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A Heisenberg-picture treatment of spontaneous emission is given, and the origin of radiative line shifts

and widths is discussed. It is shown that radiation reaction and vacuum fluctuations provide comple-

mentary conceptual bases for the interpretation of these radiative corrections. Alternative approaches
are discussed, including the use of a random classical field to simulate the effects of the quanturn-

electrodynamical radiation field.

I. INTRODUCTION

The concept of spontaneous emission was intro-
duced by Einstein' in 1917 in his classic derivation
of Planck's radiation law. It was generally felt
that this phenomenon could be attributed to the
radiation reaction of the atomic-transition dipole
moment back on itself, in complete analogy to the
radiative. damping of a classical oscillating dipole.
For example, in a letter to Nature in 1924 Slater
writes: "The part of the field originating from the
given atom itself is supposed to induce a proba-
bility that that atom lose energy spontaneously,
while radiation from external sources is regarded
as inducing additional probabilities that it gain or
lose energy, much as Einstein has suggested. . . . '"

On the other hand, Welton's heuristic argument
concerning the Lamb shift' influences many mod-
ern physicists to attribute spontaneous emission
to the effect of vacuum-field fluctuations. Indirect
support for this point of view comes from semi-
classical radiation theories. Such theories4 do not
quantize the radiation field and typically do not
allow spontaneous emission from an atom in any
pure excited state. Thus the vacuum fluctuations
of quantum electrodynamics are perceived to be
the essential ingredient of a radiation theory,
necessary to provide the triggering mechanism
that releases the atom's stored energy in spon-
taneous emission.

Recent work' showing that the natural width and
shift of an emission line may be attributed to ra-
diation reaction has revitalized interest in the
radiation-reaction interpretation of spontaneous
emission. The purpose of this paper is to show
to what extent the concepts of radiation reaction
and vacuum-field fluctuations provide equally valid
conceptual bases for the interpretation of spon-
taneous emission. A preliminary report of this
work has been given in a recent letter. '

Before giving any detailed arguments, it is per-

haps useful to review the context in which the idea
of spontaneous emission arises. One studies the
properties of isolated atoms in two steps. First,
the interaction between the electron and the elec-
tromagnetic field of the nucleus is considered;
at this stage one ignores completely the coupling
of the electron to the free radiation field. The
result of this analysis is that the atom has certain
stationary states of well-defined energy. The
second step is to refine this initial result by intro-
ducing the interaction between the electron and
the free field as a perturbation. This refinement
reveals that only the lowest-energy state is a true
stationary state with a well-defined energy. All
the excited states have a certain width in energy
and decay —spontaneously —by releasing energy as
electromagnetic radiation. Moreover, all energy
levels are slightly shifted from the values obtained
in the initial calculation.

In discussing spontaneous emission, then, we

may regard the problem of the interaction of the
electron with the nucleus as solved. We need only
treat in detail the refinements produced by the
electron's coupling to the radiation field. More-
over, since we are interested in a physical inter-
pretation, not accurate numerical results for
level shifts and widths, it is adequate to carry
out our analysis within a nonrelativistic frame-
work.

In Sec. II we describe the Hamiltonian and obtain
the equations of motion for a one-electron atom
coupled to the radiation field. In Sec. III we intro-
duce an approximation technique and verify that a
second-order calculation yields just the expected
nonrelativistic results. In Sec. IV we note that a
two-level model of the atom is adequate for our
purposes. The two-level model is then used in
Sec. V to show that radiation reaction and vacuum
fluctuations provide equally valid bases for the
physical interpretation of spontaneous emission.
Section VI contrasts our results with those of other
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workers and resolves a certain discrepancy. In
Sec. VII we conclude by mentioning the connection
of this work with other approaches.

The states ln(t)) span the Hilbert space of the
atomic system. In this basis it is easily seen
that the atomic HamiltonianH~ may be written as

II. EQUATIONS OF MOTION FOR AN ATOM INTERACTING
WITH RADIATION FIELD

H~= F.„n t n t = E„o'„„t,
where

(6)

For our purposes, the nonrelativistic Hamilto-
nian for a one-electron atom' interacting with the
electromagnetic radiation field may be written as

2

H = p ——A +V(r)+ — d'rE ',
2M' C 4m „

where m and e (&0) are the electron mass and
cha, rge, respectively, p =m dr/dt+(e/c)A is the
momentum conjugate to r, A is the Coulomb-gauge
vector potential evaluated at the electronic posi-
tion, and E = (1/c)d-A/dt A(r, t. ) may be ex-
panded in plane waves normalized in the volume
V as'

2 tt'5 c
A(r, t) = Q V

[ak~(t) e'"' ' eI~+H. c.],
k, X.

(d„V
(2)

where k ~ ek), = 0, A. = I, 2 being the polarization
index, eqq ~ e-„*~.=5„~, and ~, =kc. a-„~(t) and

a& ~(t) are, respectively, the Heisenberg-picture
photon annihilation and creation operators for
mode (k, Z):

H =H~ H~ H,.„,,

where

(4)

+ V(r), Hz -— Z hv, a& ~azz,
2 Pl k, X.

The quantization volume V is assumed at this point
to be finite, but eventually will be allowed to be-
corne infinite in order to admit all radiation modes.
For definiteness, let V be a cube of side I., so
that (k„,k, , k, ) = (2w/L)(n, , n, , n, ), where n, , n, ,
n, take on all integral values.

The Hamiltonian (1) may be written

(d „P,„v„ t
m n

(8)

where hu& „=E —E„and p„=&n(0) fer(0) lm(0)) is
the electric-dipole-moment transition matrix
element between states n and m; p,„to if there
is an allowed (electric-dipole) transition between
states n and m.

The operators v„(t) will be referred to as the
atomic oPe~atoxs. They provide the multilevel
generalization of Dicke's' spin operators for two-
level atoms. It is easily seen that the atomic
operators obey the commutation rule

[;,(t), v„(t )] = 5,.„„(t)—5, , „.(t) .

Using the representations (6) and (8) for H„and
p, respectively, the Hamiltonian (4) becomes

H =g E„v„„(t)+ g h~, a-„~(t) a~ ~(t)
A k, )

+ih g g g Cq „v„„(t)[a& (t)+a-„(t)],
m n

(10)
where we define

v„(t) = exp[(i/h)Ht]v„(0) exp[(-i/h)Ht] .

In the absence of any perturbation, v„„(t)= v„„(0).
In general any atomic operator A(t) has the

representation

&(t) = g Q &n(o) IA(0) lm(o)) v..(t). (7)

In particular the linear momentum operator p(t)
has the representation

p(t)=Q Q &n(o)lp(0)lm(o)) v. (t)

H;„, =-(e/mc)A(0, t) p+(e'/2mc')A'(0, t).

%e have adopted the dipole approximation and have
evaluated the field at the position of the nucleus.
This approximation is expected to be accurate if
the orbital "radius" of the electron is much srnall-
er than the relevant transition wavelengths. In

what follows we neglect the small A'(0, t) term.
The Schrodinger-picture stationary states of

the atom will be labeled l1), l2), l 3), . . . , where

H„ln(t)) =E„ ln(t)) =E„e ' " ln(0)).

kXnm @, rr +mn Pnm kX. '

The polarization vectors e» have been taken to be
real (linear polarization basis).

Mathematically the problem of the interaction
of the atom with the field is defined by the Heisen-
berg equations of motion based on the Hamilto-
nian (10), the commutation rule (3) for the field
operators, and the commutation rule (9) for the
atomic operators. One further commutation rule
is required to define the problem unambiguous-

ly —that involving the atomic and field operators.
It will be assumed that atomic and field operators
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akim(t)

= iz(-a(, l,(t)+PP ck,„.o„.(t),
m n

o, , (t) = iz, , o;-, (t)

(12)

+ g P P C(, l„[5,„o; (t) —5; o„,(t)] ag (t)
k, X m n

+g g P C»„„a-„',(t)[5,„o,.(t) —5,„o„,(t)].
k, X m n

commute at t = 0, or that the interaction is
"switched on" at t =0." Unitarity of the time
evolution then requires that all equal-time commu-
tators of atomic and field operators vanish. This
renders the ordering chosen for atomic and field
operators in (10) irrelevant for the calculation of
numerical magnitudes relating to the atom-field
interaction.

Choosing a normal ordering, in which photon
annihilation operators are placed to the extreme
right and creation operators to the extreme left,
we may write the Heisenberg equations of motion

III. APPROXIMATE SOLUTION OF EQUATIONS OF MOTION

In this section we describe a procedure for the
approximate solution of the equations of motion
(12), (13). Formally integrating Eq. (12), we have

it
ak „(t)=ak l,(0)e ' ~' +Qpck l,~ ' dt(on~(t() e

m n w 0

(14)
Assuming the atom-field interaction to be weak
compared with the internal forces of the atom,
we expect the atomic operators to evolve very
nearly according to their free evolution o,„(t)

ie&,o;-, (t). Hence we may use in Eq. (14) the
approximation' '

o (t ) o (t)e limn(&( (1~)

This will be referred to as the adiabatic aPProxi-
ma~ion, and is shown to be equivalent to the Weiss-
kopf-Wigner "pole" approximation in Appendix A."

Using (15) in (14) and substituting into (13), one
obtains the approximate atomic equations of
motion,

o;„(t)= ie„o,s(t )+—g g Qc-„„„~a(,~(0) e' ' [5,„o(~(t) —5(~o„&(t)]
k, X. m n

+Z ++CAN~. [5;.o, (t) —5; o.l(t)]a( l(0)e '""
k, X. m n

—Q Q Q Q r„,(, (~~( t)[5l„o; (t) o((t) —5; o„,(t)o(~(t)]
m n l p

+ g g gg r.*„„((u„,t)[5,„o„(t)o, (t) —5,. o„(t)o„,(t)],
m n t p

(1 6)

where

»(~ll, t) =—
2 &„vl, Q (2wtl/~l V)(t „eke)

k, X

x(g e- ) dt e' ' ('"'" " (l7)
4 0

This expression for r„»((d~„ t) can be simpli-
fied by performing the summation over the field
modes. As V- ~, the summation becomes an in-
tegral, and we have

2~n
rn~ll (~ll~ t) = - s n ll3' pc

Since we are only interested in times long com-
pared with any of the ~(o»~ ', we may use the well-
known approximation"

t
dt, e' " "l'( " ' -=((5(v —(o~, ) -i&[1/((d (d, )],

0

which leads to
2(d„(d~gr„„((o„,t)-=""," u„. t(„U((d„)

2s~ Q)d (dnm pl
3((hc' " » (~ —(o )

t nml p ynmlp &

where U is the unit step function.
The final two terms of Eq. (16) can also be sim-

plified by using o, (t)o»(t) =5,o;~(t) to yield

o,.„.(t) =-i (o,, —Q (y, , —y, ,),, (t)- Q()3, , P, ,)o, (t)+&,, (t) —Q Q (tt, , iy, ,)o; (t)—
m m m p&j

&mmp
+ Y&~mp +pj ~ + mf jp ~mfj p mp mj fp + 3 mj jp +pm (21)
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where we have moved all the nonvanishing contributions of the fourth and fifth terms of Eq. (16) which are
proportional to o,, into the first two terms of (21), and have abbreviated the second and third terms of
(16) by

X,, (t) = Q Q Q C- „e~ (0)e' s'[6,.„cr,. (t) —6, o„,. (t)]

flag

m

+P P P C-„„.[6,„~,.(t)-6,.o„,.(t)]~„(0)e-*+'.
m n

(22)

+ji &j mmj &immi

I (23)

represents a frequency shift for the j -i transi-
tion. Writing

aji = -ap.j+aF.
enables us to identify

(24)

=-q,s; ~ l. (;.I* f (25)

as the level shift of state ~j). This is just the di-
vergent expression to which Bethe" applied his
famous renormalization. Recovering this result
verifies that the approximations used to derive
Eq. (21) are valid in the sense of second-order
perturbation theory.

Again for i', we see that in the second term of
Eq. (21),

(dj + 3 gi CO ~

j&m i&m

(26)

where j&m means F,. &E, represents the natural
linewidth of the j -i transition. This again is the
result of second-order perturbation theory. '4

It is important to bear in mind the two basic ap-
proximations made in obtaining Eq. (21) from the
Heisenberg equations of motion. First we made
the adiabatic approximation (15) based on the as-
sumption of a weak interaction of the atom with
the field. Then the approximation (19) followed
from an interest in long-time nontransient dynam-
1CS.

With the derivation of Eq. (21), the computation-
al portion of this section is complete. We next
discuss some implications of this equation.

For i wj we see, in the first term of Eq. (21),
that

/q (o)& =
/ 0, (o)& @ [(0]&, (27)

where (t „(0)& is an arbitrary initial atomic state
and ~(0]& the vacuum state of the field. When ex-
pectation values are taken on both sides of Eq. (21)
in the state (27), (X„.(t)& =0, and no role seems to
be played by the vacuum field. Based on this re-
sult for the two-level atom, Ackerhalt, Knight,
and Eberly' have concluded that the radiative cor-
rections can be understood solely on the basis of
radiation reaction: The adiabatic approximation
(15) has given unambiguously a separation of the
field operator into two parts, the vacuum or free-
field part and a source part,

e-„,(t) = e-, ~ (O) e -*"s'+~"~ (I), (28)

and only the source part ak(t) seems to be re-ss)

sponsible for the line width and shift. The relation
between the source term and the usual notion of the
radiation reaction field is discussed in Appendix

&6

It must be emphasized, of course, that greater
prominence is imparted to the effect of radiation
reaction only after expectation values are taken.
The vacuum field certainly plays a crucial role,
even if it is hidden by taking vacuum expectation
values. That role is to assure the preservation of
equal-time commutation re.ations, without which

The fourth, fifth, and sixth terms on the right-
hand side of Eq. (21) oscillate at frequencies dif-
ferent from that of cr, j and produce very small
changes in these shifts and widths. Their effect is
analogous to that of the counter-rotating term in
the Bloch-Siegert problem. "

The third term on the right-hand side of Eq. (21),
X„.(t), is the only term which explicitly contains
the vacuum or source-free part of the field opera-
tor. All of the other terms in the equation contain
no explicit reference to the vacuum radiation field,
and can be interpreted as constituting the effects
of the radiation reaction of the atom back on itself.
The essential result of the adiabatic approximation
(15) is that the atomic equations are simplified to
the extent that the effects of the vacuum radiation
field are contained entirely in the term X,, (t ).

In the study of spontaneous emission it is of in-
terest to consider the evolution of the system from
an lnltlal state
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the equations of motion are meaningless. The im-
portance of retaining operators with vanishing ex-
pectation values in operator equations of motion
has been emphasized by Senitzky" in a related
problem.

Obviously the vacuum field did not contribute to
the expectation values above because of the use of
normal ordering. This suggests that in a different
ordering we may find an explicit contribution from
the free-field part to vacuum expectation values,
and this is indeed the case. '" Naturally the final
result must be the same as that obtained using the
more convenient normal ordering, since equal-
time atomic and field operators commute. Thus
the problem becomes one of interpretation.

In a certain sense, the above considerations are
forced upon us by the necessity, quantum mechan-
ically, of retaining both terms on the right-hand
side of Eq. (28). In a classical description of a
vacuum-field problem the homogeneous part
ai, l (0)e ' 2r is taken to be zero Qu.antum mechan-
ically, however, the homogenous part must be re-
tained for the fundamental purpose of preserving
commutation relations; initial conditions are rele-
vant only to expectation values. In this connection
it is interesting to note the surprising successes
of the classical radiation theory which departs
from the usual (classical) boundary condition of
equating to zero the homogeneous solutions of the
field equations. ' As Boyer" clearly demonstrates,

this theory is completely within the framework of
the classical Maxwell theory, and represents a
departure only from an arbitrary but conventional
choice of boundary condition. We discuss this
theory in the context of spontaneous emission in
Sec. VII.

In the sense in which we use the term "radiation
reaction, " it may be said that when normal order-
ing is used the only part of the field which acts on

the atom is its own radiation-reaction field, at
least insofar as vacuum expectation values are in-
volved. The result is a complicated expression
[Eq. (21)] in which each transition dipole is acted
upon by its own radiation-reaction field as well as
the reaction fields from all the remaining possible
trans ition dipoles.

IV. TWO-LEVEL MODEL

In order to discuss more fully the connection be-
tween radiation reaction and vacuum-field fluctua-
tions in the interpretation of radiative corrections,
we consider for simplicity the two-level model of
the atom. Only in the two-level model is there the
simple interpretation of a single transition-dipole
moment damped by its own radiation-reaction
field. We emphasize, however, that our main
points are equally demonstrable in the multilevel
formalism.

From Eq. (21) the approximate two-level-atom
equations of motion are

„(t)=-'( „-tl„-tp„)„(t)+p C- „[„(t)—o„(t)]a- (0)
k, X

+ g Ci, l,a„l, (0)e' &'[o„(t)—o' (t)]+('p„„—iy„, +p,*„,+iy,*, )o„(t),
k, X

(29)

plloll(t) +2p2ll2o22(t) + 2 [Cu xl2ol2(t) Cil l2lo2l(t)l air e(0)e
k, X

+ p ai,z(0)e'"&'[CT, x»o»(t) —C2x»o»(t)], (30)

o„(t)= —P„o„(t)+ 2P„„o„(t) + g [C-„„o„(t)—C-„„o„(t)]a- (0) e '

+g ~ l (0)e ' '[Ci, &»o» (t) —Ci, l „o»(t)],
k2X

(31)

and the equation for o2l(t) =o'lt2(t) is just the Hermi-
tian adjoint of Eq. (29).

If level I is taken to be the ground state and the
dipole matrix element p» is taken to be real, a
substantial simplification of notation results, since
Pll P1221 P2121 t P22 @ 2112 P1212 P21 Pt

~2121 ~1212

where

and

2 2 3
P.12(do

3@c

2 2
3mhc'
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COO = Q~) .
We can then write Eqs. (29)-(31) in terms of the
usual notation for the atomic inversion

v, (t) =o„(t)—v»(t) =2g»(t) —1

and for the atomic polarization

g(t) =g, (t), g (t) =g, (t) .

The two-level analogs to Eq. (21) are then

g(t) = -i((u, —t»)g(t) —po(t)

(34)

(35)

QC~, g, (t)a~, (0)e ' "

+Q C„-,a„-) (0)e' »'v, (t) —i(Z —iP)g'(t),

(36)

g, (t) = -2&[1+g,(t)]+2g C [g'(t) + g(t)]

&&a„-~(0)e '~»'+2 + C„-„a~~(0)e' »'[g(t) + v (t)],

(37)

where C~~ =C~~» is real.
The first two terms of (36) contain the frequency

shift and width and the final term gives the very
small antiresonant corrections to them, while the
third term is the only one which contains explicit
reference to the vacuum radiation field.

Taking the expectation value in a state such as
(27) causes the vacuum-field contribution to dis-
appear from these equations:

V. RADIATION REACTION AND VACUUM

FLUCTUATIONS

v(t) = -i~.v(t) —Q CT~[g.(t)aT'„(t)+a-,~(t)g, (t)],
k, X,

(41)

g, (t) =2 g Cs,a»(t)[g(t)+g'(t)]
T&, x

+2+ CT~[v(t)+g'(t)]aT'„(t). (42)

Formally integrating Eqs. (40) and (42), we have

a»~(t)=a-„),(0)e ' »'+C-„~ dt, v (t, )e' »'& "
0

dt, g(t, )e'~»~'j (43)

The results (38) and (39) were derived using
normal ordering. In order to show that the radia-
tion-reaction interpretation of these equations is
dependent on this seemingly innocuous choice of
orderings, we carry through, in this section, a
similar calculation using an "antinormal ordering"
(photon creation operators to the extreme right and
annihilation operators to the extreme left). 1n this
calculation we use the simple notation of the two-
level model introduced in Sec. IV. We emphasize
again that a complete multilevel calculation, lead-
ing to results analogous to Eq. (21), produces the
same conclusions.

The two-level-atom Heisenberg equations in
"antinormal" order are

a T&~(t) = —i&a»aT&z(t)+CT&»v (t) —CT&zg(t), (40)

(g(t)) = -i((o, —a)(g(t)) —P(g(t)) —i(A —iP)(v (t)),

(g.(t)) = -2&(1+ (g, (t))) .

(38)

(39)

Thus the radiation-reaction interpretation also
carries through into the two-level model.

In general, the two-level model may be a good
first approximation for problems involving a quasi-
monochromatic external field tuned to an atomic
transition, as illustrated, for example, by the the-
ory of self-induced transparency. " In vacuum-
field problems, however, the two-level model is
much less successful as an accurate description
of a real atom. In particular, it is seen in com-
paring ~ with 4, ; that the two-level radiative fre-
quency shift is a poor representation of the multi-
level result, since all but one of the virtual transi-
tions are excluded. However, since it mirrors in
some fashion all the essential features of the real-
istic multilevel atom, the two-level model is ade-
quate for our purposes.

t
o, (t) =o,(0)+2+ C»q dt, a kz(t, )vt(t, )

k, X. 0

t

+ dt, a-„),(t, )g(t, )
0

+ dt, gt (t, )a k~(t, )
0

t

+ dtot ay t, . 44
0

aT, (t ) =aT, (t)e '"»~'~ '~

g(t }—=g(t)e '"o"~ " (45)

We next make this adiabatic approximation in the
final terms of Eqs. (43) and (44) and substitute
those equations into (41}. Retaining only terms to
second order in the coupling constant we obtain
the analog to Eq. (36),

The adiabatic approximation gives, in the two-lev-
el model,
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a(t)=-tte a(t) — g Cjea, (0)ajt(0)e' ' —Cj (t)f dt e
k, X 0

+2 g g CT, ),C)t„ot(t)a&„(0)aT,), (0)e'& )

0k, ~ ff, u

+2+ g CT( C)(„o(t)a- (0)a T), (0)e'&"- "'
k, X

+ 2 + g C k &C)t „a )t „(0)et(t)a 7 &
(0)e' "«'

)

k, k p, ~

+2 g g CT, C-„„a-,„(0)cr(t)aT, (0)e'&

)

+0~& 1 0) M C ot(t) dt e t&~« ~o)& i
kX

k, k
t

&-i(~& -uo)(tz 0)

dt e '(~j '~o)('z-')

dtze'(~v'~0)('z ')

dt e' (46)
k, X

where we have used the fact that v, (0)o(t) may be replaced by cj,(t)cj(t) = -o'(t) to remain in second order.
Taking expectation values in the state (27) yields, in second order,

r
&o(t)) =-i~, &o(t)& —&o(t)) p C' [2&aT~(0)a-„„(0)&—I] dt, e '&~),"-~())«j-0')+

Q

t t
—(a (t)) P Cjt(2( -et(0)aet(0) )) ——jddt, e't ' ta 't ~ f dt, e 't

T, x 0 0

g & ( QJp Q) 0) (g z1

(47)

We have deliberately not made use of the fact that
& cc T), (0)a T), (0)& = 1 atthis 'stage. If we use that fact,
we can readily perform the sum over modes, using
the approximation (19), to give

&o(t)& =-i(~. -&)(o(t)& -P&o(t)&

-i (a- iP) & ot(t)& . (48)

This is once again just E(I. (38), as is to be ex-
pected. But looking back to Ecl. (47), we see that
the contribution from the vacuum fluctuations does
not vanish, as it did in Ecl. (38); rather, we may
now interpret A (and similarly p) as t0 =2t}v);—+R,
where ~v, .-=~ is the contribution from the vacuum
field fluctuations and 4~R= & is the contribution
from the radiation reaction of the source back on
itself.

Thus we have found that when normal ordering
is used the entire contribution to the shift comes
from the radiation reaction, whereas when anti-
norrnal ordering is used 2A comes from the vacu-
um field fluctuations with another —6 from the ra-
diation reaction '" If a s.ymmetric ordering (half
normal and half antinormal) is used, the entire
shift stems from vacuum-field fluctuations. ' For
other orderings neither the radiation-reaction nor
vacuum-fluctuations term produces the entire
shift; rather, each contributes a portion comple-
mentary to the other. The two interpretations of
the shift of the emitted line are equivalent, the in-
terpretation depending as it does on the particular
ordering chosen for commuting atomic and field
operators. The two interpretations "are merely
two sides of the same quantum-mechanical coin,
with each. . . being an oversimplification motivated

by the ordering scheme adopted. "" The situation
with regard to the width of the shifted line is some-
what subtler, and in Sec. VI we consider the line-
width question by investigating the two-level atom's
lifetime.

VI. INTERPRETATION OF ATOMIC ENERGY LOSS

o.(t) =2/ CTX[&T~(t)o'(t)+~(t)~T, (t)],
k, X,

o (t) = -i(u,o (t) —g CT),ay(t)o, (t),
k, X

aug(t) = -i (d«a Tq(t) —CT,vcr(t),

(49)

(50)

(51)

in antinormal order as in Ref. 18.
Formally integrating Eels. {50)and (51), one

finds

t
o(t)=a(0)e-' "—g Cj, f «, aj, (t, )

xo. (t )ei0)C&t) t)- (52)

Regarding the decay of (o, (t)&, it was stated in
Ref. . 6 that "there is no ordering which would attri-
bute the decay entirely to a vacuum-fluctuation ef-
fect." This appears to contradict a conclusion of
Senitzky, "namely, that both the (o{t)& and &o, (t)&

equations can be interpreted on the basis of vacu-
um-field fluctuations. In order to resolve this con-
tradiction, a brief analysis of the decay of (o', (t))
will be given here.

Since it does not affect our results, we take the
rotating-wave approximation version of the equa-
tions of motion„
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t

aT&(t) =aT&(0)e '")' —CTz dt, o(t, )e'"2O2 'i .
0

(58)

Using now the adiabatic approximation o(t, )=-,o(t)e ' 0'2 ' and a-„~(t,)o,(t, ) =—a T~(t)o, (t)e '~2('2 ') in Eqs. (52)
and (53), and substituting these equations into (49), we have

t
o,(t) =2+ Cgqag)(0)ot(0)e ' ~) ~() ' —2 p g CIRC)t„o', (t)aT, (0)a (t)e '~2' dt, e' ~)t ~() '2 '

kX, Tf, & Pv 0

t
—2 g g C2 Cdt„(t)a(0c)t'e' f dt, e'l la 'l+H. c. ,

k, X 0
(54)

where we may replace a-„„(t)by a-„„(0)e ' )2' to remain in second order.
The final step is to take the expectation value of (54) in a state such as (2'|):

(ir (t)) 2g C c=t-(a, (t))(a2t(0)a2e(0)) ( dt, e't dt' 'l +a.c)
k, X

2 t
—QC2 ( (tel a(0))cte "' tdt, e't dt' 'lac. c),

T&, x 0
(55)

where again we have written &aI),(0)a T), (0)& rather
than unity to show explicitly the effect of the vacu-
um field. If we replace &aT~(0)a)), (0)& with unity,
we can again perform the sum over modes using
the a,pproximation (19) to give

&',(t)) =-2'(I+& .(t)&) (58)

&'.(t)) =-2 E CT,.& (t) '(o)&
X, x

t
xe' 0' dt, e' I ~o "i "+c.c. -4 o, t

0

(56)

where now we must remember that the final term
is the one which stems from vacuum fluctuations.
Senitzky" now considers the initial atomic state
to be i+&, the excited state. Then from Eq. (56)
it is seen that all but the vacuum-fluctuation term
in (55) vanishes to give

& o, (t)& —= -4P& o,(t)& .
This gives the correct Einstein 4 coefficient for
the decay of the excited atomic state, resulting
entirely from vacuum field fluctuations. But this
is not the whole story. If the atomic state is any-
thing other than a pure excited state, the radiation-
reaction terms give an essential contribution to the
motion of &o,(t)).' This is to be expected. Equa-
tion (5't) cannot be valid, for example, for the atom
in the ground state; it would predict spontaneous
absorption& For the consistency of our second-
order approach we should replace the term
&o(t)cr (0)&e'"o' in Eq. (56) by &o (t)o(t)&. Then the
correct equation for & o,(t)) for an arbitrary initial
atomic state contains this radiation reaction con-

tributionn:

Thus only when vacuum fluctuations and radiation
reaction are both accounted for is an antinormally
ordered calculation free of spontaneous absorption
difficulties; the solution of Eq. (5t) when the atom
is initially in the ground state is &o,(t)) = -1, and
the atom remains in the ground state as it should.

We have shown, therefore, that for a proper
antinormally ordered calculation of the decay of
& o, (t)) we need both the vacuum field and the
source field. Vacuum field considerations alone
do not suffice; it may be shown that this is true
regardless of the ordering scheme used.

In a different framework, one concerned with
atomic fluctuations as well as vacuum field fluctu-
ations, this point has already been emphasized by
Fain." He has shown that for the initial state
i
-) (8)

i (0)& (atomic ground state, vacuum field)
the vacuum field fluctuations, which would lead to
unphysical spontaneous absorption, are exactly
canceled by atomic fluctuations.

VII. CONNECTION VfITH OTHER APPROACHES

The essential results of this paper concern the
interpretation of radiative corrections as contained
in Secs. V and VI. Here we simply mention some
connections between this work and other approach-
es.

The atomic operator formalism can provide more
physical insight than the usual perturbation-theory
approach; in some cases it is computationally
simpler. For example, it is a trivial matter to de-
rive the Ladenburg dispersion formula under the
approximation {o„„(t)&= 5„„where i0& is the atomic
ground state; the Kramers-Heisenberg formula
follows by relaxing this restriction slightly to al-
low for Kramer's "negative oscillators, ""i.e.,
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the possibility of transitions to the ground state.
The operator formalism also provides better in-

sight into semiclassical radiation theories. For
example, the neoclassical equations' for spon-
taneous emission are easily derived by decorre-
lating expectation values of the type (A(t)F(t)& into
Q. (t)&(&(t)&, where A(t) and I"(t) are, respectively,
atomic and field operators. The polarization cor-
relations in the atomic cascade discussed by
Clauser" are easily found by considering a corre-
lation function of the type (at (t)ats(t)as(t)a„(t)&. "
The corresponding deeorrelation (c-number field)
gives the neoclassical prediction.

Although it is not our purpose here to discuss
the various theories of spontaneous emission, '
some brief comments are in order regarding the
use of classical zero-point radiation to mimic the
effects of the quantum vacuum field. In particular,
we have in mind using Boyer's concept of zero-
point fluctuations in the classical electromagnetic
field. " Where vacuum expectation values are to
be taken in the quantum-mechanical case, one
would instead average over Boyer's statistical
distribution of the phases of the fluctuating zero-
point classical electromagnetic field. It appears
that such an approach will give plausible results
whenever the final expressions (whose expectation
values are evaluated) are of a particular structure.
Namely, there are terms bilinear in the field and
the positive- and negative-frequency parts appear
additively as the total field in these terms. This
occurs in the linearization approximation in which
the atom is essentially replaced by a harmonic os-
cillator. " For example, the quantum-mechanical
operator equations in the derivation of the van der
Waals force between neutral atoms are formally
the same as Boyer's classical equations"; Boyer's
classical fluctuating zero-point field plays the role
of the quantum-electrodynamical vacuum field.

For the spontaneous-emission problem, we have
noted above that the line shift and linewidth may be
attributed totally to the vacuum field fluctuations
when a symmetric ordering is used. Precisely in
the symmetric-ordering case does the total radia-
tion field appear as the sum of its positive- and
negative-frequency parts. This suggests that we
can derive the line shift and linewidth by incor-
porating Boyer's concept of a classical zero-point
radiation field into the standard semiclassical
model (quantum matter, classical electromagnetic
fields). Consider the Bloch equations for a two-
level atom interacting with a classical zero-point
field

where

x(exp[i(k r —e,t+8& ~)]e„-~ +c.c.)

and the constants are adjusted so that
(61)

—(E,'(r, t)& = —Q ,' ti(u,—, (62)
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APPENDIX A

Our basic approximation has been the adiabatic
approximation, which we now show to be equiva-
lent to the Weisskopf-Wigner "pole" or "on-shell"
approximation. "" For a two-level atom initially
in the upper state and no photons in the field, the
"essential states" are I g, &

= ~+&l(0]& and ly;g&
~-&13 ~1„-~&, respectively, the initial state and the

state in which the atom is in the ground state and
one photon is in the field. The state vector at
time t may be written

k &

(A1)

where ( &e denotes an average over the random
phases. Now we integrate Eq. (60) and substitute
it into Eq. (59), following the same method as in
the quantum-mechanical case, but replacing vac-
uum expectation values by ( )R. We find after
phase averaging

x(t) = -i(~, —D)x(t) —Px(t) i(6 —iP—)x*(t) (63)

which is the exact analog of Eq. (48). Thus we have
a successful extension of Boyer's analysis (classi-
cal matter interacting with a classical electro-
magnetic field that contains zero-point fluctua-
tions) to quantum matter. " The classical zero-
point fluctuations supply the effects of the quan-
tum vacuum field which are absent in the usual
semiclassical calculations. In fact, it is clear
that Welton's argument' is already formulated in
the language of a classical zero-point field.

x(t) = -i+,x(t) + (~,/hc) p, ~ A, (0, t)z (t),

z(t) = -(2m /hc)N, ~ A (0, t)[x(t) +x*(t)],

(69)

(60)

and the Schrodinger equation becomes

b(t) = —P C- b- (t), (A2)
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bq~ (t) = —i((u~ —coo)bq), (i) + Cq„b(t), (AS)

with C&~ defined as in Sec. IV and with the energy
scale defined by taking the unperturbed energy of
state ~P,) to be zero.

We have for b(t) the equation

&~2 (,)
A (t) =g a„- (t)e„- +H. c.

4t)pV
k &

2~ac' "'
Cq„„eqq dt, o„(t,)

(d~ V 0
m n

t
b (t) Q C df b (f )

si(Id'-wpXty t)

b (f) ~ C df &i(~ Ido)(t& t) (A4)

xe&»"~-t)+ H c

Letting V- ~, Eq. (B1) ma. y be written as

4i
Ass(t) =

3 Q Q ~, &nm

m n

(B1)

in the adiabatic approximation. Following the
same procedure used throughout this work, Kq.
(A4) is replaced by

b (t) = -(P —i a")b (t),

where

2 2
~(a) 2M120 p3@+'

(A5)

(A6)

APPENDIX B

To justify our use of the term "radiation reac-
tion" in this work, we now show that the source

(s)
part of the field operator, a-, ~(t), gives an expres-
sion for the total (operator) reaction field of the

form well known from classical electrodynamics.
The source part of the vector potential operator,
evaluated at r = 0, is

-h6~'~ represents the level shift of the initial state
~P,). It is easily shown that the level shift in the
final state ~Q„-q) is -hh '; thus the frequency shift
of the transition is —(6' —Ld ) = —b. The atomic-
operator formalism we use gives frequency shifts
dir ec tly.

Within the Schrodinger picture, therefore, we
have shown that the adiabatic approximation yields
results identical to those of the usual "pole" ap-
proximation. "

t
x dt, o„(t,) sin~(t, —f),

0
(B2)

where 0 is the usual high-frequency cutoff required
in nonrelativistic calculations. All the integrations
over frequency in this paper must be understood as
having this cutoff.

Using the representation (8) of p(t), we have

4e
(~) =-

S,
4e

3 71'm c

4e
37tmc2

f
9 t

de &u dt, p(t, ) sine(t, —t)
0 0

a sinD(t, —t))'1p'1
Bt, t, 't

(
w dp(t) (BS)

for 0- ~. 'This is the form of the radiation-re-
action field well known from classical electrody-
namics. For example, if we write p(t) =mdr(t)/dt
we have for the radiation-reaction field the famil-
iar result

1 dA»(t) 2e d'r(t) 4eQ d'r(t)
c dt Sc' dt' S&c' dt'

(B4)

for a point particle. Note, however, that our field
variables are quantum-mechanical operators.

These results justify our use of the term "radia-
tion reaction" as the quantum-mechanical generali-
zation of the well-known classical concept. For a
more detailed discussion we refer the reader to the

paper by Ackerhalt and Eberly. '
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