p = (ip4, 0,
√

2eBen, p3) over the Landau
numbers n = 0, 1, 2, ... in Euclidean space, and γ are the
gamma matrices. In the momentum space, the effective La-
grangian has the form [46,59]

�(Be, μ, T ) = − eBe

β

[∑
p4

∫ ∞

−∞
ln det G−1

0 (p∗)

+
∑

σ=±1

∞∑
n=0

∑
p4

∫ ∞

−∞

d p3

(2π )2
ln det G−1

n (p∗)

]
,

(A2)

where σ = ±1 are the eigenvalues of the spin, p4 = iωm, ωm

are the Matsubara frequencies ωm = kBT (2m + 1)π with m =
0, 1, 2..., and p3 is the momentum in the x̂3 direction.

Performing the sum over Matsubara frequencies and calcu-
lating the determinants in Eq. (A2), we obtain

Leff (Be, μ, T ) = − 1

2

eBe

4π2

∫ ∞

−∞
d p3

∑
σ l

|Eσn|

+ eBe

4π2

∫ ∞

−∞
d p3

∑
σ,n

1

β
ln(1 + e−β|Eσn−μ|)

× (1 + e−β|Eσn+μ|), (A3)

where Eσn = √
p2

3 + m2 + eBe(2n + 1 + σ ), the first term of
Eq. (A3) corresponds to Leff (Be), and the second corresponds
to Leff (Be, μ, T ). Considering first Leff (Be),

Leff (Be) = eBe

4π2

∫ ∞

−∞
d p3

∑
σ,n

|Eσn|, (A4)

using the integral representation for E ,

E =
∫

ds(1 − e−E2s)s−3/2, (A5)

we get

Leff (Be) = − eBe

8π2

∞∑
n=1

∑
σ=±1

∫ ∞

ε

ds

s2
(2e−[m2+eBe(2n+σ+1)]s).

(A6)

By performing the sum over the spin σ , we obtain the integral

Leff (Be) = eBe

8π2

∞∑
n=1

∫ ∞

ε

ds

s2
(2e−(m2+2eBen)s − 1). (A7)

Let us now do the sum over Landau levels using

∞∑
n=1

xn = 1

1 − x
, (A8)
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Leff (Be) yields

Leff (Be) = eB

8π2

∫ ∞

ε

ds
e−m2s

s2

(
1

1 − e−2eBes
− 1

)
. (A9)

In terms of hyperbolic trigonometric function, we have

Leff (Be) = eBe

8π2

∫ ∞

ε

ds

s2
[e−m2s coth(2eBes)], (A10)

where coth(2eBes) causes that the integral has an ultraviolet
divergence. Expanding coth(2eBs) in powers of small s, we
obtain

coth(2eBes) ∼
(

1 + (eBes)2

3

)
. (A11)

The prescription to regularize the integral consists of adding
and subtracting divergencies terms Eq. (A11), obtaining

LR
eff (Be) = − 1

8π2

∫ ∞

ε

ds

s3

[
2e−m2s(eBes) coth(eBes)

− 1 − (eBes)2

3

]
. (A12)

The effective Lagrangian for the vacuum of QED in the pres-
ence of a constant electric field is obtained from Eq. (A12),
substituting Be = iEe,

LR
eff (Ee) = − i

8π2

∫ ∞

ε

ds

s3

[
2e−m2s(eEes) cot(eEes)

− 1 − (eEes)2

3

]
. (A13)

The regularized effective Lagrangian Eq. (5) dependent on
the electromagnetic fields can be straightforwardly obtained
as LR

eff [60],

LR
eff (ã, b̃) = −F − 1

8π2

∫ i∞

0

ds

s3
e−i(m2−iε)s

×
[

(es)2ãb̃ coth(eãs) cot(eb̃s) − (es)2

3
(ã2 − b̃2) − 1

]
.

(A14)

Let us consider the second term of the effective Lagrangian
Eq. (A3) dependent on temperature and density, and we check

that it is equivalent to Eq. (14),

Leff (Be, μ, T ) = eBe

4π2

∑
σ,n

an

β

∫ ∞

−∞
d p3[ln(1 + e−β|Eσn−μ|)

+ ln(1 + e−β|Eσn+μ|)], (A15)

We first expand the logarithm in series ln(1 + x) =∑∞
k=1

(−1)k−1

k xk , and using the integral representation of

e−βk
√

p2
3+m2

n ,

= − eBe

4π2

∑
n

an

β

∞∑
k=1

(−1)k

k
cosh(μβk)

∫ ∞

−∞
d p3 e−βk

√
p2

3+m2
n︸ ︷︷ ︸

= βk
2

×
∫ ∞

−∞

dt√
πt3

e− βk
4t −st , (A16)

= − eBe

4π2

∑
n

an

∞∑
k=1

(−1)k cosh(μβk)

×
∫ ∞

−∞
d p3

∫ ∞

0

dt√
πt3/2

e− β

4t −(p2
3+m2

n )t ), (A17)

= − eBe

4π2

∑
n

an

∞∑
k=1

(−1)k cosh(μβk)

×
∫ ∞

−∞

dt√
πt3/2

e− β2k2

4t −m2
nt

(−βk

2

)∫ ∞

0
d p3e−t p2

3︸ ︷︷ ︸√
π/t

,

(A18)

= eBe

8π2

∞∑
k=1

(−1)k cosh(μβk)

×
∫ ∞

0

dt

t2
e− β2k2

4t −m2
nt

∞∑
n=0

ane−2eBent

︸ ︷︷ ︸
coth (eBet )

, (A19)

= eBe

8π2

∞∑
k=1

(−1)k cosh(μβk)
∫ ∞

0

dt

t2
e− β2k2

4t −m2
nt coth (eBet ).

(A20)

1. Lagrangian derivatives at T = μ = 0

At T = μ = 0 the integrals of Lagrangian derivatives
L f
F ,FF ,GG are reduced to those previously calculated in

Refs. [26,39], and after performing the integration their ex-
plicit forms remain

LD
F = ∂L

∂F

∣∣∣∣
f =0

= αD

2πμ0

[
−1

3
+ 2h2

D + 8ζ ′(−1, hD) − 4hD ln �(hD) + 2hD ln hD − 2

3
ln hD + 2hD ln 2π

]
,

LD
FF = ∂2L

∂2F

∣∣∣∣
f =0

= αD

2πμ0B2

[
2

3
+ 4h2

Dψ (1 + hD) − 2hD − 4h2
D − 4hD ln �(hD) + 2hD ln 2π − 2hD ln hD

]
,

LD
GG = ∂2L

∂2G

∣∣∣∣
f =0

= αD

2πμ0B2

[
−1

3
− 2

3

[
ψ (1 + hD) − 2h2

D + (3hD)−1
]+ 8ζ ′

]
, (A21)

012201-13



JORGE, MARTÍNEZ, AND QUERTS PHYSICAL REVIEW A 110, 012201 (2024)

where hD = �2

eBe
. Similar results of the integrals Eq. (A21) are obtained for a pure background electric field and for the background

of an orthogonal electric and magnetic field, using hD → �2

2e
√
F .

2. Derivatives Lagrangian T = 0, μ �= 0

Let us compute the integrals for L(μ,T ),D
F ,FF ,GG . To achieve this, we take advantage of the equivalence in one-loop approximation

between the effective EH Lagrangian in the infrared regime (as presented in this paper) and the off-shell photon’s polarization
operator [56].

The equivalence between both procedures is given by relations between the coefficients of the quadratic effective EH
Lagrangian (L(μ,T ),D

F ,FF ,GG) and the eigenvalues of the polarization operator [see details in Ref. [56] Eq. (21)]. This equivalence
may be extended to the temperature and density correction term of the EH-effective Lagrangian. The relationship between the
eigenvalues of the polarization operator �μν an the Lagrangian derivatives is the following:

2FL(μ,T ),D
F = κ1|k→0 , (A22)

2FL(μ,T ),D
FF = (κ1 − κ3)|k→0 , (A23)

2FL(μ,T ),D
GG = (κ1 − κ2)|k→0 . (A24)

Then, we start from the eigenvalues of the polarization operator at finite temperature and density κ1, κ2, κ3 obtained in Ref. [20],
in the degenerate limit (zero temperature and finite density), obtaining

L(μ),D
F (μ, Be) = − αD

2πBeBc

nμ∑
n=0

an

∫
d p3θ (μ − Eσn)√

p2
3v

2
F + �2

n

= − αD

2πBeBcvF

nμ∑
n=0

anln

(
1 + 2pF vF (μ + pF vF )

�n

)
, (A25)

L(μ),D
FF (μ, Be) = Lμ

F
2

, (A26)

L(μ),D
GG (μ, Be) = − αD

4πBeBc

nμ∑
n=0

an

⎛
⎜⎝∫ d p3θ (μ − Eσn)√

p2
3v

2
F + �2

n

− 4
∫

d p3θ (μ − Eσn)

E3
σn

⎞
⎟⎠,

= − αD

4πBeBcvF

nμ∑
n=0

an

[
ln

(
1 + 2pF vF (μ + pF vF )

�2
n

)
− 4

pF

μ

]
. (A27)
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