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The effective-operator form of many-body theory is reviewed and applied to the calculation of the
hyperfine structure, Numerical results are given for the 2p, 3p, and 4p excited states of Li and
the 3p state of Na. This is the first complete calculation of the hyperfine structure using an
effective-operator form of perturbation theory. As in the Brueckner-Goldstone form of many-body
theory, the various terms in the perturbation expansion are represented by Feynman diagrams which
correspond to basic physical processes. The angular part of the perturbation diagrams are evaluated by
taking advantage of the formal analogy between the Feynman diagrams and the angular-momentum
diagrams, introduced by Jucys et al. The radial part of the diagrams is calculated by solving one- and
two-particle equations for the particular linear combination of excited states that contribute to the
Feynman diagrams. In this way all second- and third-order effects are accurately evaluated without
exphcitly constructing the excited orbitals. For the 2p state of Li our results are in agreement with the
calculations of Nesbet and of Hameed and Foley. However, our quadrupole calculation disagrees with
the work of Das and co-workers. The many-body results for Li and Na are compared with semiempirical
methods for evaluating the quadrupole moment from the hyperfine interaction and a new quadrupole
moment of Na is given.

I. INTRODUCTION

In recent years a large number of calculations
of the atomic hyperfine structure have been re-
ported. The calculations which are the most ac-
curate and which have the widest area of applica-
tion employ the linked-diagram perturbative for-
malism or some kind of variational technique.
Each of these approaches takes into account con-
figuration mixing in a systematic way; however,
they require an extensive effort for each atomic
state, and the success of the calculation depends
inevitably upon technical details which an ordinary
reader could not be expected to evaluate.

The linked-diagram perturbation formalism was
developed by Brueckner' and Goldstone, ' and first
applied to atomic problems by Kelly. ' In per-
turbative calculations of this kind, the atomic
Hamiltonian (H) is decomposed into a single-par-
ticle operator (H, ) and a term which corresponds
to the residual part of the Coulomb interaction
among the electrons (V). In a hyperfine problem
there is an additional operator which describes
the interaction of the electrons with the hyperfine
field of the nucleus. This last operator can be
written

k = g [a, r, '1, +a,„r,. '(s,. 'CI21)~'~+a, 6(r,. )s,.]

+pa, r, 'C~2~ q—.

where s, 1, and C~'1 are the single-electron spin,
orbital, and quadrupole operators; &„&,„,&„and
&, are physical constants; and p, and Q are the

magnetic dipole moment and the electric quad-
rupole moment of the nucleus, respectively. In
order to perform the calculation, a complete set
of solutions of the single-particle Hamiltonian
is obtained, and the zeroth-order wave function
is normally expressed as a single determinant
of these solutions. Corrections to the wave func-
tion and the energy due to the other parts of H
may then be expressed in terms of diagrams.
The most difficult part of these calculations con-
sists in selecting all of the important diagrams
and in carrying out summations and integrations
over the excited states. The excited functions
often have different spatial properties than the
occupied orbitals. Also it should be noted that
the scope of such "single-determinantal" calcula-
tions is necessarily quite limited. While the
(Hund's-rule) ground state of an atom may often
be represented by a single determinant, the
metastable states usually have quite complicated
expansions in terms of determinants, even though
they have a well-defined angular symmetry. Re-
cently, a good deal of emphasis has been placed
upon experimental methods of populating metastable
states, and it is therefore of great interest to be
able to perform calculations on all states within
a configuration.

In the variational calculations, such as those
performed by Nesbet, the wave function is con-
structed out of a finite basis set, and the total
energy is minimized within this set. For this
purpose, basis functions having well-defined val-
ues of I. and S may be employed. A symmetry
adopted approach of this kind has been used ex-
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tensively by Weiss, ' and Hameed and Foley' have
used his wave functions to calculate the hyperfine
structure of Li 2P. The metastable states offer
no special difficulties for such an approach; how-
ever, a sepa'ate calculation must be performed
for each atomic state, and a set of basis functions
must be used which includes all of the significant
effects. The choice of a basis set is the most dif-
ficult part of such calculations.

In this paper we apply an effective-operator form
of many-body theory to calculate the atomic hyper-
fine structure. The basic idea of an effective-
operator approach is to describe the interactions
of the electrons by an effective interaction opera-
tor, which acts within a, certain subspace (model
space), normally a single configuration. The ef-
fect of configuration mixing is thus to modify the
form of the interaction rather than to change the
wave functions. There is already a good deal of
experimental justification for such an approach.
Harvey' has shown that the magnetic hyperfine in-
teraction of oxygen and fluorine could be success-
fully described by allowing the (& ') values as-
socia. ted with a, , a, , a,nd a~ in Eq (I) to. have in-
dependent values. This kind of parametric treat-
ment has been used extensively in analyzing ex-
perimental hyperfine data. '

The mathematical formulation of the effective-
operator approach is due to a number of authors.
Early work related to nuclear problems was done
in this field by Eden and Francis, Feshbach, "and
Bloch and Horowitz. " This formalism, however,
is based on the Brillouin-Wigner type of perturba-
tion and, therefore, leads to energy-dependent ef-
fective operators, so the calculations have to be
performed for one state at a time. It was later
shown by Brandow" that the energy dependence
can be eliminated by expanding the energy shift
out of the denominators. This expansion essential-
ly cancels so-called unlinked diagrams, so that
only linked diagrams remain.

An effective-operator formalism which is suit-
able for atomic calculations was developed by
Judd, "Wybourne, "and others, following early
ideas of Trees" and Racah. ' The mathematical
formulation of this approach is based on an article
of Bloch" on the effect of a perturbation upon a
degenerate space. In his treatment, Bloch
employed the Rayleigh-Schrodinger (RS) form of
perturbation theory, which leads directly to an
energy-independent expansion of the effective
operator. A simple proof of the linked-diagram
theorem, based on this formalism, has been given
by Sandars" for a model space with a single con-
figuration, and this treatment has recently been
extended by one of us (IL) to the multiconfigura, —

tional case." Most of the works mentioned above

employ a time-independent technique, but es-
sentially equivalent results can be obtained by
time-dependent methods, as shown by several
authors. "

There are thus three interrelated lines of de-
velopment of the effective-operator form of per-
turbation theory. Each of these leads to a linked-
diagram (LD) theorem and to certain diagrams
peculiar to the degenerate case, for which open-
shell lines are directed downward. Brandow
called these additional diagrams, which are nec-
essary to cancel the unlinked diagrams, "folded"
diagrams. In the time-dependent form of pertur-
bation theory a line directed downward may be
interpreted as a particle moving backward in
time, and so these diagrams have also been re-
ferred to as 'backward" diagrams. '

The perturbation expansion is conveniently rep-
resented by means of Feynman diagrams. ' ' In
problems based on the central-field model there
is a close analogy between the Feynman diagrams
and the angular-momentum diagrams, introduced
by Yutsis et at." This enables one to evaluate the
angular part of the perturbation diagrams in
atomic calculations in a very elegant way. "'" The
radial part of the diagrams may either be calcu-
lated by solving for a complete set of states and
calculating the effect of each excitation separately,
or by setting up one- and two-particle equations
for the particular linear combination of excited
states that contribute to the Feynman diagrams.
A single-particle function that satisfies a first-
order equation of this kind has been used exten-
sively by Sternheimer" to calculate the perturbing
effect of the quadrupole moment of a nucleus upon
the core electrons, and recently accurate finite-
difference methods have become available for
solving such two-particle equations. "

While there is an extensive literature of effec-
tive-operator calculations innuclear theory, "very
few applications have been reported of these tech-
niques to an atomic system. Morrison and Rajnak"
have used this approach to calculate the effective
interaction of the two 4f electrons of Pr". In
their calculation, they used the numerical tech-
niques developed by Kelly' and applied extensively
by Das and his co-workers, "which entail solving
for a complete set of excited states. The Pr"
calculation was then repeated, however, by solving
inhomogeneous one- and two-particle equations
for the particular linear combination of excited
states, which contribute to the second- and third-
order diagrams. This technique, which is de-
scribed in Sec. V, together with the effective-
operator form of perturbation theory represents
a very powerful and general theoretical tool. It
enables one to calculate the effect of a perturbation
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upon all of the states of an atomic configuration,
and it yields second- and third-order values ac-
curate to four significant figures, which is the ac-
curacy of the solution of the associated differen-
tial equations. We are thus in a position to extend
the realm of theoretical work and to check the ac-
curacy of previous many-body calculations.

In this paper we summarize the theoretical
methods and then report the results of calculations
of the hyperfine structure of the 2p, 3p, and 4p
excited states of Li and the 3p state of Na. The
hyperfine structure of Li 2p has previously been
calculated by Nesbet' using variational methods,
by Lyons, Pu, and Das" using Brueckner-Gold-
stone perturbation theory, and by Hameed and

Foley. ' Our results are in good agreement with
those of Nesbet for both the magnetic dipole and
electric quadrupole interaction constants. Also
our quadrupole calculation agrees fairly well with
that of Hameed and Foley. For the orbital and
spin-dipole cases, there is a general agreement
between our values of the Feynman diagrams and
those calculated by Das and co-workers. How-
ever, there are numerous discrepancies between
their calculation and ours for the quadrupole case.
The many-body results for Li and Na are compared
with various semiempirical methods for evaluating
the quadrupole moment from the hyperfine inter-
action and a new quadrupole moment of "Na is
given.

II. PERTURBATION THEORY AND EFFECTIVE

OPERATORS

The aim of perturbation theory is to yield an
approximate solution of the Schrodinger equation,

of a physical system with an arbitrary degree of
accuracy. For this purpose, the Hamiltonian is
split into two parts, an approximate or model
Hamiltonian IIO and a perturbation V:

H =Ho+ V.

For atomic systems it is usually convenient to
choose H, to be a central-field Hamiltonian of the
form

(4)

which describes a system of electrons moving in
some average central field due to the nucleus and

the other electrons. The single-particle states
may then be written as

4(nlm, rn, )=r 'P„,(r)Y' (&, g)y (o), (5)

and the eigenstates of H, may be chosen to be

Slater determinants, for which a certain number
of these single-particle states are occupied. The
perturbation is then the noncentral part of the
Coulomb interaction among the electrons, and it
may also include the interaction of the electrons
with an external field, such as the hyperfine field
of the nucleus

(6)

respectively. Obviously, these operators commute
with the model Hamiltonian,

lP, H, ]=[Q,H,]=0.
If we operate on the Schrodinger equation

(E H, )4 = V4"-
from the left withP and Q, respectively, we ob-
tain

(I:" H, )P4" =P V4", - (1oa)

The choice of the central potential U(r) is in

principle arbitrary, but in order to achieve rea-
sonable convergence, it is important to choose the
potential with some care. We shall return to this
question in Sec. VI.

The eigenfunctions of II, are used to partition the
Hilbert space into two parts which we shall call
the model space (D) and the orthogonal space (Q).
The partitioning is assumed to be made in such a
way that degenerate eigenfunctions of H, all be-
long to the same subspace. In our case H, is a
central-field Hamiltonian, and its eigenvalues may
be characterized by giving the principal quantum
numbers n and l of the electrons. The model space
then consists of all states of one or several con-
figurations. For instance, in the first calculation
reported in this paper the model space consists of
the six states of the 1s'2p configuration. All other
states belong to the orthogonal space.

The basic idea of the effective-operator approach
is to transform the full Hamiltonian, H, operating
on the entire Hilbert space, into an "effective"
Hamiltonian II,ff operating only on the model space.
The problem of finding some of the energies of
the system is then reduced to diagonalizing a finite
matrix.

In this section we shall give a perturbation ex-
pansion of the effective Hamiltonian. In the follow-
ing sections we will show how this operator can be
represented graphically and evaluated using the
solutions of inhomogeneous differential equations.

We shall first consider the problem of construc-
ting a suitable effective operator. The projection
operators for the model and orthogonal space are

P=Q la)&al and Q=l P= g lr&&rl, -(t)
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(E" H—,)Q4" = Q V4 (10b)

T"= q/(E"-H, ),
giving

QC =T'V4" or 0"=4, +T"V4" .

(12)

(13)

This leads directly to the Brillouin-Wigner (BW)
expansion

= (1+T V+ T"VT V+ )4'"

(14)

If we introduce an operator X, satisfying the
equation

X"=P+ T"VX (15)

it follows from (13) that X" converts the model
function 4, into the full wave function 4,

(18)

W = VX has the same effect on 0, as V has on 0,
and it is therefore often called the effective inter-
action. By operating on (15) with V from the left,
we obtain a reaction type of equation for this in-

teractionn,

W =VX =VP+VT W

The projection of the true wave function 4 onto
the model space is called the model function:

yG. PyD
0

Equation (10b) can be solved formally by means of
the resolvent,

one energy level at a time.
For many applications it would be of greater

interest to have an operator which directly gives
the energy sPlitting between certain levels rather
than the total energy of a single level. This can
be accomplished by means of an effective Hamil-
tonian, which is independent of the energy within
a certain model space. Such an operator has been
constructed by Brandow" by expanding the energy
dependence out of the denominators of the BW per-
turbation series. As shown by Sandar s" and one
of the present authors, "the same results can be
derived in a simpler way by starting from the RS
expansion, and we shall indicate this treatment
here.

As before, the model space (&) is defined by
means of the eigenfunctions of a model Hamil-
tonian H0 corresponding to one or several eigen-
values (configurations). If the model spa, ce has d,

dimensions, one can show that d of the eigenfunc-
tions of the full Hamiltonian have their zeroth-or-
der limits (when the perturbation is turned off
adiabatically) in the model space. The projections
of these eigenfunctions onto the model space are
the model functions (11)

4, =PC (n=1, 2, . . . , d). (22)

We also introduce a suave operator 0 which trans-
forms the d model functions into the corresponding
eigenfunctions of II,

4"=04, (n=1, 2, . . . , d) 0@=0 (23)

We can illustrate the P and 0 operators in a simple
manner as shown in Fig. 1.

Inspection of these diagrams gives directly

or QP=Q, PQ=P . (24)

W" = (V+ VT V+ VT VT"V+ ' ' ' )P .

It can also be given a closed form, "
W" = VP+ VQ(E" —QHQ) 'QVP .

(18)

(19) PHQ+0 =E"0'o (n =1, 2, . . . , d) . (25)

If we operate on the Schrodinger equation (2) from
the left with P and use Eqs. (22) and (23), we ob-
tain

From (10a) it follows that the effective" Hamil-
tonian

The effective Hamiltonian

H,"ff PH+ +PW"——

satisfies the eigenvalue equation

(20)

(21)

0
C

o
O
Dl

N
I
O

a
C I
p o
Ol 00 CLr w
I0

This operator acts only within the model space,
but it reproduces an exact eigenvalue of the full
Hamiltonian. The corresponding eigenfunction is
equal to the model function (11).

This is the effective Hamiltonian frequently used
in nuclear calculations. " It has the disadvantage
that it depends on the exact energy of the state
considered and can therefore be applied only to

space

FIG. 1. Pictorial representation of the projection
operator P and the wave operator Q.

spoce
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H,.„„=PHQ =PHD +P Vn (26) n'") =(s(vn("-'))), =(s(vs(vs(v, . . .)))),p .

E 4 —QH, C"„=OVAL, . (28)

By means of the Schrodinger equation (9) we can
now eliminate the energy E, yielding

(nH, -H,n)e, =(vn —nvn)e," . (29)

This equation holds for all d states of the model
space. In order to obtain a perturbation expansion
of 0 we define

Q=n' +0' +0' + ~ ~ . (30)

where 0 ' contains k interactions of the perturba-
tion V. This leads to the recursion formula

(Q(n) H J Q
Vn(n-I) g Q(n-m) Vn( m-1)

m =1

(31)

This equation can be solved formally by means of
a resolvent S,

tl

n'"'=3(vn'" ')-3 Q n' 'vn'" ') (32)
m '=1

where S is defined by

(r(S(X)~o) =(r~A[o) /(E, E",) . (33)

The resolvent thus yields an energy denominator
equal to the difference in unperturbed energy be-
tween the initial and final states for the operator
in the parentheses. The state ~a) is here always
in the model space and the state ~r) is always in
the orthogonal space. When the expa. nsion (32) is
translated into diagrammatic form, it can be
shown that the unlinked diagrams of VQ " ' cancel
the remaining terms, so that only linked (a.nd so-
called "folded" or "backward" ) diagrams remain,

[n("),H, ] = (vn("-') f (34a)

or

then satisfies the eigenvalue equation

H, (( 0, =E"4O (o(=1, 2, . . . , d) .
In contrast to the operator (20), this operator is
energy independent, and it reproduces al.l d eigen-
values of the full Hamiltonian that correspond to
the states in that space. This implies that if we
know the wave operator Q (with sufficient accura-
cy), we can obtain the complete level structure
corresponding to one or several configurations by
solving a single secular equation of finite dimen-
sionality. We shall now indicate how this effective
operator can be constructed by means of a linked-
diagram expansion. "'"

If we operate on (10a) with n from the left, we
obtain, using (22-24),

(34b}

In the treatment above, we have made no as-
sumption about: the energies of the model space.
If all states of that subspace are exactly degen-
erate (with the energy E,), the formulas above re-
duce to the more well-known ones. Equation (29)
then becomes

(E, H, )4-=(Vn —Qvn)4, ,

an equation first derived by Bloch." This can be
solved by means of the resolvent

H =Q/(En —Ho),

leading to the well-known Rayleigh-Schrodinger
expansion. The linked-diagram theorem can then
be written

n=P ~„v)"n, (36)

h~'~ =PAP

h(, 2) =P(hS(V)+ VS(h)),P,
h(, '„,

) =P(hS(VS(V))+ VS(hS(V))+ Vs(vs(h))jiP,

(37)

etc.

III. DIAGRAMMATIC REPRESENTATION OF

EFFECTIVE OPERATORS

In Sec. II we have given the basic formulas for
the linked-diagram expansion of the wave function
and the effective Hamiltonian. We shall now out-
line how the corresponding diagrams are eval-
uated.

In representing effective operators, it is im-
porta, nt to distinguish between core orbitals (oc-

which is, for instance, the form used by Kelly. '
Also the calculations reported in this paper will
be based on this form, but in other works to be
reported later the more general form of the linked-
dia, gram theorem (34) is used. The diagrams of
the effective Hamiltonian (26) are obtained by
'closing" the wave-operator diagrams with the

perturbation V so that the final state belongs to
the model space.

Frequently, one is not primarily interested in
the total energy of the system but rather in the
effect of some small perturbation h, such as the
hyperfine interaction. The effective-operator
formalism is also very convenient in this case. It
is easy to show that one can obtain the effective
operator for such a perturbation by replacing one
V interaction at a time by the interaction @ in all
possible ways, keeping terms linear in h, i.e. ,
using (34b) and (26),
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cupied in all determinants of the model spa, ce,
D), a&alence or oPen s-hell orbitals (occupied in
some but not all determinants of D), and excited
orbitals (not occupied in a.ny determinants of D).
For core and excited orbitals we shall use the
ordinary convention of a vertical line with an ar-
row pointing downward and upwards, respectively.
For open-shell electrons we shall use Sandars's
convention ' of a double arrow, normally pointing
upward (see Fig. 2).

The interactions are represented in the usual
way by horizontal dashed lines, as illustrated in
Fig. 3. There is a matrix element associated with
each interaction line and a creation and an absorp-
tion operator with each outgoing and incoming
line, respectively. The potential diagram 3(a, ) is
given by

a'„(o.
~
U( p) a, , (38)

where U is the central potential in Eq. (4). The
electrostatic diagram 3(b) is

atat8(o. ,P ~1/r, ~y, 6,)a&a

and the hyperfine interaction 3(c) is

at(o, (h
~ p) a 8, (40)

where h is given by Eq. (1). The diagrams given
in Fig. (3) thus show which single-electron states
are involved in the interaction, and how these
states are joined together in the interaction matrix
elements.

According to Eq. (34), the wave-operator dia, -
grams of a given order are obtained from the dia-
grams of preceding order by operating with S V
and joining the lines together in all possible ways.
A diagram produced in this way, which has no free
lines other than open-shell lines, is said to be
c/osed. A diagram, which has a closed part that
is not connected, is said to be unlinked. The
basic LD theorem says that the unlinked diagrams
cancel at each order of the perturbation theory.
For each interaction, which occurs in a diagram
of the wave operator, the resolvent S supplies an
energy denominator, which according to Eq. (33)
is the energy difference between the state follow-

iE. oC,

potentia t etectrostatic hyperf inc

(c)
FIG. 3. Graphical. representation of the potential,

Coulomb, and hyperfine interactions.

ing the interaction and the initial state. These en-
ergy denominators E may be found by drawing a
horizontal line above each interaction line and us-
ing the formula

E~= Q(e ~+e» —ee), (41)

where e, and e, are the single-particle energies
of, respectively, the down-going and up-going
lines cut by our imaginary horizontal line, and c,
are the energies of the incoming open-shell lines.

Any diagram obtained by successively applying
SV, which is linked at each order of the perturba-
tion theory, is allowed. It will have the property
that the intermediate states, which occur above
each interaction line, are orthogonal to the model
space. Since the wave operator 0 operates to the
right only on the model space, it follows that there
can be no free lines other than open-shell lines at
the bottom of a diagram. According to Eq. (26),
the corresponding effective-operator diagrams are
obtained by "closing" the diagrams of the wave
operator by a final interaction. So only open-shell
lines may appear as free out-going lines. The ef-
fective-operator diagrams must then be of the
schema, tic form shown in Fig. 4, where the box
represents a diagrammatic part with no free lines
and no intermediate states within the model space.

An effective-operator diagram with n incoming
and n outgoing lines is said to represent an effec-
tive n-body operator. Evidently, any effective op-
erator can be separated into zero-body, one-body,
two-body, etc. parts. For the atomic states,
which we shall consider in this paper, there is
only one electron in the open shell, and so only the
zero-body and one-body operators have nonzero

core excited open
FIG. 2. Directed lines corresponding to core, excited,

and open-shell orbitals.
FIG. 4. Graphical representation of zero, one-, and

two-body effective operators.
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at a,(p!h!o), (42)

where P and o stand for the open-shell quantum
numbers P = (n~l~m~m~), o =(n'l'm, 'm', ) and h is
given by Eq. (1). In the second-order diagrams,
the states a are core orbitals, while the i are ex-
cited states in 5(c) and may either be an excited
or open-shell state in 5(d) and 5(e). The special
symbol, ---8, corresponds to the interaction of
an orbital with the central potential and with the
spherical average of the direct and exchange in-

{a)

matrix elements. Qf these, the zero-body opera-
tors are independent of the azimuthal quantum
numbers and give no hyperfine splitting. There-
fore, we shall in the following consider only one-
body effective operators. Since a one-body tensor
operator is determined, apart from a radial fac-
tor, by its ranks in the spin and orbital spaces,
the one-body part of the effective operator is also
of the form (1). Thus higher-order effects may be
incorporated into the ordinary hyperfine operator
by modifying the (& ') values associated with the
different terms.

Each effective-operator diagram is made up of
three elements: creation and absorption operators,
a phase, and one- and two-particle matrix ele-
ments. In addition, all diagrams have associated
with them an energy denominator given by Eq. (41)
for each interaction line, except the last one. The
first-order diagram, which represents the hyper-
fine interaction within the model space, and the
four second-order diagrams are shown in Fig. 5.

The effective operator corresponding to the
first-order diagram 5(a) is

teractions. The effect of this interaction upon the
open-shell orbitals is shown schematically in
Fig. 6.

Again, for the atomic states which we shall con-
sider in this paper, there is only one electron in
the open-shell, and so the sums over n and l in-
clude only closed-shell states. For states having
two or more electrons in the open shell, the ef-
fective operators which depend upon the coordi-
nates of several electrons may be evaluated ex-
plicitly. It is probably best, however, to choose
a potential for such cases that includes the largest
part of the two-body effects. If we denote the one-
body potential operator, which corresponds to
each interaction line, ----(3, by v, then the ex-
plicit expression for diagram 5(b) is

(P!&!a&(a!v! o&
(43)

and for 5(c),

(P jv!i&(i!h!o&

The minus sign that occurs in (43) is due to the
fact that the diagram 5(b) contains one hole line. As
in the Brueckner-Goldstone formalism, ' ' a phase
factor (-1)""is associated with each diagram,
where h is the number of hole lines and l the num-
ber of closed loops. In addition, there is a special
phase rule for backward diagrams, which we shall
not consider here. "'" Further discussion of the
potential diagrams 5(b) and 5(c) will be postponed
until Sec. V, which deals with the inhomogeneous
one- and two-electron equations. These diagrams
together with all third-order diagrams involving
potential interactions may automatically be taken
into account by successively solving the associated
differential equations.

At the first interaction line of diagrams 5(d) and
5(e) a core orbital is excited into another degree
of freedom due to an interaction with a state in the
unsymmetric valence shell. These diagrams thus
correspond to a polarization of the core, and they
give a first-order correction to the ordinary
hyperfine interaction. The mathematical expres-
sion for 5(d) is

(b) (c)

FIG. 5. First- and second-order Feynman diagrams
that contribute to the hyperfine interaction.

Fig. 6. Diagrams which represent the potential, di-
rect, and exchange interactions.
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a~t a,(a !hi i)(pi!1/r»loa)
6 —E'i+go —Cp

Similarly, for 5(e}we have

a~ta,(alhli)(pill/r„lao)
E Ci +Co Cp

(45)

(46)

a~ta( a!hli)( pi!1 /r„la )o

E~ —E'i +E o
—Cp

(48)

The third-order diagrams may conveniently be
divided into correlation and core-polarization dia-
grams. We shall refer to any diagram as a cor-
relation diagram that contains an interaction line
at which two electrons are excited from the core
or open shell into excited states. This seems to
correspond to the intuitive idea of correlation,
since a diagram of this kind describes a physical
process in which two electrons in the sea of oc-
cupied states move out into other degrees of
freedom due to their mutual Coulomb interaction.
The core-polarization diagrams that occur at

As mentioned, we shall in the present article con-
sider only atoms with a single open shell for which

For future reference, however, we have
given the more general expression above, valid
also in the case of several open shells.

The contributions to the effective operators (45)
and (46), which are due to the excitations from a
single core orbital n„ l, to each orbital symmetry
E;, may be considered separately. For given
n, , l, , l;, these operators have the form

a~a,(a Ih I i)(pi !1/r„loa)
47

n E —E +Co —Epa i

and the operator corresponding to Fig. 9(b) is

a)ao&p Ihlh) &hall/r„li j)(ij I1/r„loa)
(Eo —Ek}(e +6' —f„—E .)

(50)

third order represent a second-order correction
to the hyperfine interaction. They have a single
excited state at a time and, as we shall see, they
may be evaluated using only single particle per-
turbed functions. These diagrams correspond to
relaxing the restriction that the single-particle
wave functions are of the form (5), and they are
thus implicitly included in the unrestricted
Hartree-Fock procedure. Apart from diagrams
involving the potential interaction, there are
four third-order core-polarization diagrams and
twenty-four correlation diagrams for which the
hyperfine interaction occurs last. These diagrams
are shown in Figs. 7 and 8, respectively. They
may be evaluated by writing down the matrix ele-
ment and energy denominator corresponding to
each interaction line and including a phase factor
according to the general rule discussed above. In
order to illustrate this, we have shown the dia-
grams 7(a} and 8(a.) in more detail in Fig. 9.

The effective operator corresponding to Fig. 9(a.)
is (for e, =a~)

a,'a.&& Ihl j)&aj I1/r»lt i)(pill/r, .loa)
(e, —e;}(e,—e,.}

(49)

(a)

(c)

(b)

(d)

[ (e)

(m)

l(b)

i

I (f)

! (, )

(n)

A

1 (r)

(~) )

(g)

A

(k)

Ij."j
!

(n)

(s)

l (w) (x)

FIG. 7. Third-order core-polarization diagrams. FIG. 8. Third-order correlation diagrams.
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In addition to the third-order diagrams shown in
Figs. 7 and 8 and to the diagrams obtained from
them by reflection in a horizontal plane, there are
diagrams for which the hyperfine interaction' oc-
curs between the two Coulomb interaction. Eigh-
teen distinct diagrams may be obtained by inter-
changing the order of the hyperfine and Coulomb
interactions in this way. As we shall see, the ma-
trix elements which occur in the explicit expres-
sions for the Feynman diagrams have a radial
part and an angular factor. The angular factors
are independent of the ordering of the hyperfine
and Coulomb interactions in the diagram. There
are thus eighteen different angular factors cor-
responding to the third-order core-polarization
and correlation diagrams, and in all there are 46
distinct diagrams. We will discuss the physical
significance of the most important third-order
diagrams in Sec. VI.

IU. EVALUATION OF THE ANGULAR FACTORS

r '(sC")"'=r ' Q (lq'2qllq)s, iC"'

We shall find that the effect of an interaction of
the form

y -3s I(n)
0 (51)

upon the model space can be represented by an
effective operator

cs

All of the operators which appear in the hyper-
fine interaction (1) have an electronic and a nuclear
part. The electronic part of the quadrupole inter-
action, r 'C ~{,2and the spin-dipole (sd) interaction,
r '(sC{'~)o, are quite similar, and so they will
provide useful examples of our method. The spin
and orbital parts of the sd interaction are coupled
together to form a vector in the total space:

The other components of the hyperfine interaction
also are of the general form (52), and so is the
spin-orbit interaction and the interaction of the
electrons with an external field.

The basic LD theorem represents the effect of
the perturbation by a series of diagrams, each of
which corresponds to a fundamental physical pro-
cess. The matrix elements which occur in the
explicit expression of these diagrams may also be
written graphically. The orbital part of the matrix
element of operator (52) is

Q 1 mP l f(r)t{"ln 8 l am,s) = (n f „lf(r) ln 8 f 8)

&&&l m, lt{" liam)), (53)

and we may use the Wigner-Eckart theorem and
the symmetry properties of the 3-j symbols to
write the matrix element of 6~):

&f m~"lf',"lfsmi'& = (-1)" "'&f lit"'ll fs&+, (54)

where F is the angular-momentum diagram given
in Fig. 10(a). This diagram corresponds to the
3-j symbol

ff „ l8

(m,
" -m, 8 -q)' (55)

where c is independent of q. The spin and orbital
operators appear on the same footing in x 's, , t, )

and so c is also independent of q'. It follows that
the coefficient (lq'2qllQ), which couples the spin
and orbital parts of the spin-dipole interaction,
carries through the evaluation of the Feynman
diagrams, and we may evaluate the effect of an
uncoupled operator of the form (51). For the
purposes of calculating diagrams, it is also con-
venient to choose q' = 0. Then the operator (51)
is of the general form

f(r )s Kf{k)

where K and k are the ranks of the operator in the
spin and orbital spaces and where we have used
the natural notation

(a)

FIG, 9. Exampl. e of a third-order core-polarization
diagram and a third-order correlation diagram.

FIG. 10. The angular-momentum diagrams corres-
ponding to a one-body tensor operator and to the
Coulomb interaction.
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The direction of each arrow in an angular-mo-
mentum diagram of this kind indicates the sign
of the corresponding magnetic quantum number in
the 3-j symbol. A line directed away from the
junction corresponds to the positive sign of the
magnetic quantum number and a line directed
toward the junction to the negative sign. In order
to define a 3-j symbol uniquely, it is also nec-

essary to specify the order of the angular momen-
turn occurring in the symbol. The positive sign
near the juncture of Fig. 10(a) means that the an-
gular momenta in the 3-j symbol (55) are orientated
in a counterclockwise fashion in the diagram. A
negative sign would mean they had a, clockwise
orientation.

The electrostatic matrix element is given by

(~ip211/r, .lyi5. ) = (-1)'"™~( 1)~8- P5( .mx)5(ms n ~) p I(—I)'~(f. llc&'~'ill )(I8llc&'~'ill )R"'( py5)lG

(56)

where R'&(npy5) is an ordinary Slater integral and

Q is the angular momentum diagram shown in Fig.
10(b). The diagram corresponds to the expression

„„fl I k, ) fl8 I&, k, )

(57)

The sum of the angular momenta which occur in
each 3-j symbol is even, and so the 3-j symbols
are independent of the ordering of the angular
momenta. For this reason, we have not written a
sign by the two junctures of the diagram shown in
Fig. 10(b). In what follows, we shall denote the
product of (-I)'& and the reduced matrix elements
that appear in Eq. (56) by the special symbol
X(k„&xPy5). We then have

x(k, ~p») = (-I)'(I llc&"Ilf )(fsllc"'llf, ),
and the Coulomb matrix elements are nf the sim-
ple form

(o-',p, ll/r„ly, ~,) = (-1)'" & (-1)" ~I ~(m,",m,")

x 5(ms, m,~)

x g X(k» o.py5)R" (npy6)G,

(59)

where G is shown in Fig. 10(b).
Using Eqs. (54) and (59), the orbital part of the

hyperfine matrix elements and the Coulomb inter-
action may be represented by angular-momentum
diagrams. There is, in addition, a phase factor
(-1)™~associated with each outgoing line and a
factor which is characteristic of the interaction.
For the hyperfine interaction this factor is just

(n. Z „lr-'ln, f,)(f.l
If&'i fl Z,&,

while for the Coulomb matrix elements, it is

X(k„nP ye)R'~ (nP y6) .

Since the Coulomb interaction is spin-indepen-

dent, the matrix element (59) also has a spin 5
function associated with each vertex of the angular-
momentum diagram. Both the conta, ct 5(r)s and
the spin-dipole operator r '(sQ&'&)&'&, however,
depend upon spin. The matrix of the contact term
and the spin part of an operator (52) with I& = 1 is
just

(-,'m,"ls,l-,'ms) =m,"5+, , ma).

The angular part of the perturbation diagrams may
be evaluated in a very elegant way by taking ad-
vantage of the fact that the Feynman diagrams
which correspond to the hyperfine and Coulomb
interactions are identical to the angular-momentum
diagrams which describe their respective matrix
elements. The Feynman diagrams of these inter-
actions are given in Fig. 3 and the corresponding
angular-momentum diagrams are shown in Fig. 10.
As we have said, the higher-order diagrams in the
perturbation expansion may be formed by operat-
ing successively with SV IEq. (34b)] and joining
the lines together to form linked diagrams. This
procedure may also be applied to the associated
orbital angular-momentum diagrams. When two
lines are joined together, this corresponds to
summing over the azimuthal quantum numbers I,
and rn, that occur in two matrix elements. These
quantum numbers in turn are associated with the
free ends of two lines of the angular-momentum
diagrams that describe the matrix elements, and
the additional phase factor (-I)™is necessary to
accomplish the summation graphically. " The
matrix elements which occur in the expressions
for the effective operator thus have a radial part,
an orbital-angular momentum part that can be
represented by a diagram topologically equivalent
to the Feynman diagram, and there is in addition
a spin sum. The diagonal matrix elements of s,
are +—,

' and --,'. So if a spin-dependent interaction
modifies a closed loop, the summation over the
spin quantum numbers will produce a null result.
For the Coulomb interaction or a spin-independent
single-particle operator, however, the spin sum
multiplies the contribution from a given diagram
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&f.ll""Ill;&&(k ff;1E.)Hp, . (61a)

where II~, is the angular-momentum diagram
shown in Fig. 11(a), and the operator (48), which
corresponds to 5(e), has an orbital part

(61b)

where K~, appears in Fig. 11(b). Collecting to-
gether the radial factor (60a) and the orbital part of
the matrix elements given by (61a), the effective
operator (47) may be written

25„,(l, lit~ ~Ill;& Q zc(k„ ll;l/, ) R~ &'gita, II

by a factor of 2 for each string which does not
contain any free valence shell lines.

The evaluation of effective operators has been
treated in some detail by Sandars. " Apart from
our method of implicitly including the potential
diagrams, the only novel feature of this work is
the manner in which the radial part of the diagrams
is evaluated. So we will content ourselves with a
few examples. For a general operator of the
form (52), the radial part of the second-order
diagram (47) may be written

&rg l, jf(r)jn, l &R'i(nln, l, , nln, l, )

~a-~a

for a single open shell (nl), and the radial part of
the operator (48) is

~ &s,f, lf(&)l+;f;&R & gin,.l, , n, l~l)
A2 6 —E'-

A~ Q

Here the sum n, includes both the bound and con-
tinuum excited states. Much of the numerical work
in a perturbative calculation is usually concerned
with solving for a complete set of single-particle
states. Instead of constructing the excited states
explicitly, however, the radial factors may be
written in terms of one- and two-electron per-
turbed functions which satisfy a differential equa-
tion. This technique which greatly simplifies the
calculation will be discussed in Sec. V.

The orbital part of the matrix elements of the
effective operator (47), which corresponds to
diagram 5(d), may be written

The direction of any line in an angular-momen-
tum graph may be reversed, provided that the
line is joined at both ends and corresponds to an
integer value of the angular momentum. So the
two diagrams shown in Fig. 11 may be reduced
using the graphical identities given in Fig. 12(a)
and 12(b). This reduction is shown in Fig. 12(c)
and 12(d). Using the graphical representation of
the Wigner-Eckart theorem (54) and the expression
for H~, given in 12(c), the operator (62) assumes
the form

2o,.&l. Ilt"'ill&&@k, «&«, )

x R, [(2k+1)(l II t II l&j 'a[a, &pit," Io) .

When a sum is performed over all the open-shell
states, the operator

Q a,'a. (pl i',"'I o&

P, o

which occurs in (64) is just the second-quantized
form of the one-body operator

acting within the model space. So the effect of
the second-order Feynman diagram 5(d), which
has the explicit form (47), is to modify the ex-
pectation value of f(&) within the model space.
The contribution of this diagram is

5 (f&
= 2 5 „(l, I I

t'"'I
I l, & &(k, l f, 1 l, )

x Rt,"'[(2k+1)(1 II t"'ll f&]
' . (65)

Similarly, using the explicit expression for K~,
given in 12(d), the effective operator (63) may be
written in the form

(-1)'(& 1
g II &'"'I

I f.&/&l II t'"'ll 1&)

x g A(k„ l l, l, l) Rt,' a~a, (p I t," I o&,
l l

a
1

(66)

and the contribution of the diagram 5(e) is thus

(6 2)

Here the factor 25„comes from the spin sum and
R~"') includes the effect of all excited states n;.
Similarly, using (60b) and (61b), the effective op-
erator (48) ma. y be written a.s

&f. II «'"'ll 1, &g ~(k„«,i. f)R", ~'sf.f~, . (68)
kj

We turn now to the problem of evaluating the ang-
ular momentum diagrams H~, and K~, .

(a)
FIG. 11. Angular-momentum diagrams correspond-

ing to the second-order direct and exchange excitations.
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&(f) = (-1)'(«( I I
&'"

I I 1.)/( l I I
&"'l

l 1))Q X(k„ l l, l, l ) l l „Ri,' .
a

1

The third-order diagram may also be evaluated in this way. For instance, the radial part of the effective
operator (49) (Fig. 9a) is

(n, l, If(r)In, l,)R~'~~(n, l, n, l, , n, l, n, l&)R 2 (nln&l&, n«, l, )

n~, ny

(68)

and the orbital part is represented by the angular-momentum diagram shown in Fig. 13(a). This diagram,
which may readily be obtained from the Feynman diagram 9(a), may be evaluated by using the graphical
identities given in Fig. 12 to remove first a triangle and then the resulting loop. In this way, the contribu-
tion of (49) may be shown to be

5(f) =-25(/c, 0)(l&II l"
I I l&)l (2k+1)(l II f II 1)] 'g

~

' X(k„ l, l, l„ l&)X(k, l~1 l l)R, '
b

Similarly, the radial part of the effective operator (50) (Fig. 9b) is

(nlIf (r)In, l,)R~"~~(n, l~n, l„n, l, n,.l, )Rl' ~(n, l,n,. l, , nln, l, )

(E —E'g)(e + E —E'g-eg)

(69)

(70)

and the orbital part is represented by the diagram shown in Fig. 13(b). This diagram may be evaluated by
applying the graphical identity 12(a) successively to remove the two loops. The result is

(f )
26(l» l ) ~ X(k„ l~ l, l, l,.)X'(k„ l, l,. l l, )R&,

"

V. EVALUATION OF RADIAL FACTORS

A. General treatment

In Sec. IV we have seen how the spin-angular
part of the effective-operator diagrams can con-
veniently be evaluated by means of angular-mo-
mentum diagrams. What remains to be calculated

is thus the radial part, including the energy de-
nominators. As we have said, this can be accom-
plished in essentially two different ways. One is
to use a complete set of orbitals and explicitly
evaluate sums of the kind (60) and (68), as done,
for instance, by Kelly. ' The other is to solve
one- and two-particle equations for the particular
linear combination of excited states that contribute

6(q, p') „.
(2j+1)

gi ~, ( t,+l, t, l) lgls +

lz ~3

ii
g 2

k

5{k,k, } +
l,

t 2k+1)

l&a + k

( ))k gal I+"

foal

I'IG. 12. Graphical identities for the reduction of second-order angular-momentum diagrams.
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to the Feynman diagrams. One-particle equations
of this kind have been used for a long time by
Sternheimer" to calculate the effect of quadrupole
shielding. Recently, accurate finite-difference
methods have become available for solving such
two-particle equations, "and they have been ap-
plied recently to perturbative calculations by
Schulman and Lee'7 and by Morrison.

The basic idea of the use of inhomogeneous dif-
ferential equations in perturbation theory can be
simply described in the following way. Let us con-
sider the first-order equation (31)

[n«, H, ] =qvp,

where

(72)

is the first-order wave function. This equation
can be solved by means of the resolvent technique,
described in Sec. II, which leads to the ordinary
perturbation expansion. Alternatively, we can con-
sider Eq. (72) as an inhomogeneous differential
equation and solve it as such. We shall consider
this approach here.

Since we are, in the present work, particularly
interested in the hyperfine interaction, we shall
assume that there is a small perturbation h in
addition to the electrostatic interaction V. We can
then separate the first-order wave function or
wave operator into two parts, satisfying the equa-
tions

[ni», H, ) =qvp,

y(z) g(z) y . y(i) g(i) y

Using the "intermediate normalization"

&4', i4', & =&4', i4 & =1,

(73a)

(73b)

(73c)

the energy contribution due to the interaction h

becomes

(74)

ators.
Since V is a two-body operator, Eq. (73a) leads

to one- and two-particle equations, while Eq.
(73b), assuming h to be a one-body operator, leads
to a one-particle equation. We shall now indicate
how these equations can be derived.

B. Derivation of the one- and two-particle equations

We assume that the model space consists of a
number of Slater determinants, A., B, . . . , which
are not necessarily degenerate in zeroth order.
We shall let&,' denote a single substitution, i.e.,
where an orbital & in A. is r eplaced by another orbital
i, and, similarly, for double substitutions, A.,",.
These notations agree essentially, for instance,
with those used by Nesbet. '

We consider first single excitations and operate
on Eq. (72) with &A,'~ from the left and with ~A&

from the right, yielding

&A.'([n~'&, H, ]]A& =&A,')q vp]A&,

or

(e. —~, )&A.'( n'" )A &
= &A.')q VP )A& .

Let us now define a single-electron function

(76)

where the summation is performed over all orbitals
including those which lie in the continuum. It then
follows that this function satisfies the equation

(77)

where h' is the single-electron part of II, given by
Eq. (4).

The "perturbed function" g contains all first-
order perturbations due to single excitations from
the orbital a. Thus, instead of explicitly evaluating
the sum (76), we can solve the inhomogeneous dif-

where the effective operator, h, «, is given by (37).
It is then easy to show that the contribution to E„
to third order can for a degenerate model space
be expressed entirely by means of the first-order
functions defined in (73),

d»=&4,
~ h~4, &,

E&'=&@ ]h(e"&+&+.(vl+'»& (75)
E&» = i@&»

[ v j@&»& +g &») h)4«»& +/ &»
( v )e'»&

k

tq&i
1

If there are several energy levels in the model
space, essentially the same result holds, only
with a slight modification of the energy denomin-

FIG. 13. Angular-momentum diagram correspond-
ing to third-order core-polarization and correlation
effects.
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n = g li&&A'l0 YPIA&' &n;i, lf(r)ln. l.&

E a i
(79)

It follows from Eqs. (78) and (79) that the a.ngular
factors on both sides of Eq. (77) cancel and that
the radial function

ferential equation ('l7). q is formally related to the
corresponding part of the wave operator by IA,"&(Al,
where in A.," the orbital a has been replaced by the
perturbed function g.

If the perturbation is a one-body operator of
type (52) and the states A,' lie in the orthogonal
space (A,'E Q), then the matrix elements which oc-
cur in Eqs. (76) and (7'l) may be separated into
angular and radial parts in the following way:

&A'. IQ YPIA& = &A.'l0 OPIA&."&A!IQ YPIA&,.d

=&A.'Iq OPIA)'. .&n; I; lf(r) In. l.& (78)

Equation (76) may then be written

which may be solved numerically for pz(n, l, - l,.; r).
The explicit expression given for this function in
Eq. (80) is orthogonal to a11 of the occupied orbit-
als. The second term, which occurs on the right-
hand side of Eq. (83), ensures that the solution of
the inhomogeneous equation also has this property.

Next we consider excitations caused by the two-
body Coulomb interaction. For the single-particle
Coulomb excitations, there will be a passive state
which is involved in the interaction. For instance,
at the first interaction line of diagram 5(d) and 5(e)
a core orbital is excited due to an interaction with
an electron in the open shell. The perturbed func-
tion which describes the mixing of excited states
into the core orbital a by means of a direct inter-
action with an open-shell electron is

'(nln; l;, nln, l, )

exc n i ~a —~i

p, (nl -l r)= g P (.) ""'If(.r)l"'&
evc n i a Ci

(80)
where

(84a)

satisfies the equation

(e, —h„')pz(n, l, -l, ;r)= g P, (r. )(n, l,.lf(r)ln, l,), R«(abed) = P,(r) Y«(b, d—; r)P,(r) dr

where

exc n .i

1 d' Z l (l +1)
dr r 2r

(81) s .(~) ( s,(r ~ "„,I,tr ) d~

x P,(r)dr.

cxc n occ ni

(82)

to eliminate the excited states from Eq. (81). In
this way, we obtain the inhomogeneous equation

We have here used the short-hand notation "excn, "
for states satisfying the condition A,'&Q, and we
shall use "occ n,.

" for all the rest. The perturbed
function (80) describes the mixing of excited states
into the core orbital a by means of a one-particle
inter action.

We may use the closure relation

b(r r')= g P, (r)P,(r'). .
all ni

P,. r Pi r' + P,. r P,. r'

(e, —h„')p', (n, l, —l„r)= —Y "(nl, nl; r)p, (r)r

occ ni
P,.(r)R "(nln,.l;, nln, l, ) .

(85)

Similarly, the excitation of a core electron by
means of an exchange interaction with the open
shell is described by the function

In a manner which is similar to the derivation of
Eq. (81), p„'(n, l, - l, ;r) may be shown . to satisfy the
equation'

(e, —h„') pz(n, l, —I,. ; r) =f(r)p, (r)

g P;(r)(n;l;lf(r)ln, l, &,
occni

(83)

) g p ( )
R (nln; l(, n, l«nl)

exc n ~ Ea —6i

which satisfies the equation

(84b)

(e, —h„')p,"(n,l, - l,. ; r) = —Y'(nl, n, l„r)P„,(r) —g P;( )R "(nln;l;, n, l,nl) .a r e a a
OCC

(86)

For double excitations we get in analogy with Eq. (77), the "pair equation"
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[e,+e. -h'(I) -&'(2)j~(I, 2) = Q I~i&&g,"IQ YPIA& = Q I~i&&~il —l~», (8')
ij exc lj 12

where the ].ast summation shall be performed over all such combinations of zj such that Aa"„E Q. This leads
to the radial equation'6

[e,+e„-h'„(I)—h„'(2)]p"(n, l, , n, l, -l,.l,. ; r, r, ) = g P,.(r, )P,.(r, )R (n, l, n,. l, , n, l,n, l„)
even n.'i j

,:,p, (r,),(r, }— p P, (r, ). Y—'(n, l, , n, l„r,)p, (r, )

P, (r, .) Y—'(n, l, , n, l, ;r, )P, (r, )
«en 1j

P, (r, )P,.(r, )R'. (n, l, n, l, , n, l,n, l~) .
occ n . n .j

(88)

To obtain this equation, we have used the identity

exc n" all n" all n" occ n'' occn ~'

"hich is the two-dimensional analog of Eq. (82).
Here "excited" and "occupied" have similar
meanings as before, the basic rule being that ex-
citations A,",~Q shall be included. At least one
of the excitations must therefore be "outside the
model space, " i.e., either from an open shell to
an excited orbital or from the core to an open-
shell or excited orbital. If there are several
open shells, the other excitation can, in principle,
occur between two such shells. Such excitations
can also be treated by means of the one-particle
equation, but it might often be convenient to in-
clude them in the pair excitations, if these are
calculated. The explicit form of the pair function
ls

p" (n, l„n,l, - l,. l&, r, r, )

, R (n, l,n, l, , n, l,n, l, )
j j j

exc n . n +Kg —6a i ji j
(89)

C. Numerical treatment

The one-particle equations were solved numer-
ically by means of subroutines taken from the
Hartree-Fock program of Froese-Fischer. " This
means that Numerov's method was used for the
outward and inward integrations. Since the energy
eigenvalues, which appear in the one-particle
equations are known, the only undetermined quant-
ity is the slope of the function at the origin. The
slope is varied until the inward and outward inte-
grations match.

The one-particle equations are similar in form
to the hydrogen equation. So it is reasonable to
assume that the accuracy with which we have
solved the one-particle equation is comparable to
the accuracy with which the corresponding sub-

routines solve the hydrogen equation. Froese-
Fischer has checked her routines for hydrogen.
The values of the mean radius, which she obtains,
agree with the analytic solutions to five significant
figures for 1s and 2s electrons and to four figures
for 6s and 6P electrons.

The pair equation is considerably more difficult
to solve. We use here the technique developed by
Winter and co-workers. " The pair function is de-
fined in a square-root grid, and a fourth-difference
approximation is used for the derivatives. The
two-particle equation is thus replaced by a matrix
equation. In order to limit the size of the matrices
involved, it is convenient to use two or three grids
with a relatively small number of points and then
to extrapolate the final results to a grid with zero
interval. Winter checked this procedure for he1ium
where the extensive calculation of Pekeris provides
essentially an exact result. An accuracy of four
significant figures was obtained in all cases. The
pair functions used in the calculations presented
here are normally defined on a grid having about
40 points in each direction, which means that a
matrix equation of the order 1600&&1600 has to be
solved. This may usually be done very rapidly by
relaxation methods; however, occasionally these
methods do not converge properly, and it is nec-
essary to solve the equations by Gaussian elimina-
tion. Because of the special form of the matrix,
this can be done without the use of any external
memory on our computer (IBM 360/65). Typical
computing times for solving the pair function for
40&40 points by relaxation methods is 15 sec and
by elimination 2 min, while the single-particle
equation with a 200-point grid is solved in a frac-
tion of a second.

D. Evaluation of radial factors

We are now in the position of evaluating the radi-
al factors of the effective-operator diagrams, dis-
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In order to evaluate this expression, we may draw
the Slater integral and the energy denominator in-
side the first matrix element to obtain

R,' = drP, (r)r '

R ' I@in;l;, nlrb. l,)P;(r)
)ex' tl ~ g

Using the perturbed function (84a), R,' &~ may thus
be written

R ~ & = (n, l, !r '!p~» '(n, I, I;;r)) . (90)

Similarly", the radial factor for diagram 5(e) tn Eq
(80b) becomes

(n, l,!r '!n;I;)R &(nl n,;I;,n, l, nl)
CXC fI . &a-&i

=(n, l,!r '!p', &(n, l,- I;, r)) (91)

Alternatively, these diagrams can be evaluated

by means of the hyperfine perturbed. function

R,~ '~=R"&(nip„(n, l, - I;;r), nl n, l,),
(92)

R~ '~ =R &(nip„(n, l,- I;;r),n, l, nl),

where we have drawn the matrix element

(n, l,!r '!n;I;) and energy denominator inside
each Slater integral and made use of Eq. (80).
Thus, we have a way of checking the numerical
accuracy of the calculations.

cussed ln Sec. III. Let us fir st consider the sec-
ond-order diagrams in Figs. 5(d) and 5(e). A

single core orbital (n, l, ) is here excited into an ex-
cited or open-shell orbital (n;l;) by means of the

electrostatic interaction with the open shell (nl).
According to Eq. (60a), the radial part of diagram
5(d) is

(n, I,!r '!n; I;) R & (n I n; I;, n I n, I,)
A~

eXU n~ 0

As an example of the use of a pair function, we
shall consider the evaluation of the diagram in
Fig. 9(b). Using Eq. (89), the radial factor (70)
can be expressed as

R 2~
"&'& ~ =R '&( p „(n I - I„r,) n, I „p' (2n 1,n, I,- I; I &, r,r, )),.

(93)

The pair function replaces here two orbitals in
the Slater integral.

The examples given above should suffice to illus-
trate the use of perturbed functions to evaluate
second- and third-order diagrams. The main ad-
vantage of this technique is that it is straightfor-
ward to calculate all effects to third. order without
explicit use of excited orbitals. If the perturba-
tion theory converges so slowly that higher-order
effects are important, this usually points to some
inadequacy in the initial description of the atom.
One might hope to include gross effects of this
kind by modifying the approximate Hamiltonian or
by extending the model space."

There are two diagrams in second order we
have not considered so far, namely, those involv-
ing a potential interaction (Fig. 14). These dia-
grams can, of course, be evaluated in the same
way as the diagrams considered above, involving
the two-body electrostatic interaction. However,
we shall find. it convenient to treat the potential
interactions differently. Suppose we solve the
radial equation corresponding to the potential in-
teraction. Since the potential is spherically sym-
metric, it cannot mix different l, m„or m, . The
solution will therefore have the same spin-angular
property as the orbital being excited (in this case
an open-shell orbital). If we add. the solution to
the radial part of this orbital, we see that dia-
gram (14a) is automatically included in the first-
order diagram [Fig. 5(a)]. By relaxing the re-
striction that the solution shall be orthogonal to all
core orbitals, which is due to the "orthogonality
forcing terms" on the right-hand side of the in-
homogeneous equations, we can also include the
diagram (14b). In this way we have also included
a large number of other diagrams, namely all
where an open-shell line is "modified" by the po-

FIG. 14. Second-order potential diagrams.
FIG. 15. Third-order diagrams for which an open-

shell line is modified by the potential interaction.
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FIG. 16. Third-order diagrams for which a core and
an excited orbital are modified by the potential interac-
tion.

tential. For instance, the diagram in Fig. 5(d)
will automatically include the diagrams in Fig.
15. In the same way we can eliminate other
classes of diagrams involving potential interac-
tions. By modifying the core orbitals as well as
the one-particle perturbed. functions, diagrams
of the type shown in Fig. 16 are eliminated.

The potential modifications described above
can, of course, be applied several times, cor-
responding to several potential interactions on a
single line. In particular, the occupied. orbitals
can be modif ied until self -cons istency is reached.
Then a set of orbitals which satisfy some kind of
Hartree-Fock condition is generated. We shall
not consider the detailed structure of these cor-
rections here but postpone that to a forthcoming
paper.

The potential corrections considered above in-
volve only nondiagonal elements, since the solu-
tion of the radial equation (83) is always orthogo-
nal to the orbital being excited. Therefore, the
diagonal elements require a special treatment.
These lead to diagrams of "ladder" type, and they
can easily be summed to all orders. Alternative-
ly, we can eliminate these diagrams by means of
a simple substitution. Let us replace the model
Hamiltonian H, and the perturbation P by

H,'=II, + a; i v i +» (94}

V'=V —pat(i ~v)i) a;,

where v is the effective potential (Fig. 6). Ho has
the same eigenfunctions as H„but the single-elec-
tron energies are changed to

(95)

In this way all diagonal elements of the potential
perturbation are eliminated, and, instead, the
energy denominators are modified. The same re-
sult is, of course, obtained by summing "ladder"

diagrams to all orders.
Thus, we have seen that we can, in principle,

eliminate the diagrams containing potential in-
teractions. Instead of the modification procedure,
described above, one could define the orbitals in
such a way that the effective potential v is identi-
cally zero. For the occupied orbitals this is quite
feasible, and corresponds to using some kind of
HF orbitals. For the excited orbitals, on the
other hand, this would imply that the inhomogen-
eous equations had to be solved iteratively. This
can be accomplished with our programs, but we
have found that the procedure described here
yields essentially the same results in a much
shorter time.

VI. RESULTS AND DISCUSSION

A. Analysis of numerical results

Because the pair equations can more easily be
solved in a local potential, the present calcula-
tions were carried out using local potentials of the
Hartree-Pock-Slater type. " As described in Sec.
V, the difference between the local. potential and
the Hartree-Fock (HF) potential was then taken
into account by successively solving the one-elec-
tron equation. This procedure leads to modified
orbitals which are essentially the same as the HF
functions, and it ensures that potential diagrams,
which cancel exactly with Hartree-Fock orbitals,
are quite small. In order to check this procedure,
the calculation for the 2P state of Li was carried
out using two different local potentials, the "op-
timized Hartree-Fock-Slater" (OHFS)" and the
"Hartree-Slater" (HS) potentials. 'o

The first column of Table I shows the first-or-
der values of (r ') for Li 2P obtained with these
two local approximations and in re stricted Hartree-
Fock (HF). When the potential corrections de-
scribed in Sec. V were done, the values given in
column 2 were obtained. The influence of the dif-
ferent starting potentials is thus removed and the
HF value is reproduced.

Since the potential diagrams shown in Fig. 5(b)
and 5(c) are included in the modification proce-
dure, the only second-order diagrams that must
be calculated explicitly are those given in Fig.
5(d) and 5(e). The second-order values of (r '),
which include these diagrams and the potential
modification of the single-particle functions, are
given in columns 3-5 of Table I for the orbital,
spin-dipole, and quadrupole interactions, re-
spectively. Again, the values of (r ') are es-
sentially independent of the starting potential.

As we have said, there are 46 distinct third-
order effective-operator diagrams without po-
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TABLE I. Potential corrections for Li 2P.

Potentials

First-order

Uncorrected
(~ ')

Potential
corrected

(y 3)

Second-order

Potential. corrected
(& ').~

OHFS
HS
HF

0.066 23
0.072 39
0.058 49

0.058 49
0.058 46
0.058 49

0.058 49
0.05846
0.058 49

0.061 80
0.061 76
0.061 82

0.052 28
0.052 25
0.052 29

tential interaction. Of these diagrams, the 28
graphs, for which the hyperfine interaction occurs
last, are shown in Figs. 7 and 8. The other 18
diagrams may be obtained by interchanging the
order of the hyperfine and Coulomb interactions
in these diagrams, so that the hyperfine inter-
action occurs in the middle. As discussed in
Sec. III, the diagrams the, t occur in the perturba-
tion expansion can be separated into core-polariza-
tion and correlation diagrams. The polarization
diagrams can be evaluated using only single-par-
ticle functions, and they are implicitly included
in the unrestricted Hartree-Fock (UHF). One

inherent check of the accuracy of our calculation
is the extent to which our third-order core-polari-
zation values agree with UHF calculations. As
we shall see, the agreement is quite good. The
correlation diagrams contain two or more excited
state lines at a time, and they are not properly
included in any single-particle theory, no matter
how deviously it is constructed.

The most important third-order core-polariza-
tion diagrams were found to be 7(a) and 7(b). For
the excited P states of Li, 7(a) only contributes
to the quadrupole term while 7(b) also contributes
to the spin-dipole interaction. As is easily seen,
these diagrams are obtained from the second- .
order polarization graphs, shown in Fig. 5, by
letting the excited electron-hole pair interact in
a direct way. A summary of the polarization
effects is given in Table II. The remaining third-

order diagrams, which require the use of one or
two pair functions, provide the leading correla-
tion effects. The most important diagram of this
kind is shown in Fig. 8(a). This diagram can be
regarded as a modification of the correlation en-
ergy of an open-shell electron and a core electron
by the hyperfine interaction. This single very
important graph, which contributes to all three
hyperfine parameters, is of the same order of
magnitude as the second-order polarization con-
tribution and the entire third-order correlation
effect. Diagram 8(b) is an exchange version of
8(a). For each choice of the angular momenta of
the excited states, this diagram gives a contri-
bution which is nearly as large as that of the cor-
responding direct diagram. The different contri-
butions tend to cancel, however, and the total ef-
fect of this diagram is quite small. Exchange
diagrams often have this property.

The graph 8(m), which only contributes to the
quadrupole interaction, was also found to be im-
portant. It may also be regarded as a modification
of the correlation energy of an open-shell core-
electron pair. In this diagram, though, it is the

TABLE II. Core polarization effects for Li 2P.

Diagrams
Contribution to

Second order:
5 (d)
5(e)

Third order:
7 (a)
7 (b)

Other diagrams

Total

0.003 31

0.000 64
0.000 07

0.004 02

-0.009 52
0.003 31

-0.001 55
0.000 64
0.000 27

—0.006 85
FIG. 17. Third-order diagram having two excited

lines throughout. This diagram is evaluated using two
pair functions.
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Calculations

First order
Potential correction
First order after
potential correction

Second-order
polarization

Third-order
polarization

Third order including
polarization

UHF
Corre J.ation
Total third order

—0.
0.066 23 0.066 23 0.06623

.007 74 —0.007 74 —0.007 74

0,058 49 0.058 49 0.058 49

0,003 31 —0.006 21

0.000 71 -0.000 64

0.058 49
0.058 62

0.004 32
0.062 81

0.062 51
0.063 21
0.004 12
0.066 63

0.051 64
0.052 11
0.005 03
0.056 67

a Reference 47.
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Diagrams

8(a)
8(b)
8 (m)
8(c) + 8(d)
17

Other diagrams

Total

0,004 41
—0.000 18

—0.000 29
—0.000 05

0.000 43

0.004 32

Contribution to
(~-3)

0.004 41
-0.000 18

-0.000 29

0.000 18

0.004 12

0.004 41
—0.000 18

0.001 65
-0.000 29

0.000 42
-0.000 98

0.005 03
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TABLE V. Comparison between theory and experiments for Li 2p, 3p, 4p.

Present calculation:
with OHFS potential
with HS potential

UHF
Nesbet
Das et al.
Hameed @ Foley
Experiment~

Fir st-order potential corrected
Second-order polarization
Third-order polar ization
Third-order without correlation
Correlation
Total third-order value
UHF
Experiment

First-order potential. corrected
Second-order polarization
Third-order polarization
Third-order without correlation
Correlation
Total third-order value
UHF~

Experiment

0.062 81
0.062 88
0.058 62
0.063 21
0.062 82

0.063 09(31)

0.017 64

0.017 64
0.001 04
0.018 68
0.017 65
0.019 10g '

0.018 66

0.007 452

0.007 452
0.000 406
0.007 858
0.007 443
0.008 06
0.007 95

Ll 2p
0.066 63
0.066 71
0.063 21
0.067 62
0.068 59

0.067 23(58)

Li 3p

0.017 64
0.001 10
0.000 23
0.018 97
0.000 97
0.019 94
0.018 91

0.020 53

Li 4P

0.007 452
0.000 478
0.000 100
0.008 030
0.000 378
0.008 408
0.008 018

0.008 75

0.056 67
0.056 75
0.052 11
0.057 06

(0.048 50)
0.058 00

0.017 64
-0.001 64
-0.000 16

0.015 84
0.001 24
0.017 08
0.01571

0.007 452
—0.000 653
—0.000 063

0.006 736
0.000 494
0.007 230
0.006 696

~Reference 47.
bReference 4.
CReference 25.

Reference 6.
~Reference 34.
~Reference 37.

8Reference 35.
"Reference 36.

inant part of this effect is due to the polarization
of the 2P shell. In the fourth row of Table VI the
third-order polarization contribution is given, and
as in the Li case, the main contribution is due
to the diagrams shown in Fig. 7(a) and 7(b). The
largest effect is the scattering of a 2P state to
another P state thus giving rise to a radial dis-
tortion of the core. Turning to the correlation
diagrams, it is found that diagrams of importance

in the Li case also contribute significantly for Na.
However, because of the presence of P electrons
in the core, diagrams 8(i)-8(i), which do not
contribute for Li, have an important effect. These
diagrams describe correlation effects between
core electrons, the main contribution being due
to 2P intershell correlation. A summary of the
correlation contributions is given in Table VII, and
the total third-order values for the 3P state of Na

TABLE VI. Summary of the present calculations for Na 3p.

Calculations

First order (OHFS)
Potential corrections
Second-order polarization
Third-order polarization
Third-order without correlation

Correlation
Total. third-order vat.ue

0.2365
—0.0689

0.0343
0.0112
0.2131

0.0202
0.2333

(r-P, „

0.2365
—0.0689

0.0390
0.0130
0.2196

0.0204
0.2400

0.2365
-0.0689

0.0630
0.0225
0.2531

0.0155
0.2686
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in row seven of Table VI.
Our procedure of calculating the second- and

third-order diagrams is entirely automatic. The
Li 2P calculation took about 17 min on the IBM
360/65 computer, and a calculation of the hyper-
fine constants for another atomic state requires
essentially only changing the input cards of the
one-particle and two-particle programs and the
program for evaluating the Feynman diagrams.

B. Comparison with other ab I'nitio calculations

Our total third-order values of the effective
(r ') coefficients for the 2P state of Li are pre-
sented in the first two rows of Table V. As
mentioned, two local potentials, OHFS and HS,
have been used, but the final result is almost in-
dependent of the starting potential. There are
higher-order potential corrections involving two
excited states at a time that are not included with-
in our modification procedure, so this small dis-
crepancy is not difficult to understand.

Several extensive ab initio calculations have
been carried out for the 2P state of Li. Nesbet, '
using a variational approach, obtained the values
given in the fourth row of Table V. There is good
agreement between his and our results. For both
of the potentials we used, our values are in agree-
mentwith his to about 1/0 in all cases. Since the

methods are so different, this close agreement is
encouraging. Das and coworkers, "using third-
order perturbation theory, obtained the values
given in row five. For the orbital and spin-dipole
cases, there is a general agreement between the
values which they provide for their Feynman dia-
grams and ours. So the agreement of the total
result which appears between our calculations for
these cases is not accidental. For the quadrupole
case, howeve~, there are numerous discrepancies
between their diagrams and ours.

The quadrupole interaction has also been calcu-
lated by Hameed and Foley' and their value is
given in row six. It deviates from Nesbet's and
our results by about 2/z. Most of this discrepancy
is for the correlation contribution, and it is
probably due to the limited number of configura-
tions which Hameed and Foley used to construct
the first-order wave function. For the 3P and 4P
states of Li and the 3P state of Na our final re-
sults are given in Tables V and VI and represent
the first accurate many-body calculations for
these states. The UHF values of Lunell" for the
P series of Li are included in our Table V, and
these values should be compared with our "third-
order values without correlation. " As we have
said, the agreement is very good, indicating that
the higher-order polarization terms are quite
small.

FIRST

x ORDER

OHFS

SPIN
ORBITAL DIPOLE

PRESENT WORK

EXPERIME NTAL

QUADRU-
POLE

C. Comparison with experiments

An early experimental determination of the mag-
netic interaction constant a,i, for 'Li and 'Li in the
2P state was done by Ritter, "using the optical
double resonance (ODR) method. Brog et al. 32

studied the fine-structure crossings in 2P using
level crossing (LC) spectroscopy. Combining the
information from both measurements, Lyons
and Das" deduced effective (x ') values for the
operators s, l, (sC')' occurring in the magnetic
dipole case. Recently, using the ODR method,

.20
l ~ ~ ~ ~ ~ ~ ~ ~ ~ 0

~e
~4

I
~ 0

~ ~ ~ ~ ~ 0 ~ ~ OO

POLARIZATION
Diagrams

TABLE VII. Correl. ation for Na 3P .

Contribution to

HF

FIG. 19. Radial parameters for the effective magnetic
dipole and electric quadrupole operators for Na 3P.
Dotted and dashed lines represent the polarization
results in second- and third-order perturbation, respec-
tively. Full line represents a complete third-order cal-
culation and the shaded region the experimental average
of the orbital and the spin-dipole parameters.

8(a)
8(b)
8 (k)
8(i)
8 (j)
8(l)

8(c) + 8(d)
8(g)
8 (m)

Others

Total.

0 ~ 0429
-0.0081

0.0326
—0.0195

0.0058
—0.0089
—0.0128
-0,0098
—0 ~ 0003
—0.0017

0.0202

0.0429
-0.0081

0.0326
-0.0195

0.0058
-0.0089
-0.0128
-0.0102

—0.0014

0.0204

0.0429
-0.0081

0.0326
-0,0195

0.0058
-0.0089
—0.0128
-0.0102
—0.0076

0.0013

0.0155
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Orth" has studied the energy separation between
Zeeman levels of the 2 'P», and 2 'P», states by
scanning a magnetic field, with the frequency being
kept to 10 6Hz. From his data, alone, the same
effective (r ') values could be obtained. The re-
sults are presented in Table V and Fig. 18. As
can be seen the agreement between theory and
experiments is quite good.

For the BP state in 'Li, level-crossing experi-
ments have been performed by Budick et al."and
Isler et al." However, in their analysis of the
experimental data, a two-parameter description
is used. This is also the case for the 4P state of
'Li measured by Isler et pl." Lunell" has re-
analyzed their data using the following assump-
tions: for the 2P, 3P, and 4P state the ratio
(r '),„/(x '), is supposed to be constant {in an
unrestricted Hartree-Fock calculation this is es-
sentially true) and for the 4P state a I/n' scaling
of the parameter is further assumed. As can be
seen from Table V, the 'agreement between his
reanalyzed values and our theoretical ones for 3Pl
is within 3% for the effective integrals and for 4P
within 4%. The latter deviation might be ex-
plained by the rough I/n' scaling performed for
the 4P level.

For Na 3P there are several experimental hyper-
fine measurements. Ackermann" and Baumann"
have used ODR to measure the interaction con-
stants a„, and b», . Schonberner and Zimmer-
mann, Baumann, ' and Mashinski ' have use'd LC,
and Copley et al. ' and Figger and Walther used
delayed level crossing {DLC) to measure the
same constants. For the a3/2 value the measure-
ment of Schonberner and the one performed by
Figger seem to be more reliable than the experi-
ment of Mashinski, even though Mashinski gives
a much smaller estimate of his error. The a,&,

value for Na SP has been determined by Rabi
e«l. ' and Hartmann. '

No measurement of the off-diagonal hyperfine
constant has been reported for the 3P state in Na,
and therefore it is not possible to obtain experi-
mental values for all three parameters of the

effective dipole operator. Furthermore, we have
in the present work not calculated the effective
contact interaction and we can therefore not com-
pare with the a factors directly. However, one can
easily show the following relation:

a,&, + a„,=Ax g, {2(r '), + —', (r ')~) .

If a is measured in MHz, (x ') in atomic units,
and g, in nuclear magnetons, then K has the value
95.412 85. Using this relation we can define an
"average" of the orbital and spin-dipole param-
eters

From the experimental values of Hartmann" and
Figger et al. we obtain

{r ')'"~' =0.2502(ll) .

By subtracting from this an estimate of the rela-
tivistic effects, ' we obtain a "nonrelativistic" ex-
perim ental value

(r ')"'""'=0.2435{II).

The corresponding theoretical value obtained from
our third-order results in Table VI is

(/-3)n loire t 0 2353

A measurement of the off-diagonal hyperfine pa-
rameter for this state would be very helpful, since
it would allow a more detailed comparison between
the theoretical and experimental results.

D. Evaluation of quadrupole moments

The experimental quadrupole interaction con-
stants for the states considered here are given in
Table VIII together with the corresponding quad-
rupole moments obtained by means of our ab &n&~io

effective (r ') values. As a comparison, we have
in the same table given also the quadrupole mo-
ments evaluated in the standard semiempirical
procedure, using the experimental magnetic hfs
constant and the quadrupole shielding factor given
by Sternheimer. "

TAB LE VIII. Calculated quadrupole moments.

Atom

~Li

Na

State 3)
tllR|,'

0.064 24
0.2358

0.117
—0.181

0.05667
0.2686

bex
(Mhz)

-0.221 (29)d

3.04(19)'

qb
(mB)

—41(5)
120(8)

@ST'
(mB)

-41(5)
116(8)

Factor given by Sternheimer, see Ref. 22.
Quadrupol. e moment evaluated using our ab initio value (x )~ .
Quadrupole moment obtained from the average (x ) value, calculated from experimental

hfs, and using Sternheimer's correction factors.
Reference 34.

~Reference 44.
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Sternheimer's correction factors are obtained
by solving a one-particle inhomogeneous differ-
ential equation of the type discussed in Sec. V, and
they correspond to the second-order core-polari-
zation diagrams [Fig. 5(d) and 5(e)]. Correlation
effects are not included in these factors, and,
furthermore, only the perturbation of the quad-
rupole interaction is taken into account. The
magnetic dipole interaction is also perturbed in a
similar way and this should be considered when
the (r ') value for the quadrupole interaction is
estimated in a semiempirical way.

It follows from what is said above that when the
(r ') value for the quadrupole interaction is es-
timated from the magnetic hfs, the conventional
Sternheimer factors can be expected to yield ac-
curate results if the following two conditions are
fulfilled: (i) the effect of core polarization on the
magnetic hyperfine interaction is small and (ii)
electron correlation has the same effect on the

magnetic dipole and electric quadrupole inter-
actions. From our results discussed above, we

see that these conditions are well fulfilled for the
3P state in Na but less so for the P states in Li.
The apparent agreement between the quadrupole
moments for Li obtained with Sternheimer's
method and from our calculation is accidental,
because the effect of polarization upon the mag-
netic interaction essentially cancels the effect of
correlation. One can expect that the conditions for
heavier alkalis should be similar to that for Na,
or, in other words, that the quadrupole moment-
evaluated in the standard way from hfs data for
the P series should be fairly accurate. Prelimin-
ary calculations on the d states, ' however, indi-
cate that it is necessary to include the polariza-
tion effect on the magnetic interaction, if the semi-
empirical procedure shall be used to evaluate the
quadrupole moment.
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