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The initial-value problem of the one-dimensional wave propagation in a homogeneous ran-
dom medium is treated by means of the "Laplace transform, "based again on a group-theoretic
consideration introduced in the preceding paper. We first define the "Fourier transform" of
a random process regarded as a function on the translation group associated with the homo-
geneity. The inverse "Fourier transform" then gives a general representation of a nonsta-
tionary random process generated by a stationary process. Similarly, we define the "Lap-
lace transform" of a random process vanishing on the negative coordinate axis as well as the
"Laplace transform" of its derivatives. The one-dimensional wave equation together with
the random initial values can be directly treated by means of the "Laplace-transform" tech-
nique and is solved approximately in two Gaussian cases where the random media are rep-
resented by the well-known 0-U {Ornstein-Uhlenbeck) process and by the Zo process having
zero spectrum at the origin. Various statistical parameters associated with the solution
can be calculated from the stochastic solution by the averaging procedure. It is shown that the
behavior of the average wave is quite different between the two cases and that the result is
in agreement with that of the preceding paper. The average of the absolute square of the
wave is also calculated using the stochastic solution, and its range of validity is discussed
by comparing with the previous results.

I. INTRODUCTION

In the preceding paper, ' which we refer to as I,
we have studied the mode of wave propagation in a
random medium, introducing a group-theoretic
technique related to the medium homogeneity in
dealing with the random-wave solution, and we
have discovered many features of wave propagation
in the one-dimensional (lD) random medium —es-
pecially the fact that the wave solution is in the
cutoff mode in most cases.

We will give here another application of the
group-theoretic consideration. We first introduce
a "Fourier transform" of a random function re-
garded as a function on the translation group. The
"inverse transform" is shown to give a general
representation of a random function generated by
a strictly stationary random process. By the
same token, we define a "Laplace transform" of a
random function vanishing on the negative coordi-
nate axis and establish some formulas concerning
the derivatives of the random function. Although
an initial-value or boundary-value problem in the
1D case can be treated using the two independent
solutions obtained in I, we can directly deal with
the initial-value problem of the stochastic differ-
ential equation by means of "Laplace transform. "
The wave equation together with the initial values
can then be transformed into a functional equation,

which, in the case of a Gaussian random medium,
can be solved by mea, ns of the Wiener-Hermite ex-
pansion as done in I.

Since the solution is represented as a random
function, statistical quantities of interest can be
evaluated by the averaging procedure, For a Gaus-
sian medium described by an 0-U (Ornstein-Uhlen-
beck) process, the average of the wave solution
with nonrandom initial values was obtained in Ref.
2 by means of the Fokker-Planck equation, which
shows the exponential decrease of the average wave
with distance. In this paper we calculate the aver-
age wave for both 0-U process and Z, process and
show that the result in the former case agrees with
that of Ref. 2 a,nd that the behavior of the average
wave in the latter case is quite different: it in-
creases exponentially with distance. The average
of the square of the absolute va, lue can be also
evaluated using the stochastic solution. The ap-
proximate solution by this direct method is reason-
ably accurate within the region not very far from
the initial point. By comparing the average of the
absolute square with that of I, it is shown that, be-
cause of approximation in solving the equation, the
calculation does not always give a correct asymp-
totic expression in the far region. On the other
hand, using the two independent solutions of I in
matching the initial condition may not always be
accurate because of the approximation, but can
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well describe a global behavior of the solution on
the entire axis. Therefore, the two methods are
complementary to each other.

p(x, ru)s)= J e '*'D'g(x, ru)da, — «s&

(2.8)

II. TRANSLATION OPERATOR

A. Invariant space

In paper I we introduced the translation operator
D ', —~ & a & ~, acting on a nonstationary random
process P(x, cu) generated by the stationary process
e(T"e), namely,

which we call ' Fourier transform" of g(x, v). As
readily checked, the "Fourier transform" (2.8)
satisfies (2.5), that is, it belongs to'Z, . The "in-
verse transform" of (2.8) is given by'

(2.9)

or, using (2.7),
D'g(x, ~)=g(x+a, T '&u), —~&a&~. (2.1)

Consider a class of random functions such that y(x, (u) = e""u(T"&u i s) ds. (2.10)

D'g(x, (u) =A'g(x, (u), /~&a&~, (2.2)

where A' is an eigenvalue for the operator D'.
Since D' is a one-parameter group, A' must sat-
isfy

A' "=A'A A =1 (2.3)

that is, A' gives a 1D representation of the group
R,

Aa eis a (2.4)

'OP( x(u
i s) =e'"g')(x, (u

i s), (2.5)

where s is a complex number. We write an eigen-
function with the eigenvalue e'" as P(x, u

~ s), that
1S,

g(x, (u) =0, x&0,

~ q(x, (u)
~

&Ce'", x-
(2.11)

(2.12)

for almost all ~, where C and 7 are certain real
constants. We write the "Laplace transform" as a
"Fourier transform" in the complex domain
Ims& —7 (Ref. 4);

That is to say, P(x, cu) is decomposed into the sum
of s-stationary processes. Eq. (2.9) or (2.10) can
be considered as a general representation for a
nonstationary process generated by e(T"&u). Here
we will not dwell on the applications of this repre-

sentationn.

For our purpose we introduce the "Laplace
transform" of a random process such that

and denote by &, the linear space of such eigen-
functions, which is an invariant space under D'.
Hence, u(T "~), a, stationary process generated by
e(T"&u), is invariant under D',

&P (x, ~
~
s) = e '"D'g(x, ~) da, Im s & —v .

(2.13)

D'u( T'&u) =u(T'&u), (2.6) The inverse transform is then given by

so that it belongs to P,. For convenience, we say
that a process satisfying (2.5) is s-stationary. An
s-stationary process can be generally expressed

1
g(x, (u) =-

277

1
2n

e""u(T"~
~
s)ds. (2.15)

y(x, (u j s) ds, p &r, (2.14)

y(x, (u
~
s) = e""u(T ~

~
s), (2.7)

B. "Fourier transform" and "Laplace transform"

To minimize the description we develop the theo-
ry in a formal fashion; a little more rigorous the-
ory will be given elsewhere. The random function
O'P(x, &u) appearing in (2.1), with x fixed, can be
regarded as another random function with respect
to the pair (a, ~). Now we take the Fourier trans-
form of D'g(x, ~) with respect to a,

where u(T "~
~
s) is a stationary process in X)„ i.e. ,

0-stationary process. As shown below, a nonsta-
tionary process generated by e can be represented
as a sum of s-stationary processes; that is, it is
decomposed into the elements of the spaces E, .

Since P(x, u
~
s) belongs to X)„sbeing a complex

number, P(x, v
~
s) is again written in the form

(2.7). Now we give the formulas for the "Laplace
transform" of the derivative similar to the ordi-
nary Laplace transform. Let us denote the "Four-
ier transform" of Vtp(x, ~) and V2$(x, a) by

P, (x, ur
~
s) and P, (x, e

~
s), respectively Then.

Q, (x, e
~
s) = e""[ —$,(T"e)+ (is + V„)u(T "~

~
s)j,

(2.16)

P, (x, v
~
s) =e""[-$0(T"v) —(is+ V„)P,(T'v)

+ (is + V„)2u(T "&u
~ s)], (2.17)

where $,(T "&u) and Pt(T"&u) are stationary pro-
cesses derived from the random initial values,
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g, ((u) =P(0, (u),

qa ((u) = V(I)(0, &u) .
(2.18)

(2.i9)

The proofs are given in the Appendix. When the
initial values are independent of ((), (2.17) is a little
simplif ied.

where u(T"co
I s) is given by (2.13) and (2.7). As

the equation (3.2) involves only the stationary pro-
cesses generated by e(T"~), we can solve it at
x=0, regarding it as a functional equation for
u(&u

I
s). For simplicity, we assume in the follow-

ing that the initial values are real and nonrandom,
and denote

III. INITIAL-VALUE PROBLEM OF WAVE EQUATION

As in I, let the wave equation for a 1D random
medium be

V'y(x, (u)+ k'[1+e(T"(u)] g(x, (u) =0, (3.1)

where e (T"v) is a real stationary process in the
strict sense. We assume that P(x, (()) =0 for x&0
and that the initial values at x= 0 are given by (2.18)
and (2.19). Since the operator D' commutes with
V' and e(T "u), we can take the "Laplace trans-
form" of the wave equation (3.1):

—y,'(T "(u) —(is+ V„)q,(T"(u)

+ [(is+V„)'+k'(1+@(T "&u))] u(T "e
I s) =0, (3.2)

$, =((0, &u),

(I),'= V[I)(0, a).
(3.3)

(3.4)

Then (3.2) is written

[(is+ V„)'+k'(I+e(T "(u))]u(T "&u
I s) =pa+is&, . (3.5)

However, the random initial values would not af-
fect the nature of the following treatment.

As in I, we now solve (3.5) in the case where
e (T"&u) is a Gaussian process of the form (IA22):

e(T"&u) = G(s, )e'" dB(s, ) . (3.6)

We expand the stationary process u(T" ~
I s) in the

following form,

"()"~]le)=Z.(s)((+ f Z, (s Is)e " dd(s, ) s J'*F,( „s] s)
's*''e*' "ii [dSdi( )s(dd)]+s, ' ), (3.))

~he~e F (s». . . s
I s) is symmetric in (s„.. . , s„) and is supposed to be analytic in s in the domain

Ims& —w for a certain r. Substituting (3.6) and (3.7) into (3.5) and using (IA8), (IA10), and (IA14), we ob
tain a set of non inear function equations for I' „'s. The equations corresponding to the degree n = 0, 1, 2 of
the multiple integrals are'

G*( )F, ( s]s) ds,s) F,(s) = g, +)ed,', (3.8)

[(s+s, )* — ] d(S]ss) —2). ' J G "(s,)(s,(s„s, ) s)ds, = O'G(s, ), (3.9)

[(s+s, +s )'-d']S, (s„s, ]s) ——', ), '[G(e)E(s, ]s)+d(s)d(e, ]s)] —3k' J d ( )E( „s„s]s)sdss=D.
(3.10)

These equations can be solved approximately provided that the excitation term G(s, ) or, what is the same
thing, the parameter

o'=(e') = (3.11)

is small enough. We solve for I'„'s so as to ensure the analyticity in the domain Ims&- ~ for a certain 7..
Once F„'s are obtained, we get u(T "cu

I s) by (3.7) and in turn g(x, ur) by (2.15). By means of the stochastic
solution for g(x, &u) so obtained, we can evaluate some statistical parameters concerning g(x, u), such as
the average, covariance, average of square amplitude, etc. We give here the expressions for ((I)) and
( I g I') by means of (3.7) and (IA14):

4T

(y(x, (u)) = — e' F,(s)ds,
2F C)O $7

1
OO «$T 2 1

( I g(x, ~) I') = — F,(s)e""ds + ds,
2m ', 2r

oo «$T

F,(s, I s)F,(s)e""ds

(3.i2)

c)o
1

co«f T 2

+ ds, ds, — F,(s„s, I s)F()(s)e' ds + ~ .
c)o 27l ()o 4 T

(3.i3)
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Owing to the analytieity of E„'s, we have

( y(x, (u)) = 0, x& 0,

( i g(x, (u) i') = 0, x& 0.
(3.14)

(3.15)

o'k '(~ —2ik)
2a (~'+4k')

o'k'(~+ 2ik)
2y(g2+ 4k 2)

(o-U). (4.10)

1
G(s) =o — . (O-U),

7T K +2S
(4.1)

(4.2)

the poles of which lie on the upper-half plane. We
first look for the approximate solution for E,(s) to
evaluate (g(x, &u)) by means of (3.12). In the first
approximation we obtain

k'G(s, )E,(s, I s) =—
( s )a k2

1
(4 3)

from (3.9) neglecting E,. We insert (4.3) into the
integral term of (3.8):

"
i G(s, ) i'ds, o'k'

M(s)=—k
( )2 k2 =( . )2 k2 (O-U),

IV. AVERAGE WAVE

The average of wave solution has been studied in
many papers. To compare with some results in
the one-dimensional ease of Paper I and Ref. 2, we
take up two random media described again by the
0-U process and Z, process. For these processes
we have [see (IA26) and (IA29)]

o'k'(a + 2ik)
2g(g2 y 4k 2)

o'k '(h: —2ik)
~+2

( 4k

assuming o is small. The imaginary parts of (4.10)
are all positive; hence, we have at least -~&Imk, .
Similarly we obtain the six roots k, -k, of (4.9):

o'k '(~' —4k ' —4ia k)
2(g2+ 4k 2)2

o'k '(a 2 —4k '+ 4itck)
2 2(~2 4k 2)2

(Z, ) . (4.11)vk 2k
k„k4 =k+iK+—

a'k
k k = —k+iK+—

5P 6 2 2k- iK

where the pairs k„k4 and k„k, are degenerate
when @=0. We see that the roots k, and k2 lie on
the lower half-plane, whereas k, -k, are on the
upper half-plane: hence, —w & Im k, & 0.

Substituting (4.6) together with (4.10) into (3.12),
we obtain

4 S +K— " [(. .)

(4.4) 1
21T

ds (O-U)s' —k'-M, (s)

(4.12)

I

s —k -M, qs
(4.6)

(4.5)

We denote (4.4) and (4.5) by M, (s) and M, (s), re-
spectively. On determining the contour of integra-
tion relative to the poles, we have assumed that s
lies well below the real axis to ensure the analytic-
ity. Substituting (4.4) and (4.5) into (3.8), we have

= —
2k [(g oik+, P, )e' '" —(go+ ik, g, )e' '"],

x) 0, (4.13)

=0, x&0,

where we have shown only the first two dominant
terms arising from k, and k„ the other two terms
due to k, and k~ are of the order of O'. Equations
(4.12) and (4.10) agree with the results of Ref. 2 by
the Fokker-Planck method. Similarly, using (4.7)
and (4.11) in (3.12), we get

(4.7)

The poles of (4.6) and (4.7) are determined by the
algebraic equations

( g(x, ~)) =—1
2' ,1- —(~'+~ ~o) d (Z )s' —k'-M, (s)

(4.14)

(s' —k')[(s —i~)'- k'] —o'k' = 0 (O-U), (4.8)

(s' —k2)[(s —iK)' —k']' —o'k4[s'+g' —k'] =0 (Z,).
(4.9)

Denoting the four roots of (4.8) by k, - k„we obtain

the first two dominant terms of which are again
written in the form (4.13), where k, and k~ are
given by (4.11). The other four terms due to k, —k,
have the order of o but at x=0 they are reduced to
the order of o'.

We note that (4.13) is reduced to the correct non-
random solution when 0 = 0 in both cases, and that
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the initial conditions (3.3) and (3.4) are met up to
the order of cr:

be neglected compared to k'G(s, }on the right-hand
side. Hence

( g(0, (u)) = go+0(o'),

( Vg(0, (u)) =]|)2+O(O2).

(4.15)

(4.16)
E,(s, is)—=

k'G(s, )
(s+s, )' —k2-M(s+s, )

' (5.3)

2cr~zk 4

l&p(«, «))
I -««p(]...4p, ), «) (i,). (4.18)

This striking difference between the two random
media was already physically explained in I in
terms of the spectra of these two processes. As a
matter of fact, (4.17) agrees with (14.65), whereas
(4.18) equals e ', no being given by (14.56).

V. AVERAGE OF SQUARE AMPLITUDE

We evaluate ( i ((x, ~) i') by means of (3.13) ne-
glecting F2 term. The first term of (3.13), how-
ever, is just the square of the average obtained
in the previous section, so that we calculate the
second term. To obtain F„we go into a one-step
higher approximation than in Sec. IV. Neglecting
E2 in (3.10), we obtain

k G(s, )E,(s, i s) + G(s, )P,(s, i s)

and substitute this into (3.9):

(5.1)

I G(s, ) I'ds,
S+Si+S2

—k'G(s )
' ' ' ds =k'G(s ).„(s+ s,+ s,)' —k '

(5.2)

Equation (4.3) may be used to evaluate the second
integral in the left-hand side, which, however, can

We further note that, since Imk, =Imk, )0 for the
0-U process, the amplitude of (4.13) decreases
exponentially as x-~ in such a, way that

0'k4
l]p(««|)) l e«p( —, , «) (o-o), (4.)7)

and on the other hand that, since Imk, =Imk, &0 for
the Zo process, the amplitude of (4.13) increases
exponentially as x- ~ in such a way that

We notice that the integral in the denominator has
the same form as the integral of (4.4) and (4.5).
Then (5.3) can be written

k'G(s, )

( s)' k' m( )

(5.4)

( )
—(y,'+is), )

(s —k, )(s —k, )
'

( i )
k'G(s )

(s+s, —k, )(s+s, —k, )
'

(5.6)

(5.'1 )

where, by (4.10) and (4.11), k, and k, can be writ-
ten in the form

k =k'+&k",1

k, = -k'+ik",
(5.8)

0' k 0'k 4
k'=k —2(, 4k, ),

k" = ' 4k' ' (O-U), (5.9)

0'k'(~2 —4k') o 2~k 24

2( 2 4k2)2 t
(

2 4k2)2 t ( 0)'

(5.10)

Thus,

Again we notice that the denominator of (5.4) or
(5.5) has the same form as that of Fo(s), namely,
(4.6) or (4.'I). Therefore', the zeros of the denomi-
nator as a function of s agree with k, —s, [i =1-4
for (4.10) and i =1-6 for (4.11)].

Using (5.4) and (5.5), we evaluate approximately
the second term of (3.13) as follows. As in Sec.
IV, the terms due to k, , i ) 3, give higher-order
terms in o. So, in order to eliminate those higher-
order terms, we approximate F, and I', by

1 oo

2r (, i S)~ (,),...d, 2k. G(S ),—.-. (40+ ) ko)
'"'"-

I: to+ 2( 2
- 1)ko)e

2k's, (s, + 2k')

(p,'+tp, p„)e "'—[p,'«a()t, —«, )p,]«" ' t*)
2k's, (s, —2k') (5.11)

which is to be substituted into
00 1 2

+, (S, I
S»o(S)e""dS (5.12)
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It should be noticed that the apparent poles at
s, = 0, a 2k' are not the true poles of (5.11) a,s a
whole. Hence, upon integrating (5.12), we can
move the contour off (e.g. , below) the real axis,
and then integrate it termwise by means of residue
calculus. Because of the double poles, we obtain

the terms proportional to xe '" ' which can be-
come dominant at large x. However, we will not
give here the full expression for (5.12) at length.
Instead we examine only the dominant terms at
large x:

& I @ I'& —
I& q& I'-D axe """&[Iqo+iki(tel'+I y!+iky. l'][I G(2k) I'+I «0) I']

+He(g,'+ik, (t),)(P,'+ik, ()),) e"'"
I

( (0) I'), (5.13)

where we have put k' = k. By (5.9), k" & 0 for the
0-U process, so that (5.13) is still decreasing at
large x despite the factor x.

In view of the result in I, a general solution is
composed of the two independent solutions, the
increasing and decreasing cutoff modes, and ac-
cordingly, the asymptotic form is determined by
the increasing part. Therefore, the correct as-

ymptotic expression should be given by & I g I')
-e'"D", n, (&0) being given by (14.55) for the 0-U
process and (I4.56) for the Zo process. Thus we
see that (5.13) cannot always be employed for very
large x and that (5.12) can be used in a, reasonably
small range close to the initial point x=o. This is
due to the approximation in solving the function
equations for E„'s.

APPENDIX

Formulas (2.16) and (2.17) can be demonstrated either by the partial integration or by using the delta
function. We give here the proof by the latter method which is shorter than by the former.

Using the delta function, we put the initial value (3.3) into the integrand:

e '"D'xd(x, x)da= f e '"D'fd, ( ) (e)xjd ae e '"D'vd(x, ta)da,
OQ oo -x+ 0

which can be written

e' (is+ v„)u(T "(d
I s) = e '"y,(T 'o))5(x+a) da+y, (x, (o

I s)

=edd~g (T"(d))+(t),(x, (d)
I s),

yielding (2.16). Similarly,

e '"D'V ' g(x, o) ) da = e '"D'[ g,((o)6'(x) + y,'(ur)6(x)] da+ e '"D'V'(x, (u)da,

e' (is+ V„)'u(T'(d)
I s) = V„[e' p, (T"e)]+e""p()(T"o))+p,(x, o)

I s)
=e""[(is+V„)y,(T"(u)+y,'(T"(d)]+(t),(x, (d

I s),
which gives (2.17).
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3A more plausible argument is as follows. g(x, ~) can
be interpreted as a slowly-increasing generalized
function in $„' [see L. Schwartz, Methodes Mathemat-
iques pour les Sciences Physique (Herman, Paris,
1961)j for almost all ~. Then g(a, T '~) belongs to $', .
Its Fonrier transform gives (d ((Dl s) =$(0, (Dls), which
again belongs to 3,'. In its inverse Fourier transform,
we change the variables a -x, ~—T"~ to obtain (2.10).

4In much the same way as in Ref. 3, we regaxd g(x, ~)
as a generalized function in 5)+ (again see Schwartz,
Ref. 3) for almost all ~, such that e ~" g(x, ~)e $„',p».
Then, tI[)(a, T"'~)e ~' ~ 3', , so that we can repeat the
above argument.

5If e(T"~) has higher-degree terms in the Wiener-
Hermite expansion as in (I 3.10), we have more excita-
tion terms due to G2, G&, ... in these equations. Similar-
ly, if the initial values are random variables generated
by «(T"~), and are expanded in terms of multiple
Wiener integrals, we again have the other source of
excitation.


