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The averaged Lagrangian method of Whitham for treating nonlinear, dispersive wave propagation is
used to formulate the problem of optical pulse propagation in a resonant medium. For the particular
case of self-steepening, it is shown that this formulation takes the same mathematical form as Light-
hill’s treatment of the propagation of wave trains on deep water. Certain aspects of the solution are
discussed and compared with alternative treatments of self-steepening. Some comments are given con-
cerning the applicability of the averaged Lagrangian method to other problems of coherent, nonlinear

optics.

I. INTRODUCTION

One of the difficult problems of nonlinear optics
is that of the propagation of a light pulse in a me-
dium which is both strongly nonlinear and strongly
dispersive. This situation arises, for example,
when a suitably short and intense laser pulse
propagates in a medium having a strong resonance
line very close to, or at, the frequency of the
light. In particular, this combination of nonlin-
earity and strong dispersion is responsible for
the recently reported self-steepening of light
pulses due to adiabatic following in Rb vapor.!
Near, but not on, resonance the phase and group
velocity depend strongly on both intensity and fre-
quency; as a consequence the more intense parts
of the pulse move faster than the weaker parts;
moreover, the rapid variation in intensity pro-
duces a phase modulation which moves the in-
stantaneous frequency nearer to resonance on the
rising edge of the pulse, thus enhancing both dis-
persion and nonlinearity. Other phenomena occur
when the resonance overlaps the carrier frequency
of the light; of these, self-induced transparency?
(SIT) is the most striking.

The traditional theory of such phenomena rests
on coupled first-order nonlinear partial differ-
ential equations derived from the full wave equa-
tion by the slowly varying envelope approximation,
as described, for example, in Ref. 3. There is,
however, an alternative approach to such prob-
lems. This is the so-called averaged Lagrangian
method of Whitham.* It was pointed out by Knight
and Peterson® that the averaged Lagrangian method
should be useful in optical-pulse propagation prob-
lems, but detailed applications seem not to have
been made. The main purpose of this paper is to
show how the averaged Lagrangian method can be
used to formulate the problem of self-steepening
of light pulses due to the adiabatic-following non-
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linearity.® However, we make some comments on
the applicability of the method to other problems
of coherent, nonlinear optics.

The physical reason for introducing an averaged
Lagrangian is the same as for making the slowly-
varying -envelope approximation; i.e., there are
two distinct time (and distance) scales in all these
problems. This leads, in Whitham’s terminology,
to the desirability of “two-timing” the equations
of motion to suppress the rapid time and space
variations of the carrier wave. Although the moti-
vation is similar for both the slowly-varying-
envelope approximation and the averaged Lagran-
gian, it is not clear that these two approximation
methods are fully equivalent. The precise rela-
tionship between them is a matter for further in-
vestigation.

Whitham showed how the slow variations of a
wave group are governed by averaged equations of
motion which can be obtained from an averaged
variational principle. The method appears to be
very powerful and can be described roughly as
follows. First, the normal Lagrangian of the
problem is written down in terms of independent,
generalized coordinates. Second, this Lagrangian
is averaged in time and space over one period of a
certain well-defined, periodic traveling wave.
These strictly periodic, traveling-wave solutions
to the nonlinear equation are the basis for an ap-
proximate representation of nonlinear pulse propa-
gation. That is, since these periodic waves are
exact solutions of the nonlinear equations, it is
in terms of slow changes in their amplitude, fre-
quency, and wave vector that one may “best” de-
scribe nonlinear pulse propagation. Third, the
resulting averaged Lagrangian density, which
depends only on slowly varying quantities, is used
to define an averaged action integral which is made
stationary by the calculus of variations in the
usual way. One, or one set, of the resulting
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Euler-Lagrange equations provides the nonlinear
dispersion law of the problem, and the remaining
equations describe the gradual changes in the in-
stantaneous frequency and % vector of the wave
packet.

The method may be better understood in terms
of a simple linear example (which does not, of
course, display the full power of the technique).
Consider a linearly polarized electromagnetic
wave interacting with a medium whose electric
polarization is linear in the applied field. The
appropriate generalized coordinate for the field
is the vector potential A = A%. Since the medium
is linear, its polarization P =Ng7# is a suitable
generalized coordinate. Here N is the number
density of oscillators of charge ¢, mass m, and
displacement ¥ opposed by a force —K7». The
equations of motion are

P =—(K/m)P - (Ng®/mc)A , (1a)
(1/c®)A -A,,=(41/c)P. (1b)

These equations follow from the Lagrangian den-
sity”

:1_[A>2_A2}+ﬁ P wiP®  WBAP)
87 L\ ¢ 17 w2\ 2 2 4mc

@)

Here w2 =K/m and w2 =41Nq?/m.

According to the “program” outlined above, the
next step is to find solutions to (1) of the form P
=P(wt -kz), A=A(wt-Fkz). The solutions are ob-
viously

A=A cos(Wt—kz+y), P=P,sin(wt-Fkz+7),
(3)

where the phase shift ¥ will turn out to be arbi-
trary. The ratio P,/A, has the well-defined value

Po/Aoz(w/4nc)(€ -1), 4)
where it is also found that
R /wr= € =1+ W3/(@2 _ ). 5)

The next step is to put (3) in the Lagrangian den-
sity (2) and average it over one period of the
traveling wave. That is, compute

2m
£ =(1/2n)f Ldy,
o
where y=wt —kz +y. The result is
2m
278 = f [(w?/87c?)(1 - €) A2 sin®
[

+(27/wE)(w? cos?Y — W sinP) P?
+ (@A P,/c)sin®]dy, ®6)

whence

£ =(wA/8r%c?)[€ -1+ (e = 1P (w? - w})/W3]. (7)

One must constantly bear in mind the definition
€ =(ck/w).

This averaged Lagrangian is a function of A2,
w, and K, each of which was strictly constant in
the above derivation. The essence of the method
is that now, once £(w, k2, A2) has been obtained,

w, k, and AZ are to be reinterpreted as quantities
which vary slowly in time and space. One can
therefore write an action integral which involves
only slowly varying quantities,

J=f£(w, k,A2)dz dt. @®)

Whitham showed in Ref. 4 that the evolution of the
wave group will be such that J is stationary; and
from the requirement that 8J =0 there follow the
Euler-Lagrange equations

8L/8A2=0, ©)

and

Bf w " oz ok - (10)
In obtaining (10) it must be borne in mind that,
when w and k are allowed to be slowly varying,
they are related by

w=3y/at, k=-0y/0z. (11)

To continue with the example, we apply (9) and
(10) to the Lagrangian (7). Variation with respect
to A2 gives

€=1+w2/(W2 - w?), (12)

which is the well-known dispersion relation. From
(11) it follows that

dw  dk

2 tor =0 (13)
which together with (10) defines the pulse reshap-
ing. Whitham shows in Ref. 4 that (10) and (13) can
be recast in the form

2 422 a2

T A+ 5 0 AY) =0, (14a)
ow ow

o %5 =0 (14b)

where the group velocity

_ 3L /ok
Ve = AL fow?’

and use has been made of the fact that in any linear
problem £ can be written £ =F(w, k)AZ.

Equations (14) govern pulse reshaping due to dis-
persion in any medium whose response function is
linear in the driving field. They show, for ex-
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ample, that the instantaneous frequency (or %
vector) of a wave group propagates as a simple
wave at the normally defined, frequency-dependent
group velocity. Note that (14b) may be nonlinear in
w even though the problem is linear in A,. Equa-
tion (14a) embodies energy conservation and, once
(14b) has been solved, can be used to calculate

the reshaping of the pulse.

This simple example has provided an introduc-
tion to the averaged Lagrangian method, whose
full power will be more apparent when it is used
to formulate the nonlinear self-steepening prob-
lem. Section II contains the derivation of the
averaged Lagrangian for pulse propagation in a
medium of two-level atoms. Section III contains
the equations which are derived from the averaged
Lagrangian, as well as their transformation to a
form amenable to analytic solution in the case
where the optical carrier is well outside the in-
homogeneous linewidth of the resonance. Section
IV contains a discussion of the method, and some
aspects of the solution.

II. AVERAGED LAGRANGIAN FOR A TWO-LEVEL
ATOM IN AN OPTICAL FIELD

The material system of interest in the experi-
ment on self-steepening! is essentially a gas of
two-level atoms. As is well known, the Schro-
dinger equation for such a system interacting
with an electromagnetic field may be described
by the so-called “vector model”® whose equations
are

df/dt =& X T, (15)

where ¥, =Py, +Py1, V5 =1(Pyy = Ps1), ¥5=P11 =Py

w, = _“Ex/ﬁ’ W, = _MEy/ﬁ, and w, =w,. The p;;
are the elements of the density matrix for the two-
level system. The upper and lower states, labeled
1 and 2 respectively, are separated in energy by
7w, The real number y is the one nonzero ma-
trix element of the electric-dipole raising opera-
tor

(U‘-}-)up:

Equation (15) is in the lab frame; so E, and E,
include the rapid as well as the slow time and
space dependences.

Since we are interested in the behavior of light
pulses much shorter than the relaxation times of
the two-level system, Eq. (15) does not contain
any dissipative terms. Then since T *dr/dt
=F+@XF=0, we have the well-known fact that
T-7=1. It follows that #,, 7,, and 7, are not in-
dependent quantities and hence are not¢ suitable
for generalized coordinates in a Lagrangian for-

mulation.” Since the endpoint of the vector T is
confined to a sphere, it is convenient to take as
generalized coordinates the angles 6 and ¢, where
6 is the angle between T and the #, axis, and ¢ is
the azimuth of the projection of ¥ on the (v, 7,)
plane measured from the positive 1';1 axis. We
then have

v, =sinfcos¢, 7,=sinfsing, 7,=cosb. (16)

In terms of 6 and ¢, Eq. (15) takes the new form

6 =(u/r)(E,sing - E,cos o), (17a)
¢;=w0+(u/ﬁ)cot9(E,cos¢ +E,sing). (17b)

It may be verified by inspection that Eqs. (17)
come from the following Lagrangian:

Lsystem = (QS - wO) cosf
+(u/7)sinb (E, cos¢ +E, sing).
(18)

For example, the equation for 6 comes from
variation of Lysem with respect to ¢ as follows:

9L 9L :

— =cos6, j——.—:—sinee,

0) dt 3

oL Mo .

e " sinf (E, sing - £, cos¢),
and since the prescription is

@ 8L 8L

at ad') T’

we have (17a) immediately.

We turn now to the total Lagrangian for the
coupled system of electromagnetic field plus two-
level atoms. As in the linear example, the field
must be described by its vector potential. In the
present discussion, where we are concerned with
circularly polarized light, the Lagrangian density

for the field is
[ (2 ()
19)
The total Lagrangian density for the problem is
Liow =L geg +2NI [( — w,) cosd
— (u/%c)sinb (A, cos¢
+A ,sing).
(20)

We have replaced E; by —-A;/c in (18), and have
chosen the multiplicative factor 3N% so as to give
the correct source term in Maxwell’s equations.
In this connection we note that the ¥ and ¥ compo-
nents of the electric polarization in the lab frame

L =

04,
9z
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are

P,

x

coso
=34Nu sinfX . 21)
P, sing

y

The full field equations, which follow from the
Lagrangian (20) are

1 024, 9%A, 27Nu &
@ Bi2 T ez2 T ¢ ot Sinbeosé,

(22)
1 924, 08%A, 27Ny o .
o BiT T ez T ¢ of Sinésing.

We next average L., over one cycle of the
exact, periodic, traveling-wave solution of Egs.
(17) and (22). Despite the strong nonlinearity of
this system, we can indeed find all of the exact
traveling -wave solutions. The system (17) and
(22) is solved exactly and uniquely by the set

A=A sin(wt -kz), A,=-A, cos(wt-kz),

- 0 - -1 B@A,
¢_wt—kz+<7r>, 6=%tan Tic(w, — @)’
2 . 2 2q-1/2
(ff> 13 2TNK [1+ bdg J :
w f(w, — w) ch (w, — w)

(23)

For each frequency w, the solution is twofold
degenerate; the zero phase in ¢ goes with the
negative sign in 6 and the plus sign in the disper-
sion relation, whereas the 7 phase in ¢ goes with
the opposite signs in the last two equations of (23).
Some discussion of these exact circularly polar-
ized solutions was given by Bullough in Ref. 9,
who found them independently, and discussed them
in the context of self-induced transparency. Equa-
tions (23) are for what is called the “sharp-line
case,” but they are easily generalized to include
inhomogeneous broadening, for which there is a
distribution of resonance frequencies g(w,), nor-
malized such that f:o g(w,)dw,=1. For this case
Eqgs. (22) are modified in that the right-hand side
in each equation is integrated over the distribution
8(w,):

1 9%A 9%A, 27Np o 7 .

3 T e T o of _wg(wo)smb‘cos¢dwo,
1 2%, 924, 2oNp o (® o

2 8t2 T oz2 T ¢ g[_mg(wo)smesmqbdwo.

(24)

Equations (17) are not altered by inhomogeneous
broadening. The exact, traveling-wave solutions
of (17) and (24) are the set

A, =A,sin(wt —kz), A =-A, cos(wt-kz),

¢=wt-—kz+<0

>, 6=7tan™'[ pwA /lic(w,— w)],
m

(ck/w) =1 F (2N /) f 2(@,)

X[(w, — @+ (pwA,/ch)?] "/ 2dw,. (25)

If, as is the case in the self-steepening experi-
ments of Ref. 1, the input light frequency is many
inhomogeneous linewidths off resonance, Egs.

(25) reduce to (23). On the other hand, for self-
induced transparency experiments, inhomogeneous
broadening plays an important role, and (25) must
usually be used.

It may be appropriate to emphasize that the
solutions obtained in Eqgs. (23) and (25) are in no
way dependent on an approximation to the Bloch
equations (15). In particular, the adiabatic-follow-
ing approximation® has not been used. However,
it is true that the motion of the pseudomoment
(for each Aw) described in (23) is the “prototype”
of the motion described as adiabatic following
by Grischkowsky. But the adiabatic following
approximation holds only when the whole two-level
spectrum is far off-resonance compared to its
linewidth, i.e., when only single values of Aw
and 6 are required to describe the whole set of
two-level atoms. The solution given in (21) holds
for more general conditions, and in particular,
describes a motion of the pseudomoments for
which 7, may be a function of Aw, a situation
reminiscent of that found by Bullough® for a par-
ticular example of SIT.

We now calculate the averaged Lagrangian by
integrating (20) over one cycle in the quantity
Y =wt - kz, using the dependence of A, 6, and ¢
on ¢t and z given in (25). The result is the following
averaged Lagrangian:

£= ';?sz Ltc;tal ay
"5 (2 [-(5)]
+ % J::g(wo) [(wo —w)? 4 <—‘%Q>Z]l/z dw,. (26)

Equivalently, since wA,/c=-E,, we can write the
averaged Lagrangian as

1 ck\?
ety 1= ()

22 g(Aw)[(Aw)z+<—‘iﬁ%>2]”2dmw>

@7
where Aw=w  —w, In the derivation of £ each of
the quantities w, k, E2 was strictly constant, cor-
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responding to the perfectly periodic wave over
which we averaged. Now however, Whitham’s
method requires that we relax this condition and
allow w, k, and E, to be slowly varying functions
of space and time. However, we still require
and % to be given by w=0¢/8t, k=-9y/0z, where
¥ is the instantaneous phase of the wave group.
This interconnection of w and # must be remem-~
bered in writing down the Euler-Lagrange equa-
tions which ensure the stationarity of the “aver-
aged action,” f£dt dz. Variation of £ with re-
spect to EZ gives

d g  ap
dt 8E: = 0E:’

from which we regain the nonlinear dispersion
velation

(ck/w) =€ =1+ (2aNu2/R)

% [ ge@)@wF + (uE/BF] 2 d(sw)

(28)

Variation of £ with respect to the phase ¢ gives

a af 9 ol
—gw+—£w=0. (29)
The derivatives £, and £, are fairly complicated
and will be written down later; here we note only
that (29) describes the evolution of the instan-
taneous frequency and wave vector as the pulse
is reshaped by the nonlinear medium. Carrying
out the indicated total derivatives in (29), we ar-
rive at a nonlinear second-order partial differen-
tial equation for the phase of the wave group:

Lowles =28 p Ve + L4 ¥, =0. (30)

Note that for this nonlinear problem knowledge
of the phase ¥ determines all properties of the
wave packet. The quantities w and %k are, of
course, known from the derivatives of ¥, and the
amplitude E,(t) of the group can be calculated
from the dispersion relation (28) when w and 2
are known. This is simple only for the sharp-line
case, however.

This approach is different in spirit from the
slowly-varying -envelope-and-phase approach,
which treats amplitude and phase as independent
quantities and does not make use of a nonlinear
dispersion relation. Of course, not all nonlinear
pulse propagation problems may have an asso-
ciated nonlinear dispersion relation; when they
do not, the present method probably will not be
useful.

Before applying Eqs. (27) and (30) to the specific

problem of pulse self-steepening, it is appropriate
to give more attention to the significance of the
nonlinear dispersion relation (28) and its appli-
cability to various problems of coherent nonlinear
optics. The general behavior of €(w, E,) is sketched
in Figs. 1 and 2 for (a) the sharp-line case, g(w,)
=0(w, - w); and (b) the case of inhomogeneous
broadening, for which g(w,) is a smooth, more or
less bell-shaped function with a single maximum
and a narrow fractional width.

Figure 1 gives the shape of the dispersion
curves, and Fig. 2 gives the frequency derivative
of the nonlinear dielectric constant. In linear
dispersion theory de/dw determines the group
delay of a wave packet of steady shape; in non-
linear cases, de/dw will in general depend on
intensity, leading to a distortion of the envelope
of a propagating pulse. Moreover, in the nonlinear
case the relative sign of d?¢/dw?® and €(w, E,)
—€(w,0) is important in determining the qualita-
tive nature of the pulse distortion.

Consideration of the sharp-line dielectric con-
stant, Eq. (23), shows that Fig. 1(a) should be
thought of as consisting of four branches rather
than two, as might first be supposed. This may
be seen from the following table, which lists the
difference ¢ — wt +kz along with 7, =cos6 for each

(a)

€|

€-l

FIG. 1. Dispersion of €; (a) the sharp-line case and
(b) for inhomogeneous broadening,



968 J. A. ARMSTRONG 11

(a) s

de/dw

K
H
K
e

()

—
de/dw
?f
€

FIG. 2. Dispersion of the group delay for (a) the
sharp-line case and (b) for inhomogeneous broadening.

branch:

Branch 7;=cosf ¢ —wif—kz

I <0 0
I <0 T
III >0 0
v >0 m

Below resonance the pseudomoment is in-phase
with the circularly polarized driving field, whereas
above resonance it is 180° out of phase. In each
case, the population difference can be either nega-
tive or positive, corresponding to net ground- or
upper -state population, respectively. But if one
wishes to describe an experiment in which 7, is
always negative, it is appropriate to use branches
Iand II of Fig. 1(a). These are separated by a
discontinuity in the sharp-line case, but merge
smoothly in the case of inhomogeneous broadening,
to give the familiar looking dispersion curve I-II of
Fig. 1(b). For population inversion, one has
branches III and IV of Fig. 1(b).

The group-delay-determining quantity de/dw is
shown in Figs. 2(a) and 2(b). In the sharp-line
case the discontinuity in € gives rise to a 0 func-
tion in de/dw so that, for 7»,<0, de/dw is given
by branches I, II, and III, while for »,>0, it is

given by IV, V, and VI. When smeared out by
inhomogeneous broadening, the curves I and II of
Fig. 2(b) apply for 7, negative or positive, re-
spectively.

Note that for 7, negative, the de/dw is negative
on resonance, but positive for 7, positive. In both
cases de€/dw is intensity dependent.

Fovr the self-steepening experiments of Ref. 1,
one is always off-vesonance fav enough for the
sharp-line case to apply with v; negative. For
self-induced transparency the broadened case is
appropriate, with a positive, but intensity-inde-
pendent group delay. Just how this last feature is
to be extracted from the averaged Lagrangian
method is still under study.

III. THE SELF-STEEPENING PROBLEM

Since most of the rest of this paper will be con-
cerned with the off-resonance situation charac-
teristic of the self-steepening experiments done
in rubidium vapor,' we will specialize to that case
by writing the averaged Lagrangian and the dis-
persion relation in a form which automatically
gives the correct choice of signs for the case
where 7, is always negative. These are

2=(L) ot -0+ () w1+ (85)]",

(31)
_(ck\? 27N 2 LE,\? -1/2
6‘(77) =1+ S {1 +<7’ZAw>:l o (32)

where Aw=w, - w,

The above averaged Lagrangian is to be used in
evaluating the partial derivatives which occur in
Eq. (30). As it stands, Eq. (30) is highly non-
linear, since its coefficients are functions of ¥,
and .. It may be transformed into a linear equa-
tion for a new dependent variable as a function of
new independent variables w and k. This so-called
Legendre transformation is

‘I)(w; k):kZ -wt —ZP(Z, t)’
0®/ow==t, 0d/ok=z.

(33)

)

(The phase ¢ must not be confused with the angle
¢.) This changes (30) into

LowwPre =280 Pup +Lpp Puw =0, (34)

which is a linear partial differential equation with
variable coefficients. The boundary conditions for
this problem are as follows: at z =0, the input to
the nonlinear medium, we know (a) that the phase
varies as, for example, Wiiaf, and (b) that the
amplitude is a given function of ¢, say E (t). The
inverse of this function is called {,(E,). Since the
dispersion relation (32) gives E, as a function of
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w and k, we therefore have {, as a function of w
and k. Hence by (33) we know @, as a function of
w, k along a line W =Wiyia in the (w, k) plane.
Along this same line ®,=2z =0, and in addition we
may take ® =0 without loss of generality. Knowl-
edge of the function and its first derivatives along
a line is sufficient (under conditions detailed be-
low) to determine ® in a neighboring region of the
w, k plane, which in turn allows one to compute
E(x,t) in a well-defined part of the z, ¢ plane.
When the coefficients of (34) are explicitly eval-
uated it is found that (34) is of the elliptic type
although it has hyperbolic boundary conditions.'®
The ellipticity of (34) reflects the fact that the
dependence of the dielectric constant €(w, EZ) on
frequency and wave intensity is such that d?e /dw?
has the opposite sign from €(w, £,) - €(w,0). In
other physical situations these two quantities may
have the same sign, in which case the nonlinear
propagation takes on an entirely different charac-
ter‘ll-lS

The physical significance of the ellipticity or
hyperbolicity of (34) may be described roughly as
follows (see Ref. 13 for more :etail): When the
partial differential equation (34) is elliptic, any
smooth solution will be unstable against small
amplitude perturbations. Any such perturbation
will grow exponentially at least initially, causing
a change in pulse shape and height.

On the other hand, when (34) is hyperbolic its
solutions of interest have somewhat the character
of simple waves.!® The characteristic feature of
such waves derives from the fact that their en-
velope velocity is intensity dependent. This causes
an initial pulse to steepen (either at the front or at
the back, depending on whether velocity increases
or decreases with increasing intensity); this
steepening occurs in simple cases without any in-
crease in pulse height.

Much of the remainder of the paper is concerned
with aspects of the solution of (34) for the case of
self-steepening. The manipulations and approxi-
mations used are analogous to those of Ref. 12 in
which Lighthill applies the averaged Lagrangian
method to wave trains on deep water, and the
reader should consult that paper for a fuller dis-
cussion of some of the mathematical details. The
important result, for those who wish to skip de-
tails, is given in Eq. (42), which expresses the
somewhat surprising result that our self-steepen-
ing problem can be put into the form of the axially
symmetric Laplace equation.

We note first that the dispersion relation (32)
can be solved for E%(w, k), so that EJ can be elimi-
nated from the averaged Lagrangian and the re-
sulting £(w, k) used to evaluate the coefficients in
(34). The form of the nonlinear dispersion rela-

tion and the averaged Lagrangian suggest that,
rather than w and k as independent variables, we
might better use

V=0 =)0, (352)
i <§KE&L’>2 = fﬁiii [k~ Eo(@)], (35b)

where k&, is the zero-intensity wave vector, cal-
culated from (32). That is, rather than the ab-
solute frequency w, what really counts is how far
removed the laser frequency is from the reso-
nance frequency; this difference controls both the
nonlinearities and the dispersion. The variable
v is normalized to the carrier-frequency offset
at z2=0, 0 =w, — W, . Similarly, it is not the
absolute strength of the field, E, which is signifi-
cant, rather it is E relative to the “saturation”
value E,=7Aw/p. Or, in the language of magnetic
resonance, what counts is the ratio of the Rabi-
precession frequency LE /% to the frequency offset
from resonance, Aw=w - w. In (35) the quantity
ky(w) equals (w/c)(1 +7Nu?/HAw), and the new in-
dependent variable 7 describes not only the ratio
of field strengths, but also the extent to which the
k vector differs from its low-intensity value due to
the strength of the laser field. The sign = in (35)
indicates that the relation is correct to first order
in the difference [k -k, ()], which, for the dilute
vapors and modest intensities of the self-steepening
experiments, is a good approximation indeed.

In terms of these new independent variables the
averaged Lagrangian (31) takes the rather simple
form

e Nib  (2+7)v
=TT WanE

(38)
The differential equation and the boundary condi-
tions transform under (35) to

£TT¢V" "'4£y1‘¢’u-r
+(Lyy = IL)2,, - [IL, . +@4/v)e, .12, =0,

t=(2, '*‘Kq)r)/é, z=0've,, (37
where o' =-2i0c/aNp?w, K=7/v - @'vF,,
J=27/v2 +a'vF,,, and where F=k,. The occur-
rence of F, and F,, in the transformed equations
brings both the group velocity and its dispersion
explicitly into the formulation of the problem (since
v;l=-F,/0).

The partial derivatives of £ occurring in (37) are
simply evaluated using (36), and we find, using the
explicit form of F(v) given above,
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2 _
u2<1 . :><1>,,,, -87vd,, +47(2 -7)d, ,

- - 2
+2<_4 87 - 37

1+7 ><I>T =0,

t=(®,+K®,)/0, z=a'vd,_. (38)

The only approximation which has been made in
deriving (38) from (30) is that mentioned in con-
nection with (35b).

Before making the simplifying assumptions re-
quired for solving (38), we remark that its dis-
criminant A is

A= 16127
147

Thus, for 7=(uE,/fAw)?<2(V6 —1)/5=0.5798, the
discriminant is negative and the differential equa-
tion is elliptic. Hence, in view of the hyperbolic
initial conditions, the problem is “improperly
posed” in the sense of Ref. 10.

This ellipticity of the partial differential equa-
tions describing self-steepening was noted in Ref.
1. In that paper it was incorrectly stated that the
discriminant of the reduced equations was “usually
negative.” In fact, the discriminant of the Eqgs.
(2a) and (2b) of Ref. 1 is negative for all intensi-
ties. That result is not in conflict with (39) above,
although it might seem that (39) implies that for
high intensities the discriminant of (30) changes
sign and the equation becomes hyperbolic. The
point is that, as pointed out in (35), the connec-
tion between 7 and % used in deriving (38) holds
only when 7 is small; hence the value of A de-
rived above ceases to be significant when 7 is
large enough for A to change sign.

The conditions under which the partial differen-
tial equation for dispersive, nonlinear pulse propa-
gation is either elliptic or hyperbolic were set
forth clearly by Lighthill.}?> As mentioned pre-
viously, what is important is the relative sign of
the quantities (€ - €,) and d?¢,/dw?, where €(w, E)
is the nonlinear dielectric constant and €, (w)
=€(w, 0) is the low intensity, linear dielectric
constant. In the notation of self-focusing, (€ —€,)
= (w/c)n,E?), and d*¢,/dw? is proportional to
(d/dw)(1/v,). If these two quantities are of the
same sign, Eq. (34) is hyperbolic, whereas if
they are of opposite sign, (34) is elliptic.

In the present case the dispersion of the group
velocity and the nonlinearity of the index of re-
fraction are both due to the two-level resonance
and, in the adiabatic-following limit, are of op-
posite sign. In other cases, e.g., self-steepening
due to the Kerr effect in a liquid with normal dis-
persion,'! the nonlinearity and the group velocity
dispersion are due to different processes and can

(572% +47 - 4). (39)

have the same sign. This makes the governing
equation hyperbolic, and the self-steepening which
occurs is qualitatively different from what occurs
due to adiabatic following.

Equation (38) can be simplified by the following
good approximations. It is known from experiment
and from numerical calculations® that the param-
eter v =(w, — w)/(W, - Wiy ) remains between 1
and 0.9 during the entire evolution of the self-
steepened pulses; we therefore set v =1 in the
coefficients of (38). On the other hand, the vari-
able T = (LE/IAW)? was everywhere less than about
0.06. We therefore drop 7 everywhere in the coef-
ficients of (38) where it is added to numbers of
order unity. The result is

®,-47%,, +47% ., +4%,. =0, (40)

a simpler equation whose discriminant is A’

=16(72 - 1). In view of the smallness of T noted
above (72<0.0036), the discriminant of (40) is very
little different from that of the equation obtained by
dropping the @, altogether in (40), namely

®,,+47%,, +48_=0. (41)

Introduction of the variable s =vV7 transforms (38)
into

@, +¢ss+(1/s)¢s =0,

"o & LK
z:“z"SS, t= U*Ké /25 42)

But (42) is the Laplace equation for axial sym-
metry, and thus the averaged Lagrangian method
has led naturally to a formulation of the self-
steepening problem in terms of well-known equa-
tions. Moreover, Lighthill obtained precisely the
same Eq. (42) in his treatment of wave groups on
deep water.?

IV. DISCUSSION

Much of the program promised in the Introduction
has now been carried out. We have given the La-
grangian formulation of the resonant pulse propa-
gation problem, have derived Whitham’s averaged
Lagrangian, and have shown that the optical prob-
lem has the same mathematical structure as the
self -steepening of wave trains on deep water.

In this final section we deal with the following
matters: First, we make some comments on the
method of solving (42) for particular pulse shapes
and on the type of analytical results which can be
obtained. Second, we compare the “shock distance’
which results from the present formulation with
the expression derived by Kadomtsev and Karp-
man’? for the distance over which small perturba-
tions in amplitude are amplified by e!. Third, we
comment on those aspects of recent experiments

»
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which can be understood on the basis of the present
theory. Fourth, we mention the difficulties which
lie in the way of application of the averaged La-
grangian method to other nonlinear optical prob-
lems of interest, such as self-induced trans-
parency.

The combination of an elliptic differential equation
with hyperbolic boundary conditions can be solved
by Garabedian’s method of complex-valued charac-
teristics,' using the Green’s function for the
axially symmetric potential equation. The solu-
tion for ® therefore appears as an integral in the
complex plane; moverover, it turns out to be a
singular integral. The evaluation of such integrals
requires care and experience. In Ref. 12 Lighthill
carries through the calculation in some detail for
the case of an input pulse shape which is Lorent-
zian. No purpose would be served by repeating his
arguments here; instead we will summarize his
results and give some of our own, referring the
reader to his paper for the details. A pulse which
is initially symmetric around its peak remains
symmetric as it distorts. The peak propagates
at the low-intensity group velocity of the medium,
and the pulse “draws in” so that its energy is
compressed into a shorter space, or time. As
this happens, the height of the peak increases and
the peak distorts in such a way as to cause a cusp
to appear at the peak. This occurs at a finite
distance z_;,, at which point the slope of w; vs
time in the moving frame becomes infinite. Be-
yond this distance the variations in the pulse shape
and instantaneous frequency have become so rapid
that higher derivatives, not included in the present
analysis, must be taken into account.

All of these qualitative results, obtained specif-
ically for a Lorentzian pulse, apply as well to any
smooth, symmeltvic input pulse with a single peak.
What changes quantitatively with pulse shape is:
(a) a numerical factor in the expression for the
critical distance, and (b) the ratio K by which the
peak intensity has increased at z;, compared to
its initial value. We have applied Lighthill’s tech-
nique to an input pulse of somewhat more realistic
shape for optical experiments, namely E,(f)
=E,.x sech(t/T), and find the critical distance to
be

0.558¢T (ZAW/UE peak) (43)
c/v, -1 )

Zerit =

For this sech pulse the factor K is 2.25, whereas
for the Lorentzian pulse Lighthill found K =1.93.
The changes with pulse shape are clearly not
drastic.

It is interesting to note a kind of quasilinearity
in the solutions of this highly nonlinear problem.
That is, for a given pulse shape the fractional

increase in peak height at z.; is independent of
the input intensity and pulse width, although, of
course, Z; itself decreases with increasing in-
tensity. This remark embodies an important and
somewhat surprising result of the present theory.
As we have seen, z.; is the distance at which the
self-steepened pulse shape becomes singular when
linear dispersion, nonlinear pulse velocity, and
self-phase modulation are taken into account. But
the authors of Refs. 13 and 15, in considering this
same problem, calculated the rate at which a small
perturbation of the pulse amplitude grows due to
the inherent instability of pulse shapes in a medium
where € — €, and d?¢,/dw? have different signs.
From the fact that small perturbations tend to
grow exponentially, according to the linearized
theory, the authors of Ref. 15 inferred that very
short, very intense pulses could be produced by
passing optical pulses through nonlinear media
such as near-resonant alkali metal vapors. But
when we compare our expression for z.; with the
distance for growth of a perturbation by e! derived
in Ref. 15, we find that they are identical within

a numerical factor of order unity.

Thus, the analytical treatment of the fully non-
linear problem has shown that a singular pulse
shape is reached in what amounts to a single e-
folding distance of the linearized theories. And
therefore it is nof likely that, as speculated in
Ref. 15, nonlinear self-steepening in alkali vapors
would lead to dramatic decreases in pulse width
and increases in pulse intensity. It is true that
sharp fronts can be produced,® but this occurs
before any dramatic change in pulse duration or
height. When (€ - €,) and d®k,/dw? have the same
sign, the governing differential equation is hyper-
bolic, rather than elliptic and even symmetric
input pulses develop sharp leading edges (Ref. 11).

The fact that experiments on alkali vapors! show
sharp fronts as well as increased peak heights,
whereas the theory so far describes only sym-
metrically reshaped pulses, shows the direction
in which further theoretical work is needed, viz.
on asymmetrically shaped input pulses for the
elliptic problem. However, despite the fact that
the theory has so far been applied only to sym-
metric input pulses, the distance observed in Ref.
1 for the formation of a steep front is, within
30-50%, the same as the distance which would be
predicted from (43), assuming the input to be
symmetric.

Finally we turn again to the application of the
averaged Lagrangian method to “on-resonance”
phenomena such as self-induced transparency.
Here inhomogeneous broadening plays an impor-
tant role, and in general we expect Egs. (27) and
(28) to give the averaged Lagrangian and dielectric
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“constant,” and Figs. 1(b) and 2(b) to be appro-
priate.

As has been remarked several times, the rela-
tive sign of (€ - ¢€,) and d%¢,/dw? determines wheth-
er (34) is elliptic or hyperbolic. Consideration of
(32) and Figs. 1(b) and 2(b) shows that, for sym-
metric, inhomogeneously broadened lines (€ —¢€,)
has a constant sign on each side of line center,
but dzeo dw? changes sign about one inhomogeneous
linewidth off resonance on either side. Thus,
starting from a frequency well below resonance
where, as we have seen (34) is elliptic, and in-
creasing the optical carrier frequency one will
move into a region, when d2¢,/dw?=0, of hyper-
bolic behavior which will persist until line center.
At line center, the Legendre transformation used
to go from (30) to (34) breaks down because both
(€ — €,) and d%¢,/dw? are zero for all intensities.
Thus line center is a singular point and will re-
quire special considerations, which will have to
be based on the highly nonlinear Eq. (30). We re-

call, however, that the set of periodic traveling-
wave solutions given in (25) is the unique, exact
solution to (17) and (24) and thus will be the start-
ing point for a treatment of self-induced trans-
parency by the averaged Lagrangian method. This
topic will be taken up in a subsequent paper.
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