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A novel theory is developed to cope with the difficulty of the multiple-scattering problem in a random
medium (RM). The theory is given for a one-dimensional homogeneous RM which is represented by a
strictly stationary random process. Some possible forms of the stochastic solution are determined by a
group-theoretic consideration based on the shift-invariance property of the homogeneous RM. The form
of the solution has some analogy with Floquet's solution for a periodic medium. It is shown that there
are two kinds of solutions in the one-dimensional RM: a travelling-wave mode and a cutoff mode. The
former exists only when the power spectrum of the medium becomes zero at nearly double the wave

number. Otherwise the wave is in the cutoff mode which is almost a standing wave whose envelope
increases or decreases exponentially with distance. For a Gaussian RM with small fluctuations, an ap-
proximate stochastic solution given in the possible form is obtained in terms of multiple Wiener integ-
rals with respect to the Brownian-motion process. The average and variance are calculated for the
phase and amplitude of the wave in terms of the power spectrum of the RM. The law of large num-

bers is shown to hold concerning the fluctuations of the phase and amplitude. The average value of
the wave and the transmission coefficient of a medium with finite thickness are also studied using the
stochastic solution.

I. INTRODUCTION

There are a number of papers concerning this
subject and diverse methods have been introduced
concerning many related problems; some well-
known techniques are the Fokker-Planck equation
and the quantum-field-theoretic method in the
theory of multiple scattering in long-distance
propagation. ' Some specific properties in the one-
dimensional case were rigorously obtained: for
instance, the case of Gaussian white noise, Pois-
son-distributed random scatterer s, '"the 0-U (Orn-
stein-Uhlenbeck) process, ' a random stack of dielec-
tric slabs, ' etc. However, these methods, par-
ticularly suited to one dimension, are not appli-
cable to the three-dimensional case.

In this paper we present a novel theory based on
a different point of view. Although the theory is
intended to be applicable to the three-dimensional
(3D) case, we start with the 1D case here for
comparison with the known results in above works.
Therefore, the refractive index of the medium is
assumed to be a strictly stationary random process
on the 1D coordinate. In our analysis we make use
of the medium homogeneity, that is, the shift-in-
variance property of the stationary process, and
determine the possible form of the stochastic solu-
tion by a group-theoretic consideration based on
the invariance. At this point, we meet the problem
of representing the translation group by means of a
random matrix, which, however, is not completely
answered. The 1D representation gives a possible
form of solution which bears an analogy with the
well-known Floquet solution in the case of a peri-

odic medium. '
To obtain a concrete solution, we assume that

the random medium is a Gaussian stationary pro-
cess generated by the Brownian-motion process,
and accordingly the solution given in a possible
form is expressed in terms of multiple Wiener
integrals. " The wave equation is then trans-
formed into a hierarchical set of nonlinear func-
tion equations to be solved approximately. In order
to demonstrate some specific characteristics of
the solution depending on the medium, we take up
three Gaussian processes for the random medium:
the O-U process, a well-known Markov process
with I orentzian spectrum; a double Markov pro-
cess having zero spectrum at zero spatial fre-
quency, which we call the Z, process; and a triple
Markov process having zero spectrum at a nonzero
frequency &, which we call the Z„process. We
point out that in solving a differential equation it is
convenient to introduce the alternative representa-
tion of the multiple Wiener integrals based on the
Four ier-transformed Brownian-motion process.
The definitions and related formulas concerning
the alternative representation as well as the three
Gaussian processes are summarized in Appendix
A for reference.

It is shown that, depending on the spectrum of
the medium, there are two modes of solution,
which we call the traveling-wave mode and the
cutoff mode. The former is a traveling wave
whose phase and amplitude are randomly modu-
lated; it exists only when the power spectrum of
the medium becomes zero at nearly double the
wave number. Otherwise the solution is in the
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cutoff mode: it is almost a randomly modulated
standing wave whose envelope increases or de-
creases exponentially with distance without energy
transfer. Since the wave is in the cutoff mode in
most cases, we investigate this mode in some de-
tail. The approximate solution is obtained for
small random fluctuations of the medium. The
average and the variance are calculated for the
phase and the amplitude of the wave in terms of
the power spectrum of the medium. Using the
stochastic solution, further studies of the wave
are made concerning the average value of the wave
and the transmission coefficient of the medium with
finite thickness; they are compared with some re-
sults of the previous works. Other boundary-value
problems, such as the Green's function in the ran-
dom medium or the excitation problem, can be
treated using the two independent stochastic solu-
tions. The initial-value problem such as studied
in Ref. 5, although particular to the 1D problem,
can be treated systematically by means of the
integral-transform method introduced again by a
group-theoretic consideration: It is the subject
of the following paper. The results obtained in
this paper are experimentally verified by the com-
puter simulation of random media, which will
appear in a subsequent paper.

Finally we briefly refer to possible generaliza-
tions of the present theory. The method intro-
duced here is also applicable to a lossy random
medium immediately and to the other non-Gaussian
random media, such as a medium with random
point scatterers; in this case the multiple Wiener
integral with respect to the Poisson process can
be useful. ' In the 3D case, the refractive index
is then assumed to be a homogeneous or a homo-
geneous and isotropic random field. The under-
lying group is the group of motions in the 3D space
(Euclidean-motion group). These problems will
be studied in later works.

II. SOLUTION OF THE O'AVE EQUATION IN AN

HOMOGENEOUS RANDOM MEDIUM

Let the 1D wave equation be

measure on S, ( ) the average over 0, i.e. , the
integration with respect to P, and by R the line
-~ &x &~ as well as the additive group of the real
numbers x on the line.

A translation of a sample function & (x, &) by the
distance a induces a measure-preserving trans-
formation T' in 0 carrying + into T'':

e(x+a, ~) =e(x, T'~). (2.3)

We call the transformation T' the shift. Clearly,
the T', -~ & a & ~, form a one-parameter group:

T"'=T' T', T' =1 (identity). (2.4)

By a nonlinear functional of e(x, &), we mean a,

random variable generated by e (a 8-measurable
function on 0). Let u(~) be such a random vari-
able. We say that a stationary process u(x, ~)
given in the form

u(x, ~) =u(T"&u) (2.5)

is a stationary process generated by e. (However,
all stationary processes derivable from e cannot
be given in this form. ) In this sense we also write

e(x, ~) =e(T"~), (2.6)

where e(~) on the right-hand side is a random
variable e(&)=—e(0, ~).

Let a nonstationary process g(x, ~) be a random
variable generated by e, such that it is measura-
ble with respect to the coordinate parameter x.
We introduce the translation operator by the defi-
nition

D'g(x, &) =g(x+a, T 'td), -~&a&~.

Clearly, the D', -~&a&~form a group;

(2.7)

(2.8)

Thus the operator D' gives a representation of the
group R in the space of random processes gen-
erated by &.

If g(x, &) is a solution to (2.1), D'((x, (u) also
becomes a solution since the operator D' commutes
with V' and &(x, &), and can be expressed as a
linear combination of the two independent solu-
tions p, (x, e) and g, (x, &). Hence

V'g(x &)+k'n'(x, &)g(x, &) =0, V —= —,(2.1) D'g,.(x, ~)=QC,'J(&u)q, (x, ~), i =1., 2, (2.9)

where is the probability parameter denoting a
sample point in. the sample space Q. Let the square
of the random refractive index be

where C,'~(&) denotes a, random variable generated
by e. In terms of matrix notation, (2.9) is ex-
pressed as

n'(x, ~) = I +a(x, ~), (2.2)

where e(x, +) is the small fluctuating part with
zero mean: It is assumed to be a real stationary
process in the strict sense. We denote by S the
smallest o algebra of sets, by P the probability

D'4(x, &u) = C, (&o)+(x, ~),

e(. ) = «(' "', c.( ) = "'"'
C',

(2.10)

ci2 (~))
c22 ((g)f

(2.11)
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Corresponding to (2.8) the matrix C, (~) satisfies
the following equations:

C.„((d)= C, (T '(d)C, ((d},

C,(~) = I,
(2.12)

(2.13)

where I is the unit matrix. Therefore we see that
the random matrix C, (&) gives a representation of
the group D' or R by means of (2.12) and that the
representation in this form is closely related to
the representation by the operator factors so called
in Ref. 11, whose structure, however, is little
known. Further relations following from (2.12) are

C, '(~) =C,(T '~), (2.i4)

C.(T '(d)C(, (&) =Cb(T '(d)C. ((d) (2.i5)

Equation (2.12) is afunction equationfor C, ((d)). As-
suming that C, (~) is differentiable, we easily
transform (2.12) into a differential equation,

(2.23)D'+(x, ~) = C, ((d)4 (x, (d).

Then the infinitesimal generator & of C, ((d) is
transformed according to

dU T '(d
~(~) = U '((d)+U((d)~(")U '(").

- (2=0

(2.24)

It is well known that if C, (~) satisfying (2.12)
is nonrandom —that is, independent of —it is
always reducible to a 1D form, C, =e'" (s; a com-
plex number), by an equivalent transformation.
However, it is still an open question whether or
not the random matrix satisfying (2.12) or &((d)

defined by (2.17) is reducible to a 1D representa-
tion by a suitable transformation (2.20) or (2.24).

Substituting (2.18) into (2.1) gives the equation
for &(T"(d)) and u(T"(()):

][A (T"(d) + V] '+ k'[I + e (T"(d))I'fu(T"(d) = 0.
= A(T '&u)C. , (Qp), (2.i6) (2.25)

&((d) = lim—C. ~ I-
Cl

(2.17)

We call &(~) the infinitesimal generator of C, (&),
which is the differential coefficient at the origin.
Equation (2.16) is the differential equation for C, ((d)

with given A. (T '&) and the initial condition (2.13).
The representation C,(&) is defined on the basis
of 4(x, (d). However, the representation basis can
be expressed in terms of C, (~) by itself: in fact,

0'(x, ~) = C (T"~)u (T"~), (2.18)

where u(T"~) is a D' invariant column vector of
the stationary processes derived from the random
initial value

u(~) =-O(0, ~). (2.19)

Let U(&) be a random matrix which has the in-
verse for almost all . Define a transformation
of C, ((d)) by

C, (~) =U(T '~)C, ((d)U '((d) (2.20)

Then C, (&) is shown to satisfy the same multiplica-
tive law as C,(~):

C.„(~)=C. (T '~)C, (~). (2.21)

We say that C, (&) is equivalent to C, (~). The
corresponding transformation of the representa-
tion basis is given by

4 (x, &u) = U((d)@(x, (d),

which satisfies

(2.22)

where A. (T '(d) is the matrix of stationary processes
which is induced by the shift T ' applied to the
random matrix,

Since (2.25) involves only the stationary processes
generated by e, it may be solved only at x =0.
Equation (2.25) can be solved once a relation is set
between X((d)) and u(&). In particular, when the
elements u, ((d) and u, (&) of u(~) never vanish for
almost all +, u((d) can be incorporated into &(~)
by a suitable equivalent transformation [e.g. , U((d)

with the diagonal elements u, ' and u, ']. Then,
putting u, =u, =1, (2.25) becomes the equation only
for A, (T"(d)). We note, however, that even if &(&)
is obtained from (2.25), integrating (2.16) is al-
most as difficult as integrating the original equa-
tion (2.1). In what follows, therefore, we assume
that the equation allows a 1D solution for A. ((d) and
we look for g(x, &) in the 1D form.

For the 1D representation, (2.16) can be easily
integrated,

a

C.(te)=exp / x(T *le)dx),
v 0

(2.26}

where C, (~) and &((d) stand for C, ((d) and &(&) in
the 1D form. Correspondingly, the 1D base is
written

P(x, te)=exp X(T )d )e(T* ),ee'
0

(2.27)

where u(T"~} is a stationary process derived from
the random initial value

u(~) =- 0(0, ~). (2.2s)

Equation (2.27) gives a possible form of the solu-
tion, which is analogous to the well-known Floquet
solution. " The equation for ~ and u becomes

([A(T"(d)+V]'+0'[1+e(T"u)]ju(T"(u)=0, (2.29)
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which can be solved putting x =0, once, for in-
stance, a relation is set between ~ and u by an
initial condition. As before, if u((d) &0 for almost
all , u can be incorporated into ~ by an equivalent
transformation, so that putting u =—1 we have

t)(x, ~) =exp h(T'el«), ((0, td) =), (2.)0)
0

V)&(T"u))+A.'(7"(o)+k'[1+@(T'&())]=0. (2.31)

Equation (2.31)can be solved atx = 0 as afunctional
equation for &(&d).

III. TRAVELING-WAVE MODE

Putting &0=- &&), &(&) = &, +&(&), we see that
(2.30) describes a traveling-wave e~o" (A.„acom-
plex constant) which is modulated randomly by the
fluctuating part A. (&()). Hence we call (2.30) the
traveling-wave mode and (2.31) the random dis-
persion equation. We look for such a solution,
assuming that it exists. " It is possible to deal
with complex & as it is in (2.31), but, in order to
avoid some errors in the approximation, we put

e((d) = G, (s) dB(s) + G, (s, s')k")

x [dB(s), &fB(s')] ~ ~ ~ (3.10)

G,*(s)=G, (-s), G,"(s, s') =G,(-s, -s'); (3.11)

y(td)= J I;(s)dB(s)+ I;(s, s')h&"

x [dB(s), dB(s')]+ ~ ~ ~, (3.12)

If 0 =0, i.e., &=—0 for almost all , we have y=—0
and then (3.7) reduces to k2 —Pt =0, the ordinary
dispersion equation for free space. We may, there-
fore, assume that, if o is small enough, y is also
small. Then (3.7) is approximated by

V'y+ (Vy)' —P20 (1 —4y+sy')+k'(1 +e) =0. (3.9)

For further investigations in the following, we
consider the case where the process e is generated
by the Brownian-motion process. Then y(&()), as
well as e(&d), is regarded as a nonlinear functional
of the Brownian-motion process" (see Appendix A).
Their Wiener-Hermite expansions are [cf. (A19)]

~=~+i p (3.1) r,*(s)= r, (-s), r,*(s,s') = r, (-s, -s'), (3.13)

o."—P'+Vo. +k'(1 +e) =0,

2~P+ V'P =0.

(3 2)

(3.3)

and deal with two real stationary processes & and

P (we suppress the argument T"& or & in the fol-
lowing equations). Then, (2.31) is transformed
into the set of equations

such that

I G, (s)I' ds +2

g2

(~'&= ( l&, (~)l'«

I G, (s, s')I' ds ds'+ ~ ~ ~

(3.14)

n =Vy, (3 4)

As shown easily, (3.3) corresponds to the energy
conservation for the traveling wave (2.30). Bearing
in mind the stationarity, we represent & and P
satisfying (3.3) in terms of a single stationary
process y:

+2 I s s 'dsds+

Using (AS), (A10), and (A14), the random disper-
sion equation (3.9) for & is transformed into a set
of function equations for the I"s. The first three
equations corresponding to degree n =0, 1, and 2

are

V'y+(Vy)' —P2oe '~+k'(I +e) =0, (3.7)

which can be solved at x =0. As a measure of the
magnitude of e, we introduce a parameter o by

(3.8)

where p, is a real constant such that &y)=0.
first note that, because of the stationarity, (3.4)
gives the relation

(3.8)

which means that the amplitude of the traveling
wave neither increases nor decreases exponen-
tially with x; this is because of the energy con-
servation (3.3). The stationary process y satisfies
the nonlinear differential equation

(s' —s p', )Ir, (s)l' ds

s+s —8p I s s dsds

+ =0, (3 16)

[(s +s')' —4P', ] I;(s, s')

=k'G, (s), (3.17)

+ (ss'+sp')r, (s)r, (s') + ~ * = k'G, (s, s').

(s' —4p )I;(s)+2 (s' —sp')r, (s')r (s, —s') ds'

&e') = o'. (3.8) (3.1s)
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They form a set of dispersion equations; for in-
stance, (3.16) is a dispersion equation for the
propagation constant p0 which is perturbed by the
integral terms due to the random medium.

Assuming G, =G is of first order and G„—= 0(n~2),
we look for an approximate solution such that
(y'}-0 as o-0. We see that I; is of the order o'

but I', is of o', as far as the amplitude is con-
cerned. Omitting the details of the calculation,
we simply refer to the first-order approximation,

I;(s)-=k'G(s)/(s' —4po), (3.19)

which, however, does not satisfy (3.15) and the
above requirement, unless

G(2po) =0, (3.20)

where 2P, —= 2k by (3.16). Thus at this stage of
approximation, we have the condition ~G(2k)~' =0
for the existence of the traveling-wave mode (in
the higher-order argument, we need more condi-
tions on G„, n~2; see also Ref. 13). We generally
have

~
G(2k)~' o 0 for an arbitrary value of k. Then we

have a cutoff mode and the medium becomes "dark"
at most values of k (see Sec. IVE). For Z pro-
cess (A32) whose spectrum vanishes at & = o.' the
mode becomes a traveling wave when k = —,'n (in
the o'-order approximation) so that the medium
becomes "transparent" at this particular wave
number. This is clearly demonstrated by a com-
puter simulation of the random medium, which
will be published in a later work.

Whenever a traveling wave exists, the boundary-
value problems can be treated as in an ordinary
transmission line in terms of the two complex-
conjugate solutions of the form (2.30). However,
we omit further studies on this mode.

e (x, ~) = g e„(x, ~)e'"'", (4.1}

where

e„(x, ~) = G(nk + s)e""dB„(s, v),
u/2

(4.2)

dB„(s)= dB(n—k+s), dB„*(s)=dB „( s), -
--,'k & s & —,'k, (4.3)

(dB„(s)dB+(s')}= 6„6(s —s') ds ds'; (4.4)

e„(x, ~) is a complex Gaussian process with band-
width k. The transformation properties of dB„
and c„under D' are

D'dB„(s, v)=dB(s, T 'v)=e ""+"'dB„(s,(u),

(4.5)

D'e„(x, ~) = e '""'e„(x,~). (4.6)

We denote by E „~ the linear space of random pro-
cesses subject to the transformation like (4.6)
under the operator D'. e„(x, &), therefore, is not
a stationary process unless n =0.

We expand the solution g also in a similar form,

((x, ~) = g A„(x, ~)e'"'", (4 7)

where A„(x, &) is a slowly varying narrow-band
process, "whose bandwidth is assumed to be suffi-
ciently narrower than 0; the assumption is valid
when o' is small enough. However, it is shown in

Appendix B that in the lowest-order approximation
the solution can be expressed as

IV. CUTOFF-WAVE MODE

A. Approximate method of solution

((x, ~) =A, (x, ~)e"*+A,(x, ~)e *"",

where the narrow-band processes A. , and A. ,
satisfy the set of equations

(4.6)

When jG(2k)~'CO, we look for a. solution of the
form (2.27) instead of the traveling-wave solution
(2.30). In this case the stationary process u(T"v)
can become zero for some x or ~. As implicated
by the heading, we have the solution whose ampli-
tude increases or decreases exponentially with x;
it corresponds to an unstable solution of the
Mathew equation (a forbidden state in the case of
Schrodinger equation). Therefore, the following
approximate method of solution is somewhat simi-
lar to that of Hill's equation for obtaining such a
solution. "' The method described here is valid
when v is reasonably small; otherwise the method
has to be modified.

Again we assume that e(T"~) is a Gaussian pro-
cess of the form (A22), which we rewrite as a
sum of band-limited processes,

(2i/k)A, '+e,A, +e,A, =0,

-(2i/k)A', +e,A, +e,*A, =0,
(4.9)

the prime denoting the differentiation and the argu-
ments x and being suppressed. In the higher-
order approximation, A.„, n4 +1, can be incorpo-
rated into the equations as correction terms.

Eliminating A, from (4.9) yields the second-
order differential equation

C u2 -2
A" — ' A'+ ——~ e —e' +e' —)e ~' A. =0.1 g 1 4 Q q 0 0 0 2 1

2 2

(4.10)

We observe that the coefficients of A. ,
' and A, are

the stationary processes belonging to X)0 because
of the property (4.6). Therefore, invoking the
theory inSec. II, we again look for a solution in the
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form (2.30),

r(, (x, ra)=exp J Xx(T' )da),
0

(4.11)

P(x, re)=exp(rdxe r„(T'ra)da)
p

2i
v(0, ~)exp -ikx+ X„"(T'ra) de),

0

where the stationary process &„(T"(d) satisfies
the differential equation

2 2'kCO + 62V (4.13)

we note that the random process v(x, (d) belongs
to %).„, namely,

D'v(x, ~) = e"")d(x, (d). (4.14)

By the transformation (4.13), (4.12) turns into the
equation for v,

X'+)(' —~ A. d. ——-~ e q' +e iq i 0A. A A 4 y p p p
"2

(4.12)

which is an equation in the space X)„. Putting
-(2i/k)v(0, (d) =e "e' ' (4.22)

(I)((()) being a real random variable. Multiplying
(4.21) by a constant 2e'~, we also have the solution
in the real form,

p(x, ra) =exp f (T'a)d raa
0

xcos
0

P„(T'~)da (I) (&u),

where we have put

(4.23)

(4.21)
which consists of two traveling waves in the com-
plex-conjugate forms; the individual traveling wave
can never be a solution, however. In view of (4.19)
we can put

V +62V + 'L~CpV —4I(l 62* =0, (4.15) X„(T"~) = n„(T"(d) + i P„(T'~) (4.24)
which is an equation in R». Once it is solved,
~~ and A, are in turn obtained. Since

1 2i, 2i
A = ——(=A + —A' = — VA-1

62
"0 1 P I P lP (4.16)

the solution (4.8) is now written

P(x, )=exp(r)rx X„(T ar)da). '
p

2i
(d(x, ~) exp -ikx+ )(„(T'(())d(i

0

(4.17)

=exp i&+~~ T & da
~ p

x)( — a(x, w)e "'*I (4.18)

i v(x, (d)i' =-,'k', Re(c, id) w 0, (4.19)

By (4.14) the term in the curly brackets is a sta-
tionary process belonging to Zp so that the approxi-
mate expression (4.18) also has the form (2.27)
(see Ref. 16). The two traveling waves in (4.17) do
not look like the complex conjugate of the other;
however, they can be transformed as follows.
Using (4.13), (4.15), and the relation (C3), namely,

Thus we notice that our solution (4.21) or (4.23) is
a totally standing wave which is randomly modu-
lated.

(dx dB de(s)

ei(s-d ) pk(2)[)dB (s) ZBQ(sp)]

e '""' ' '" k")[dB,*(s),dB,*(s'), dB, (s")],

(4.25)

(4.26)

(4.27)

e'(d d'- )xk(~)[dB (s) dB (s ) dB (s )] (4.28)

where (4.27) and (4.28) are third-degree bases.
We will see that the first term in the expansion
is already a fairly good approximation, but to show
the method of calculation we expand v in terms of
the first two bases,

B. Approximate solution for Gaussian random medium

We now solve the equation (4.15) for v when e

is a Gaussian process generated by the Brownian-
motion process as given by (A22). Since v is a
slowly-varying narrow-band process in X)„„gen-
erated by the processes c„&„and &,*, it is to
be expanded in terms of slowly-varying bases of
X),,„made up of the Wiener-Hermite differentials
associated with dB, (s), dB, (s), and dB,*(s). Some
lowest-degree bases of X).„meeting such require-
ments are"

which follows from the conservation law (Appendix

C), we can prove the equality,
v(x) =

/

Ei(s) e ""dB,(s)
u/2

v'(x, (() )/id (x, &u) = A.„*(T"v)—)(„(T"(d). (4.20) Il2(s, s')e'" ' '"dB (s)dB*(s').
Therefore, (4.17) can be recast into the form

(4.29)
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First of ail, we notice that, by means of the or-
thogonality of the wiener-Hermite differentials,
(e,v) becomes

S/2

(62v) = G(2k + s) F2(s) ds = p, .
-I /2

(4.30)

Substituting (4.29) into (4.15) and using (A8), we
obtain a set of the function equations for E's. The
first two lowest-degree equations are

~/2

Then (4.30}becomes

ik' " ' IG(2k+s)l'ds
p, =

», s+2i22 —N(s) ' (4.35)

which is a dispersion relation for determining p, .
Since p. is of the order of o', the right-hand inte-
gral can be approximated by a principal-value
integral for smail 0. Depending on the assumption
Rep, g0 in calculating the integral, we obtain

-2 SI'", (S) d-2

+ik G(s') E,(-s', s) ds'
u/2

(2k + s') E, (s') ds' E, (s)
S/2 ik2

p
4

IG(2k+ )I' ds+ )2
IG(2k)s

—,'k'G*(2k+ s) =0, (4, 31)
I
G(2k)l' ~

I
G(2k)l' (4.36)

i(s —s') E, (s, s')+2 G(2k+s")F (s ")ds" E (s,s')
~/2

~/2

G(2k+s")E (s, s")ds" E (s')
X/2

+ ikG(s)E, (s') =0. (4.32)

Neglecting the third term in (4.32) compared to
the fourth, we obtain

E, (s, s') =—-ikG(s)F, (s')/Ii(s —s')+2p. ]. (4.33)

Substituting this in (4.31) yields

which is consistent with the assumption; here
I
G(2k)l' denotes the gradient of the power spec-

trum at 2k and P indicates the principal value of
the integral which is evaluated approximately as-
suming I

Gl' is a slowly-varying function. Upon
calculating (A.„)using (4.13), we have (e,}=0.
However, in view of the fact that (s,v) given by
(4.36) is of the second order in o', we need to make
a correction to cp,

N(s) =k'

E, (s) = —,'(i k') G*( 2k +s)/ Is + 2i p, —N(s)],

I
G(s')I' ds'

S+S +2g JU,

(4.34)

6p~Cp —
g 6~ +8 E'~ (4.37)

on evaluating the average, these terms being taken
from the first bracket in (B4). Then we obtain

a/2

&, -=&&,&
= v + 2k l-ll G(k+s)l'+ —,', I G(»+s)l'+-'. IG(»+s)l']ds,

~-u/2

=—I + 2k'I -31G(k)I'++ I
G(»)I'+-.' I G(»}l'] (4.38)

Using these expressions for (.„Fd„and E„we obtain an approximate solution for v by (4.29) and i«u» ~&

by (4.13), which we can write"

ik ~/2s"* —G(s) s 2;(s,s')G(22+ s')ds') dsS, (s)
-I /2 -k/2

u/2

+ e'" ' '" G(2k+s)E, (s') k"' ldB, (s), dB,*(s')].
- e/2

(4.39)

In the approximate evaluation of various param-
eters in the next section, however, we neglect I'2

term which usually gives the higher-order effect
and also drop N(s) from the denominator of (4.34}
which is due to E, (see Appendix D).

Using (4.39) in (4.21) or (4.23), we obtain a rep-
resentation for g, by means of which we can exa-
mine the characteristics of the wave solution.
Since IG(2k)l'0 0, we have Re(e,v) w 0 by (4.30}and

(4.36). Therefore, the solution (4.21) or (4.23)

represents a totally standing wave without energy
flow (Appendix C). Furthermore, depending on the
sign of Re@., we obtain two modes of solution whose
envelope increases or decreases in the manner of

(4.40)

Because of these features of the solution, we con-
clude that the wave in the random medium with
IG(2k)l'220 is the cutoff mode. When IG(2k)l'=0,
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however, we need to investigate higher-order
terms to determine whether or not the mode is
cut off.

C. Average and variance of log-amplitude and phase

We calculate several statistical parameters
characterizing the wave solution (4.23}or (4.21),
using the approximate expression (4.39) without
I"2 term. We call

I&l =exp (aT &dta)'a (4.41)

the amplitude or the envelope and denote it by the
symbol IA. I. Also we call

o. =—-'(k'v)l G(2k)l' (4.44)

which we call the average log-amplitude incre-
ment (decrement).

We call (8)/x the average wave number and

(0&/x —k the wave-number shift which we write as

» = (P~&-=dk'I G(2k)I" —sk'I G(k)l'

+ —,', k'I G(2k)l'+ —'O'I G(3k)l'. (4.45)

This is independent of the sign in (4.43), but can
change its sign depending on the shape of the power
spectrum I

Gl'.
While the average log amplitude increases or

decreases linearly with x, the log amplitude has a
nonstationary fluctuation about the average value.
We show that the variance of the log-amplitude is
proportional to Ixl for large Ixl. I et us evaluate
the variance

x 2

d'=(IlaIldl —(1aldI&I'&=( (a„—(a„»da
0

e=kx+ P& T N Qg+ (4.42)
0

the phase (we discard Q in the following since we are
interested in 8 as a function of x). We interpret
the amplitude by the envelope and the phase by
the undulation (or the nodes} of the real wave form
(4.23), and not by the absolute value or the argu-
ment of a complex wave. However, IXI and 6 can
be measured by means of I1/Tl and argT of the
complex transmission coefficient [see Sec. IVE].

By (4.36), the average of the log amplitude is
given as

(Inla I&
= (~„&x= ~op, (4.43)

where

The asymptotic expression for large x (x &0) is
calculated to be (Appendix E)

d2 -—'vk~l G(2k)I2x (4.48)

For negative x, (4.48) is valid if one replaces x
by -x. Thus we find that the ratio of the standard
deviation to the mean, i.e. , d/(InlAI&, tends to
zero as x-~. To put it in another way,

—InlAI- —(Inlal&=~, (x- )
1 1
x x (4.49)

holds in the mean-square sense, that is, the log-
amplitude increment averaged over the distance
x approaches its mathematical expectation as
x-~. This is due to a law of large numbers. "
Comparing (4.48) with (4.43), we obtain an inter-
esting relation,

d' =,'~, IxI (4.50)

x F, (s')k" & [dB,(s), dB,*(s')j, (4.52)

the first and the second terms being orthogonal. "
tP can be calculated asymptotically (Appendix E},

[IG(2k)l'+4IG(0)l'lx= 1+4
G 2k . d',

(4.53)

which is again proportional to x, and we have
8/(6&-0 for x-~. Thus

1 1—O- —(6&=k+ak (x- ),x x
(4.54)

which is due to the ergodic theorem for the sta-
tionary process p„.

We summarize here the expressions of the
parameters &„hk, d', and 6I' for the 0-U and Z0
processes whose power spectra are given by (A26)
and (A29):

Average log-amplitude increment:

Similarly we evaluate the variance of the phase,

e'=(Ie-(e&I'&=(( ( (d„—(d„»da) ),
(4.51)

where

k a/2

p„—(p„& = —e, + Im e'" ' '" G(2k + s)A A 2 0 - A, /2

where
(4.46)

n /2

~~ —(~~& =Re ei (s- s' }x

-n /2

x G(2k d- s) E, (s'}k(2&[dB,(s), dB,*(s')].

(4.47)

g2 I(k2
G (o-v) ~

~2+4k'

Average wave-number shift:

(4.55)

(4.56)
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02' k4 k'
()(' + 4k')' 3 ()('+ k')

k~

16(~'+49') 6(~'+kk'))

(T2)( k4(/p 4k2)bk=
(~2 + 4k2)3 3 ()(2 + k2)2

k4 3k4
+ 2(a' 4k')'+ (&'+99')')

Variance of log-amplitude fluctuation:

(4.57)

(4.58)

(4.59)

process can change its sign. ~k shows the satura-
tion also. 8'(0-U) is usually larger than 8'(Zo)
because for the 0-U process

l G(0)l' is the largest
value of the spectrum. For the Zp process, how-
ever, lG(0)l' becomes zero. This is explained
by the fact that lG(s)l', lsl&-, k, which corresponds
to the slowly changing part of e', mainly affects
the phase. The saturation characteristics and the
law of large numbers (4.49) or (4.54) were also
observed in the case of random slabs. '

The above formulas for the statistical param-
eters and other related properties are experi-
mentally demonstrated by means of the computer
simulation of the random media represented by the
two processes. The details will be published in
a subsequent paper.

ak4
d =(x (, 4k, ), x (Z()).

Variance of phase fluctuation;

8' = (5 + 16k'/)c') d' (O-U).

6'=d' (z,).

(4.60)

(4.61)

(4.62)

We see that &p approaches a constant value in the
high-frequency limit k- ~, showing a saturation
characteristic. Clearly, in terms of average wave
number, the medium is dispersive. ~k for the
0-U process is negative at any k, but 4k for Z,

D. Average wave

In some papers, the average of the wave solu-
tion or the Green's function was studied. ' In order
to compare with those results, we calculate the
average using the expression (4.21) or (4.23). Here
we evaluate the average of one of the two complex-
conjugate waves forming a cutoff mode. As we are
interested in the behavior of the average wave for
large x, we again discard v(0, (d) or P(&) in the
calculation. For simplicity we approximate

~p + z i kcp neglecting h igher -order terms . We
first note the relation

exp
2

epT' da =exp -2 cpT & dQ

-exp(--,' vk'l G(0)l'x) (4.63)

holds for large x where lG(0)l'960. This becomes
a constant when lG(0)l'=0. Then, using (4.36), we
obtain

exp [-[o'k4/)(()(' + 4k') ]x) . (4.65)

Physically this implies that the fluctuating phase
mostly determined by &, is so strong that the in-
creasing amplitude determined by &, is overcan-
celled by the fluctuating phase. Equation (4.65)
agrees with the result from the other source. '
However, we have seen that when lG(0)l'& lG(2k)l',

exp ikx+Ap+ — e T da
2

exp' ("+&k)x+4k'))'(+I G(2k)l' —
I G(o)l') x)

(4.64)

for large x. We find that when lG(0)l'& lG(2k)l',
even the amplitude of the increasing mode (+ sign)
decays exponentially with increasing x. Thus, in
the case of 0-U process, the average amplitude of
the increasing mode becomes

as in the case of Z, process with
l G(0)l' =0, the

average amplitude of the increasing mode does not
decay with increasing x. In this connection we
notice that the exponential decay towards infinity
(x- ~) is not always a sufficient boundary condi-
tion for determining the average Green's function in
"free" space.

E, Transmission coefficient

The cutoff mode never transports the energy
through the infinite medium. If the medium is of
finite thickness, however, the energy is trans-
ferred by the leakage like the tunnel effect though
a cutoff microwave wave guide. Then, for a me-
dium thick enough, the energy transfer decreases
exponentially with increasing thickness.

We treat this problem as a boundary-value prob-
lem using the two independent solutions of the cut-
off modes. Let the increasing and decreasing
modes be g, (x) and g, (x), respectively. Then the
wave in the medium can be expressed as )i)(x)
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=a(, (x)+b(t), (x). Matching the boundary conditions
at x = 0 and x = L, , where I- denotes the thickness,
we obtain the complex transmission coefficient,

(,(0) g, (0)

()tI(0) ()),'(0)
0,'(L) —~~4, (L) 4.'( L) —f~l. (L)

(jI(0) + ikg, (0) (j",(0) + ikg, (0)

(4.66)

The numerator is the Wronskian which is a con-
stant independent of L. For large I., (j),(L) and

(l)2(L) are negligible, so that the asymptotic ex-
pression of 1/T becomes

1—-cone(x (', (&)+
&

(",(I)) . (4.6V)

We evaluate this using the solution (4.21). Using

the fact that v is a zeroth-order quantity in 0, and

neglecting the higher-order terms, we have

—-constxexp -ill+
T

~„'p* )a«), (4.()())

that is, the asymptotic form for 1/T is propor-
tional to the backward-traveling-wave part of
(4.21). Hence, 1/~T~ asymptotically is the same
with the amplitude ~A~ and argT equals the nega-
tive phase -O. The average and the variance of
In~ T~ and argT are, therefore, given by those of
In~A~ and 8 obtained in (4.S). In view of the prop-
erty (4.49), we can say that the transmission coef-
ficient ~T~ decreases with increasing thickness L
in the exponential manner

IT!-e (4.69)

almost certainly. Such a characteristic of the
transmission coefficient was also obtained in the
case of random stack of dielectric slabs' and

random point scatterers4; in the light of the pres-
ent theory, it can be explained by the white-noise-
like spectra of such random media.

Finally we note that, as shown by the present
example, some other boundary-value problems
in the random medium can be also treated in terms
of two independent modes of solution, such as an

excitation, or the "free"-space Green's function.
They will be studied in a later work.

Wiener integral. Concerning the notations and
definitions of the multiple Wiener integral we
follow the Appendix of Ref. 9. We point out that
we can introduce another representation for the
multiple Wiener integral convenient for solving
differential equations. In the present Appendix
we summarize the brief descriptions and formulas
concerning the alternative representation, which,
however, are made intentionally formal to mini-
mize the expositions; a rigorous argument can be
made in much the same way as in Ref. 9.

A. Brownian-motion process

Let B(x, &), -~&x & ~, be the Brownian-motion
process (for simplicity we often delete the proba-
bility parameter & from notations). The differen-
tial dB(x) =B(x +dx) —B(x) is a real Gaussian vari-
able with the zero mean having the property

(dB(x) dB(x')) = &(x —x') dx dx' (A1)

B. Fourier transform of differential

We write the formal Fourier transform of the
white noise dB/dx as

dB(s) 1

(2)) )')'2 e ""dB(x), -~&s&~.

(A2)

This is a complex-valued white noise on the &

axis whose real and imaginary parts have inde-
pendent identical distributions having the proper-
ties

dB*(s)=dB( s), -
(dB(s) dB*(s'))= 5(s —s') ds Kts',

(AS)

(A4)

where * denotes the complex conjugate. dB(s) is
sometimes referred to as a complex Gaussian
random measure. "

(dB/dx is the so-called Gaussian white noise). The
nth degree orthogonal functional made of the differ-
ential dB(x), which we call the nth degree Wiener-
Hermite differential, is denoted by
h(")[dB(x,), . . . , dB(x„)] [cf. (A5) below]. The defi-
nition and related formulas are summarized in
Ref. 9.

APPENDIX A

Wiener's nonlinear theory of the Brownian-
motion process has been investigated from various
points of view (for detailed references, see Ref.
9). A multiple stochastic integral with respect to
the Brownian-motion process was studied sys-
tematically by Ito" under the name of the multiple

C. Complex )wiener - Hermite differential

To simplify notations in the following, we write
dB(s) for d8(s) unless there is confusion: we
discriminate between dB(s) and dB(x) by their
arguments + and x. We define the complex Wiener-
Hermite differentials associated with dB(s) by
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P (0)

I&«&[dB(s)] =dB(s),

jg&2&[dB(s, ), dB(s )] =dB(s, ) dB(s2) —5(s, +s2) ds, ds2,

l&&3&[dB(s,), dB(s ), dB(s,)]=dB(s,)dB(s )dB(s ) —[5(s,+s )ds, ds dB(s,)i5(s ys, )ds, ds dB(s, )

+ f&(s,+ s, )ds, ds, dB(s, )], (A5)

dS ~ ~ ~ dS1 n

(2&&)"~' 1 1~g(B ~ + ~ oo+B ~ )8

x l&&"&[dB(x,), . . . , dB(x„)]. (A6)

etc. , which are obtained from I&'"&[dB(x,), . . . ,dB(x„)]
by replacing dB(x, ) by dB(s, ) an&i &&(x& -x;) by
&&(s, +s&). Formally, I&&"&/ds, ds„ is the Fourier
transform of I&'"' jdx, dx„;

1 '"'[dB(s,), ". , dB(s.)]

Qr thogonality relation:

(Pi&"&[dB(s,. ), . . . , dB(s, )]h& .&*[dB(s, ), . . . ., dB(sj )J)

=5„5&Jds,. ~ ds& 1 (A7)

where &",, equals the sum of all distinct products of
n delta functions of the form &&(s; —s, ),
i -=(i, , . . . ,i„),j=-(j„.. . , j ), all i, , and i occur-
ring only once in each product.

Recurrence formula:

dB(s, )I&&"&[dB(s,), . . . , dB(s„„)]=h&"""[dB(s,), . . . , dB(s„„)]

+g &&(s, +s,. )l&'" "[dB(s ), . . . , dB(s, ,)dB(s, ~, ), . . . , dB. (s„„)].
2

(A8)

PASO'I

Transformation property:

D dB(s, &d) =dB(s, T &u) = e '"dB(s, (u) (A9)

D'k'"'[dB(s, ), . . . , dB(s„)]= e '"&'"""l&&"'[dB(s,), . . . , dB(s )].
Complex Wiener-Hermite differential on the mixed basis:
We can consider the Wiener-Hermite differentials in terms of both dB(s) and dB*(s), which are &nterpret-

able by means of (A3); for instance,

l&"&[dB(s,), dB*(s2), dB*(s3)]=dB(s, )dB*(s2)dB*(s3)-[6(s, —s )ds, ds, dB*(s,) +g(s +s )ds ds dB(s, )

+ 5(s, —s, ) ds, ds, dB*(s,)]. (A11)

Other related formulas (A7)-(A10) can be likewise
interpreted,

D. Multiple Wiener integral

where

E(s„.. . , s„)= —,g E(s, , , s, ).IP ' ' ' 0 fl gt f1'P (A15)

The n-tuple Wiener integral with respect to the
complex random measure dB(s) can be defined by

Z„(E)=

(i) = (i„.. . , i„) running over all permutations of
(1, 2, . . . , n) and

00
~

Oo

(E, G)„= ~ ~

J E(s„,. . . , s„)

&& [dB(s,), . . . , dB(s„)] (A12)

x G*(s„.. . , s„)ds, ~ ds„. (A16)

When EeL'(R„) is a Fourier transform of feL'(R„),

for EeL'(R„). [L'(R„) denotes the Hilbert space
with the inner product (A16) below, R„referring to
the n-dimensional space. ] I„(E)has the properties

~.(E)=I.(E), (A13)

(~.(E)f (G))=&&.u&(E, G). , (A14)

Qo

")= (. &.i2
'+n)

&& f(x„.. . , x„)dx, dx„,

(A17)

then we have the equality in the L'[&] sense of the
two n-tuple Wiener integrals: l„(f)=E„(E).



THEORY OF WAVES IN A HOMOGENEOUS RANDOM MEDIUM

E. Orthogonal development of a functional of
Brownian-motion process

x[dB(x,), . . . , dB(x„)), (A18)

A nonlinear functional C'(~) with finite variance
has the orthogonal development in terms of the
multiple Wiener integrals (sometimes called the
Wiener-Hermite expansion}:

{)0 GO

4(~) =g ~ ~ f 'x„.. . , x„)k{")
n=Q a) woo ~ 00

O-U (Ornstein-Uhlenbeck) process:

g(x) =ov2x e"" (x &0),

=0 (x&0),

G(s) =rr(—)
K 1

l
G(s)l' =o'—,, (c, ){&0),

eisx
R(x) =&x'e ']"~ =o' — ds.

g ~K +S

(A26)

(A26)

(A27)

co

n=p
I„(s„.. . , s„)A{") Zp process:

g(x)=v2)t){ [1+){x]e'" (x&0),

x[dB(s, ), . . . , dB(s.)), (A19) =0 (x&0), (A28)

where f„and I'„are related by the Fourier trans-
formation (A17). Because of (A13), f„and E„can
be regarded as symmetric in their arguments.
(A18) and (A19) are different representations for
the same functional C'(&), which we may call x and
s representation, respectively, in a manner of
quantum theory. A discrete representation is the
well-known Cameron-Martin theorem. "

(ir)»+is ' '

2K s2
lG(s)l' ="—

s (){'+s')' '

R(x) =c'[1 —~lxl] e-'~ "].

Z„process:

(A29)

(A3o)

F. Stationary process generated by Brownian-motion process

i/2
S(x)=e(— »[2+4»x (»' rr')x']e"' (x»0),

C (T"z)=g ~ ~ ~

n=p
f„(x,—x, . . . , x„-x)h{")

A stationary process derived from C'(~) by the
shift can be given either in x or s representation,
using (Alo);

=o (x&o),

S2 —{)rs (s2 {)r2)2
G(s) =ac (, , lG(s)l'=c'c'

R(x) =v'(1+c, lxl+c,x')e "~"~

(A31)

(A32)

(A33)

x [dB(x,), . . . , dB(x„)], (A20)

=Z
n=p

x Ii{")[dB(s,), . . . , dB(s„)]. (A21)

A particular case gives a real stationary Gaussian
process

where c, c„and c, are functions of K and &, which
can be easily obtained. All these processes are
one-sided moving averages: The 0-U process is
a well-known Gaussian Markov process; the Z,
process is a double Markov process with zero
spectrum at s =0, and the Z„process is a triple
Markov process with zero spectrum at s = o( (ng0).
The corresponding Langevin equations can be
readily obtained using the expressions for G(s).

e(T"{())= g(x' -x) dB(x') = G(s)e""dB(s),

(A22)

APPENDIX B

Substituting (4.7) into (2.1) gives

G(s) = I g(x)e""dx, G*(s) =G(—s),
2)f J

with the covariance function

R(x) = (e (T"~)e ({d))

g(x'-x) g (x') dx'

I
G(s)l'e*'" ds.

(A23)

(A24)

Q A„"+2ikA„'+[(ink)'+k']A„
~ OQ

+O' Q s„„r()
e'"'* =0.

m=-~

Neglecting A„" and equating each coefficient of
e'"'" to zero, we have a set of equations for the
narrow-band processes A.„:

2in
A„' —(n'-1)A„+ Q e„A„=0,

m=-

n =0, al, +2, . . . . (B2)
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Since A, and A, are of zeroth order, we treat
the equations with n =+1 as the dominant equations
and the other as perturbations. Noting that the
resonance frequency (n'-1)k/n, lnl~2, lies out-
side the band, we neglect A„' for the approximate
evaluation of A„;

1
A„= 2 [6„&A&+ 6„+&A &], n 0 k1.

n, —1 (Bs)

Substituting this into the dominant equations, we
have

2i, 2, 1 2 1—A'+ e ——le I'+- le I'+ —l~ I'+"I 0 3 1 8 2 3 3 1

+e —e'+ —e e+ A =0 (B4)

2s, 2, 1 2 1——A' + e ——le I'+ —le I'+ —le I'+

+ e,* —e,*'+ —e,e,*+ ~ A, =0. (B5)

We see that the coefficient in the first square
bracket belongs to Z0 while that in the second be-
longs to X)»~ and that the effect of A„,n& +1, on
the dominant equations is of the second order in o'.

Hence the lowest-order approximation is tanta-
mount to neglecting A„, n+ +1, from the beginning.

APPENDIX C

We consider the conservation law following from
the equations (4.9) and (4.15). From (4.9), we
easily obtain

IA, I' —IA. , I' =const. , (cl)
which shows the energy conservation of the ap-
proximate solution (4.8). From (4.15) we obtain

I
vl' + (I vl' --,k')(e, v+e,*v*)=0,

which means

k', Re[&,v]&O,

Ivl' =const. , Re[e,v] =0.

(c2)

(cs)

(c4)

(c8)

These relations can also be understood by the
relation following from (4.11), (4.13), and (4.16);

l Ã

Ix, l' —Ix, l' = 1 ——,
I

el' exe x Re&e, r &ee} .
0

(c5)

When Re[e,v]4:0 holds (see Sec. IVB), we have (CS),
such that

E'0 contributes only to the phase fluctuation of the
solution.

APPENDIX D

The conservation law
I
vl' =-,'k' implies that the

complex vector of the random process v lies on
the circle with radius —,'0 and that only the phase
angle of v varies as a random function. We will
check this for the first-order approximation,

E, (s)e ""dB,*(x),
n/2

ik' G*(2k +s)
4 s+2i&&,

The random part is to be successively cancelled
by taking the higher-order terms in the expansion.
We calculate the first integral for sufficiently
small 0':

I C(2k + s}l~d$
18 „, s'+[-,'k'~IC(2k)l ]

=
8

(Ds)

which is one half the correct value 4k', that is,
the radius of the complex vector (Dl) is about
O. V of the correct value. The upper limit ~&' can
be approached by adding the higher-degree terms
in the expansion. It is shown that the inclusion of
E, term as well as the third term based on (4.28)
does not improve

I
vl'. It is because those terms

are generated by e„which never affects the con-
servation law (see Appendix C). It is, however,
shown that the third-degree term based on (4.27)
gives rise to the additional constant about yak
to (D2), which makes up three-fourths the correct
value &k'. Thus the increase in the number of the
terms makes the constant part of

I

vl' closer to 4k'
and the random part smaller.

APPENDIX E

First we note the asymptotic formula for large
x (x&0),

QX dx
Pl &e

R(x' —x")dx'dx"
0

where the & term is neglected. Then

&/2 u/2

I
Z (s)l' de+ F, (s)F,*(s')

- O/2 -u/2

x e'&' ""k&'&[dB,(s), dB,*(s')].

(D2}

which means there is no energy flow.
It should be noticed that the conservation law

above does hold regardless of &0: in other words,

JI (x') dx' = 27&P (0)x,

(El)
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+ G*(2k + s')E,*(s)I'ds ds'. (E2)

P(t) is obtained from (E2) by changing the vari-
able by t=s —s', t'=s+s', and taking the coeffi-
cient of e"". P(0) is, however, easily obtained,

0/2
P (0) = —

I G(2k + s)E (s) + G*(2k + s)E, (s) I

s ds.
-~/.

We evaluate this using the approximate expression

where u(x) is a stationary process with the co-
variance function R(x) = (u(x)u(0)) and P(0) denotes
the value at f =0 of the power spectrum P(t) which
is the Pourier transform of R(x). (El) is valid
for x&0 if x is replaced by IxI.

We apply (E1) to the stationary process n„- (o'„),
whose covariance function is given by, using (4.47),

e/2

R(x) = — e'" ' '" IG(2&+s)Et(s')

Q4 ( 0/2 4v'
P(0) =, „ IG(2~+s)l' „,ds4' &-~/2 S +T)

=
I5 I G(2&)l'

Substituting this into (El) gives (4.48).
We again apply (El) to p„—(p„) and calculate

the covariance function, using (4.52),

y2 &/2

R (x) = — e""
I G(s)I' ds

-a/2

1 ~/
+ — e'" ' '"IG(2k +s)E, (s')

-~/2

—G*(2k+ s')E,*(s)I'ds ds'. (E8)

—G"(2k+ s)E,*(s)I'ds,

(E7)

The value of the power spectrum at the origin is
&/2

P (0) = —
I
G(0)I'+ —

I G(2k+ s)E, (s)4

which agrees with (E5) when IG(0)I'=0. Substi-
tuting this into (El) gives (4.58).

~V. I. Tatarskii, The Effects of the Turbulent Atmos-
sphere on 8'ave Propagation {Israel Program for
Scientific Translations, Ltd. , Jerusalem, 1971).

2B. I. Halperin, Phys. Rev. 139, A104 (1965).
3H. L. Frisch and S. P. Lloyd, Phys. Rev. 120, 1175

(1960).
4H. Ogura and S. Nakano, Electron. Commun. Jpn. 54-B,

89 (1971).
U. Frisch, Probabilitistic Method in Applied Mathe-
matics, edited by A. T. Bharuha-Reid (Academic,
New York, 1968), Vol. l.

6H. Ogura and S. Nakano, Electron. Commun. Jpn. 54-B,
81 (1971).

~E. T. Whittaker and G. N. Watson, Modern Analysis
(Cambridge U. P., Cambridge, 1927), 4th ed.

N. Wiener, Nonlinear Problems in Random Theory
{M.I.T. Press, Cambridge, Mass. and Wiley, New

York, 1958).
9H. Ogura, IEEE Trans. Inform. Theory IT-18, 473

(1972).
J. L. Doob, Stochastic Processes (Wiley, New York,
1953).

iN. J. Vilenkin, Special Functions and the Theory of
Group Representations (American Mathematical Society,
Providence, 1968) .
When n or g js a periodic function with period L, the
Floquet solution has the form {see Ref. 7),

@(x)= e "u),(x), u ~(x + L,) =u), (x), A.: const. ,

which is derived by means of the invariance under
periodic translations.
There are a number of &(T"~) such that (2.31) yields a

solution X(T"~) ((I A. I
t) &~): in fact, one can substitute

any {differentiable) stationary process for A, in {2.31)
to obtain such ~. For arbitrary c, however, one can
not always obtain X with (I XI )& ~ from (2.31).

~4In this case g(x, u&), a functional of e, is regarded as a
functional of the Brownian-motion process. Such change
of the basic probability space may be allowed if the
measure F' of e is absolutely continuous with respect
to the measure of the Brownian-motion process: for
instance, it is so for the 0-U process.
C. Hayashi, ¹nlinear oscillations in Physical Sys-
tems (McGraw-Hill, New York, 1964).

6We note the transformation property of A„: Putting

A„(x,~) = exp

we write

x
A,&(T'cu) da a„(x,~),

0

g(x, cu) =exp [ik+A. (T &)]da a„(x,a)e'("
0 n

in the form of (2.27). If+„a„e'(" tl * is regarded as
D'-invariant, the process a~(x, ~) belongs to g)

~~A constant, i.e. , a zeroth-degree basis, doesnotbelong
to Q». By (A10), (4.4), and (4.5), the Wiener-Hermite
differentials appearing in these bases can be written

h ) [dBO {s),dBf (s')1 = dBO (s)dB*(s'),
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