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We present rough variational upper-bound estimates of some low-lying bound-state energy
levels of two-electron systems, including H, He, and Li, in magnetic fields B above 10 G,
a regime that is relevant to recent astrophysical studies of pulsars. The simple trial wave
functions that we use in the Rayleigh-Ritz calculations consist of single antisymmetrized
products of single-particle orbitals which are predominantly magnetic in their spatial charac-
ter. Most importantly, our results indicate that in the regime 10 ~ B ~10' G the H ion
has at least one singlet and one triplet bound state; at 2 x 10 G, e.g. , the ionization energy
of the triplet ground state of H is greater than 12 eV. (The number of bound states of H in
this regime of B may be much greater; moreover, the number of levels and their depths is
expected to increase monotonically with B.) These results appear to contradict a recent indi-
cation that there might not be any bound states of H above 10 G. For B ~ we also present
the approximate leading asymptotic terms for the total (nonrelativistic) energies and correspond-
ing ionization energies of some low-lying states of two-electron systems with nuclear
charge Z ~ 2.

I. INTRODUCTION

The supposition that intense magnetic fields B
of order 10" G exist within pulsars' has stimulated
interest in the structure of atoms under these con-
ditions. We report here' variational upper-bound
estimates of some low-lying bound-state energy
levels of two-electron systems, including H, He,
and Li', in magnetic fields above 10' G; H and
He may be particularly important from an astro-
physical viewpoint.

The trial wave functions 4, used in the Rayleigh-
Ritz calculations are constructed from single-
particle orbitals that are based on an adiabatic
approximation, described below, in which the mag-
netic interaction assumes a dominant role over the
Coulomb interaction in setting the character of the
solutions. For the atomic systems considered
this approach is expected to lead to reasonably
accurate trial wave functions for J3 above approxi-
mately 10"G. We have considered states of both
singlet and triplet symmetry with various values
of M, the conserved eigenvalue of the z component
of the total orbital angular momentum. 4, is writ-
ten as a single antisymmetrized product of these
orthogonal "magnetic" orbitals; for each case, we
have included the determinantal configuration which
we expect represents the principal contribution to
the lowest state of given symmetry. This form of

4, is still simple enough to enable us to carry
through the calculations of the expectation value of
the Hamiltonian analytically.

As the field B rises above about 5&&10' G, the
Larmor radius for the motion of an electron in
the plane perpendicular to the magnetic field be-
comes less than the Bohr radius for hydrogen,
and the magnetic interaction of the electron in a
hydrogen atom begins to dominate over its Coulomb
interaction with the proton. In the adiabatic ap-
proach one neglects the effects of the Coulomb
interaction with regard to this cyclotron motion of
the electron in the plane perpendicular to B. At
sufficiently high values of B, this same approach
will be valid for all electrons, including the inner-
most, in a many-electron atom. Note, however,
that by the time the Larmor radius of an electron
is comparable to its Compton wavelength, which
occurs for B=3&10"G, relativistic effects, which
we do not consider, are expected to play an impor-
tant role.

Perhaps surprisingly, even with these simple
trial wave functions, the H ion is shown to have
at least one singlet and one triplet bound state in
the range 10' ~ B~ 10"G. Beyond about 10"G
our energy estimates for H do not indicate that
H is bound, but we attribute this to inadequacies
in the wave function for H in this limit, as dis-
cussed in Sec. II. Actually there may be many
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more bound states of H in this intense-magnetic-
field regime than the two presented here; more-
over, the number of levels and their depths are ex-
pected to increase monotonically with B. The
existence of bound states of H in this intense-
magnetie-field regime appears to contradict the
recent indication' that H becomes unbound above
10' G. This conclusion is based on energy esti-
mates with 4', a linear combination of functions,
the radial parts of which are Slater orbitals and
which thereby stress the spherical "Coulomb"
character of the problem. While appropriate for
lower magnetic fields, these orbitals are not sepa-
rately particularly suitable for intense magnetic
fields, B~10'G, where the wave function is highly
distorted, being much more tightly bound in the
plane perpendicular to B than along the z axis.
A very large number of Slater orbitals and large
l values would be required to reproduce such be-
havior, and therefore the decrease in the binding
energy of H in this region reported in Ref. 3 is
perhaps merely reflecting the inadequacy of the

This is confirmed by the fact that the decrease
is pushed up to higher values of B when the number
of orbitals is increased. '

In addition to solid-state applications, ' the pres-
ent adiabatic approach has been used previouslys
in the pulsar context to estimate the ground-state
and corresponding ionization energies for atoms
with Z~10. In these calculations 0, was restricted
to Hartree product form, with exchange contribu-
tions included in rough fashion; for two electron
systems, and particularly H, where exchange
interactions play an important role, an antisym-
metrized 4, is expected to be more reliable. Re-
sults have also been obtained for heavy atoms. In
a "strong" B-field regime, that is, 10'Z~'B &10"Z'
G, a one-dimensional Thomas-Fermi-like model
was found to be valid, "but a statistical model is, of
course, untrustworthy for a two-electron system,
and is not even valid for negative ions. (This
model has also been extended to atoms under pres-
sure in the pulsar crust. ') At still higher values
of B, B»10' Z' G, approximations to the leading
terms in the ground-state energies were obtained, '
but the simple wave functions used are of a form
most reliable for heavy atoms and ions, and, more-
over, the asymptotic limit that was derived is not
approached, for Z of the order of 2, until B is
above 10"G. Finally, we note that recent calcula-
tions indicate that it is extremely favorable on
energetic grounds for many-electron atoms to
combine to form one-dimensional molecules, and
even long filaments containing many atoms. ""
Whether or not this conclusion is also valid for
two-electron systems is unclear, but, in any case,
it would be useful to study the atomic case.

II. VARIATIONAL CALCULATION

The nucleus with charge Ze is assumed infinitely
massive. B is uniform and oriented along the z
axis and is assumed strong enough for a complete
Paschen-Back effect with the spin-orbit interac-
tion neglected. The Hamiltonian for the two elec-
trons is then written

H =H'"(r„p„s,)+H'"(r„p„s,)+e'/~r, —r, ~,

where s, and s, are the electron spins and II' ',
the Hamiltonian for a hydrogenlike system in a
magnetic field including the interaction of the
electron's spin with B, can be expressed as"

H"' = P'/2p + —,'(o, I, + —,
' pa', p' ge'/r -+ u&, s, , (2)

where ~,—= eB/p, c is the angular Larmor frequency,
g is the electron mass, and l, and 8, are the re-
spective z components of the orbital and spin an-
gular momentum operators. The operators rep-
resenting the projection along the z axis of the
total orbital and spin angular momentum, I., =l&,
+l„and S, =+8, +s&, , respectively, as well as the
operators 9=(s, +s,)' and parity, all commute
with II, and the corresponding eigenvalues
(M; S, M„ II) are good quantum numbers for solu-
tions of Eq. (I). (We note that this notation is
slightly different from that used in Ref. 3.) The
eigenfunetions of both II and II'" factor into spatial
and spin wave functions. The spatial wave func-
tions are written 4(r„r,) and 4' '(r), respective-
ly. The eigenvalues are written E =E,p, +5+ M,
and E' ' =E',,'„.', +A, m„where rn, A = +2k is the
eigenvalue of s„and we have decomposed the
energies into spatial and spin contributions.

First, we briefly discuss the form of the spatial
eigenfunctions 4"'(r) and corresponding eigen-
values E"' of H'0' given in Eq. (2) for intense
magnetic fields. These solutions are the basis
functions used to construct trial solutions for the
two-electron case. In the adiabatic limit pre-
viously described, the motion of the electron in
the perpendicular plane is taken to be independent
of the Coulomb field; the solutions for the per-
pendicular motion are therefore the Landau mag-
netic wave functions, "with corresponding eigen-
values (excluding the spin contribution)

(3)

where the quantum numbers for the perpendicular
motion are n&= 0, 1, 2, . . . , which denotes the num-
ber of nodes along the p direction, and rnS =0,
+I, +25, . . . , which is the eigenvalue of l, . As is
well known, each energy level in Eq. (3) is infinite-
ly degenerate. For intense magnetic fields, the
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separation h(u, between energy levels in Eq. (3)
is large compared to Coulomb binding energies,
and the Coulomb interaction will not cause signifi-
cant mixing between states of different nz. (At
10" G, e.g. , h(c&, =10' eV. ) We therefore choose
states with n&=0 and express 4' ' in terms of the
normalized ground-state Landau wave functions
(n ~

= 0, m = 0, -1, -2, . . .) as

4." &( r)= C. ,.( p, 4)f(z), (4)

where we suppress the m dependence of f (z),
first index of 4 denotes the value of n&, and"

4 =(&&p'ImI!) ' '(p/p)! !e &' '~ e' ~, (5)

with p=—(2hc/eB)'~' the cyclotron radius. (This
definition of p is consistent with that of Ref. 8,
but differs by the factor v2 from that in Refs. 4
and 6.) Note that the parity of 4, „is (-1) . This
form of the solutions 0 "' becomes exact in the
limit B-~. Upon substitution of (4) into the Schro-
dinger equation, multiplication by 4, , and inte-
gration over variables p, 4&, we obtain a one-di-
mensional Schr6dinger equation for f (z)

[P!/2p+Vj.!(z))f(z)=&Ii f(z), (6)

where the effective potential V! !(z) is given by

Vt !(z)= -«' I4'. .I'(p'+ )z"pdp&A

V!.!(z}=-Ze'/(IzI+p ).

The eigenvalue spectrum for this latter potential
has been studied previously, '4 and the principal
results are the following: Provided p &a„which
is of course true for the intense-field limit, the
energy levels of this potential for a given value of
m include, in addition to an infinite sequence of
levels which approximate the Bohr levels, one
deep level corresponding to a state with f (z) node-
less. The leading term in the energy of this deep

('7a)

Since for the states in question c~=-,'k„ the
eigenvalues E"& [more precisely, because of the
steps leading to Eq. (6) these are upper bounds
on the energies] are then approximated by

z&» =-'I-~+~I ~+m I-.
S (vb)

The low-lying eigenvalues of Eq. (6) for ImI~5
have been numerically calculated" at two values
of B (2X10' and 2x10&2 G). Since I4, „I'p is sharp-
ly peaked in p at the value p =p =- p(ImI+-,')&~', we
can replace (p'+z') '~' in Eq. (Va) by (p' +z') &~'.

The further replacement by the (lower-bound)
estimate (p„+ IzI) ' leads to the much simpler and

still reasonably accurate one-dimensional Cou-
lomb-like potential

level is given by

eI ! = 4Z-'E in'(a, /Zp ), (8a)

where E„=-13.6 eV. The results of Ref. 13 also
show' the existence of this deep level for the exact
potential V! !(z). An approximate variational esti-
mate of this deep-level energy for the exact V! !(z)
can. be obtained simply with the trial function

f, (z) =N,e ', where n is a variational parameter
and N, is the normalization factor. As B-~, the
leading asymptotic term in the result, in this ap-
proximation, is

eI ! = -(8/»)Z'E„ln'(a, /Zp ). (8b)

[This follows from the nonasymptotic variational
expression given in Eq. (13).] This asymptotic
expression will be compared with comparable ex-
pressions for two-electron systems.

The trial spatial wave function, 4', (r„r,), which
we use to calculate the expectation of H given in

Eq. (1), is taken to be a, spatially symmetric (for
singlet states) or antisymmetric (for triplet states)
product of the lowest adiabatic solutions 4'"' con-
sistent with the Pauli principle. If the electron-
electron interaction were completely neglected,
the lowest singlet state would place both electrons
in the adiabatic state with m =0 and with nodeless
f(z); the lowest triplet state would have the elec-
trons described by adiabatic solutions with m =0
and -1 and with nodeless f(z). [As seen from
Eq. (8b), there is some loss in binding energy if
we place the second electron in the adiabatic state
with other than m =0, as will be necessary if we
choose a nodeless f (z); however, it is much less
than the loss that would occur if the second elec-
tron were placed in the adiabatic state with m =0
and with an f (z) which is not nodeless. The energy
of such a state is approximately -EH, as compared
to the deep binding of the nodeless f(z).] The
energy spectrum would also include a series of
singlet and triplet states in which one or both elec-
trons had higher values of ImI.

We expect that this approximate description of
the low-lying states for a two-electron neutral
atom in the intense-field limit continues to provide
a reasonable description of the true solutions when
the electron-electron interaction is included. This
is based first on the fact that approximate calcula-
tions' of the leading asymptotic term for the
ground-state energies of heavy atoms yield a value
of 1/3 for the ratio of the magnitude of the total elec-
tron-electron interaction energy to the electron-
nucleus interaction energy. " Second the electron
probability distributions corresponding to the
ground-state adiabatic solutions are roughly con-
fined to thin cylindrical shells of radii p, width

p, and length ao/Z. From classical electrostatics
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the interaction energy of repulsion of two such
shells, each of total charge -8 (either with the
same or different radii), always remains a frac-
tion of the interaction energy of attraction of both
shells with the point charge nucleus of charge +2e
at the origin, and this remains valid in the limit
B-~ when the ratio of the cylinder's radius to
length goes to zero, because p and p scale with
B in the same way.

Analogous arguments will of course apply to
positive two-electron ions such as I i'. However,
for the negative H ion the situation is not as
straightforward. Firstly, in the strict B-~ limit
the repulsive energy of two cylindrical shells,
each of charge -e, ultimately becomes greater
than their net attractive energy with the single
proton. It is not then surprising that our results,
based on our particular trial function, do not, in
the limit B-~, prove that any bound states of H

exist. (The results for H do, however, still give
binding for B in the range 10"~ B~ 10" G when

the corresponding cylindrical shells are not quite
one dimensional. ) As B increases, other configu-
rations will become important in. 4„configura-
tions with larger values of ~m~, which represent
electrons occupying "cylinders" of larger radii
and which thereby increase the p extension of the
wave function. It is expected that H will continue
to have bound states. Once the intense-field re-
gime is achieved there is no apparent reason for
H becoming unbound; on the contrary, as B in-
creases further the principal effect of the magnetic
field at this stage is to confine the electrons, at
least with regard to their perpendicular motion.

In the trial functions, the f (z) are taken, for
simplicity, to be Gaussian functions, with the
values of the parameters in the exponents to be
determined variationally in the final energy esti-
mates. Although the correct dependence of the f (z)
from Eq. (6) is asymptotically exponential, we

choose the Gaussian form which permits us to quite
easily carry out analytically all the integrals in-
volved in the estimation of (II). With these basis
functions the eigenvalues MS of L, reduce to m,
+m, (m, and m, are not, of course, separately
good quantum numbers), and the upper bounds to
the total-energy eigenvalues, including the spin
energies, are then given by

E ~k~, +E, +A~, M„
where the first term represents 2m~ and w'here E,
is the expectation value with respect to @„"'(r),

2g +2p, ~, ~,
'

~r, -r~
We have evaluated Eq. (Bb) for the lowest singlet

state with M=0 and even parity, using the trial

function

e, (M =O, S =O) =C'„,(p, )e, .(p.)f, (z, )f, (z, ),

and the lowest triplet (-) and singlet (+) states
with M = -1 and odd parity, with

4(M = -1,S =1,0) = 2 '~'[C, ,( p, ) 4, , ( p„P,)

x f, (z, )f, (z, ) +(1—2)],

(10)

where f, and f, are the normalized even-parity
Gaussian functions

f, (z) = (o'l~)"e

f.(z) (P!v--)"e ' (12)

Note that for the forms of 4, under consideration,
we have II=(-1) .

III. DISCUSSION

A schematic diagram of the lowest energy levels
of Eq. (1) for H from B =0 to intense magnetic
fields is shown in Fig. 1. At B =0 there is only one

bound state, a singlet state with a binding energy
of 0.75 eV. At intermediate magnetic-field
strengths other singlet and triplet states will
abruptly become bound. In order to determine
whether a given state of H is bound, that is,
whether its ionization energy I(H ) =E'o'(H) —@(H )

is positive, we must compare the energy of H

with the lowest energy of a hydrogen atom in the
magnetic field plus a free electron in the magnetic
field, for the same set of good quantum numbers

(M; S, M„ II). For comparison then we have in-
cluded in Fig. 1 the lowest-energy states of a free
electron, E,~

——S&,(m, + —,'), with m, = a-„and the
lowest energy levels of a hydrogen atom, E"'
=h&, (m, + —,')+e~, , again with m, =+~. In addition to
the adiabatic calculations of Ref. 13, which are ex-
pected to be quite accurate at the higher values of

B, the lowest eigenvalues of II"' have also been
calculated over the range 10'-10" G with a variety
of other approaches. "" These results appear to
agree quite well and appear to have converged,
and we have used these results for E'"(H) for
B & 10" G and our results for E(H ) to estimate the
ionization energies of the states of H .

Our estimates of E, for H ar'e variational upper
bounds. Provided the energy results for hydrogen
are accurate, our estimates of the ionization ener-
gies of H will then represent variational lower
bounds —the second electron can only be more
tightly bound than in our estimates. For the trip-
let states under consideration, (M; S, M„ II) re-
duces to (-1; 1,M„-), with M, =1,0, -1; the cal-
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H (tt, -O, -I)

-I -2. . )

m=O, - I)

m=0, 0)

1,-2, ... )

- 15.6 eV

- 14.3 eV

I NTERMED I ATE

0 (&IO G)

B

INTENSE

(&10 G )

FIG. 1. Schematic diagram of the energies of some
low-lying states of an electron, a hydrogen atom, and a
hydrogen ion as a function of the magnetic-field strength
B. The designations of intermediate and intense B are
very approximate. The various curves are labeled by
the electron-spin projections and the distributions of m

values {& denotes a spin projection parallel to 8). For
clarity, the binding energy of the singlet H state, rep-
resented by the separation of the H (&t-& t, m =0, 0) and

H(&, m=0) curves [since the corresponding e(&) curve
has zero energy] and equal to 0.75 eV at B=0, is shown
on a greatly enlarged scale. This has also been done
for the triplet H states beyond the point at which they
first become bound. We have also indicated the energy
separation A~~—= eB/pc between curves for e, H, and H

corresponding to different electron spin projections for
one or both electrons.

culation of I(H ) involves a comparison of the
total energy E(H ) of H with the total energy of
a hydrogen atom with quantum numbers m=0 and

m, plus the energy of a free electron with quantum
numbers m = -1 and nz,', where m, +m,' =M, . For
the lowest-energy configuration of a hydrogen
atom plus free electron with a value of M& 0, the
electron in the hydrogen atom will have the value
m =0, while the free electron will assume the
value m =M—which has the same energy as a free
electron with I=0. For the singlet state under
consideration, (0;0, 0;+), the calculation of f(H )
involves comparison of E(H ) with the total energy
of a hydrogen atom with quantum numbers m =0

and m, plus the energy of a free electron with
quantum numbers I =0 and m,', where m, +I,'=0.
Consequently, it should be clear that there is no
spin contribution to &(H ) for either the triplet or
singlet state.

The points shown in Fig. 1 where the triplet
states of H have a discontinuous change in deriva-
tive, that is, first become bound, are chosen rela-
tively arbitrarily; a much more careful calculation
would be required to reliably locate where this
occurs. The result for the energy of the singlet
state lies above that of the corresponding triplet
state for intense B, which then implies a crossing
point at some lower value of B, as shown. This
result could, however, be due merely to a particu-
larly poor choice for the trial wave function of the
singlet case. We note that the results of Ref. 3
show the singlet state (0; 0, 0; +) is unbound for
intermediate B from B~ 10' G to the upper limit
of B for which results are presented, B =3.3x10'
G, and hence if these results are correct the ener-
gy curve of the singlet state would join that of the
appropriate H+e state in this intermediate re-
gime. Also, the point at which the triplet state
(—1; 1, -1; -) first becomes bound is given in Ref. 8
as B=4x].08 G.

Estimates of E, [Eq. (Qb)] for H for the states
(0; 0, 0; +) and (-1; 1, -1; -) are presented" in
Table I for B from 10"to 5~10" G. The ioniza-
tion energy of these states is simply —E, +a~~, and
values are included in Table I if results for e',

1
are

available. The ionization energies for the triplet
state of H are largest, indicating that the negative
electron-electron exchange contribution outweighs
the slight loss in binding of the m = —1 electron. For
the singlet state with M = -1 the ionization energies
are never positive. In general, however, we would
expect singlet and triplet states of H with arbi-
trary values of M&0 to eventually become bound„
and also the number of such states for given M to
increase with B. The decrease in ionization ener-
gy of H that w'e obtain in going from 0.5&10" G
to 2&&10" G, for both the singlet and triplet cases,
is presumably not real but rather a reflection of
the crudeness of the trial function, commented on
previously, for such strong B fields.

Results for E, for He and Li' are presented" in
Table II. Unfortunately, accurate estimates of
c~, for Z =2, 3 are not available, and hence we can-
not reliably estimate the ionization energies.
Rough estimates of the ionization energies can be
obtained, however, by comparison of E, with the
simple variational estimate of c~, described earlier.
Using the Gaussian form for f (z) with parameter
&, the total variational expression for the energy
[in contrast to the minimized leading asymptotic
result in Eq. (8b)] is
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TABLE I. Variational upper-bound estimates E [Eq. (9b)] of the binding energy of the
bound triplet (-1;1,-1;-) and singlet (0;0, 0;+) states of H at various values of the magnetic
field B. We are using the notation (M;S,M;0). Also included in column 4, if available, are
estimates of e~ [Eq. (6)] the binding energy for the lowest vg =0 state of H. These results are
obtained by extrapolating from the results in Refs. 16—18. In columns 5 and 6 we have listed
the corresponding ionization energies for the singlet and triplet states of H . (Values are in-
cluded only if a bound state is found. )

B (10" G)

H

-Z, (eV)
(—1;1,—1;—) (0;0, 0;+)

H
—e

)t
(eV)0

Ionization energy of H (eV)
(—1; 1, -1;—) (0; 0, 0;+)

0.01
0.05
0.10
0.5
1.0
2.0
5.0

10.0
50.0

38.5
68
85

138
168
202
254
299
425

37.2
65
82

133
162
195
245
288
407

35
62.6
78

125

190 ~

3.5

7.0
13

12

2.2

4 p

8.0

5.0

' Reference 13.

2(2g) ~ 1+ (1-2/)&»
ln

(1 2/)'~2 1 (] 2/)'~2

(13)

where x:—o!/P'„should then be varied to obtain the
minimum energy.

As B-~ the approximate leading asymptotic
term in the energy E„minimized with respect
to parameter(s) in the trial wave function, is inde-
pendent of the values of S, and M for the three
states considered, reducing to

where the minimized variational parameter(s) is
given by

(2&2 —1/Z)' Z', a,

(Roughly, the extension along z is given in terms
of n as o' ' '.) For the states with M = -1, the
two variational parameters are both set equal to
the above value. If we compare these energies
with the approximate asymptotic energy e'„of a
hydrogenlike ion of nuclear charge Z [Eq. (Sb)j we
see that all three states are bound for Z ~ 2. (As
discussed previously these results do not apply
for H .) Admittedly, with an approximate esti-
mate of the energy of hydrogen it is hazardous to

TABLE II. Variational upper-bound estimates E [Eq. (9b)] of the binding energy of the
triplet (—1;1,—1, —), singlet (0; 0, 0;+), and singlet (-1;0,0: —) states of He and Li' at various
values of the magnetic field B.

—E (eV)
He Li+

J3 (10 G) (-1 1, —1;-) (0 0 0 +) (-1 0 0;-) (-1 1, -1;-) (0 0 0+) (—1 0 0;-)

0.01
0.05
0.10
0.5
1.0
5.0

10.0
50.0

107
200
258
450
563
913

11p4
1662

118
219
282
488
609
978

1180
1763

91
171
222
393
494
811
988

1504

180
347
453
816

1040
1740
2140
3320

207
396
515
918

1160
1920
2350
3620

161
313
410
744
948

1600
1980
3100
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estimate ionization energies, but, to the extent
that relativistic corrections are not yet important,
the form of the dependence may well be correct.

Finally, on the basis of these results, which

indicate such large values for the ionization ener-
gy of H, we end by speculating that there may
exist more negative ions, including possibly the
H ion, in the presence of intense B fields.
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