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(1s) 3s'S, (1s)2 3p P, and (1s) 3d2D states of the lithium isoelectronic sequence*
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A 1/Z-perturbation-expansion method is used to calculate the eigenvalues and eigenfunctions
for the (1s) 3s S, (1s) 3p P, and (1s) 3d D states of the lithium isoelectronic sequence. The
eigenfunctions are used, together with those of the 2 S and 2 P states-, to determine the dipole-
length and dipole-velocity forms of the oscillator strengths for the 2p-3s, 3s-3p, 2s-3p,
3p-3d, and 2p-3d transitions. The results are compared with those obtained from Hartree-
Fock calculations for individual values of the nuclear charge. The calculations include mem-
bers of the lithium series for which accurate eigenenergies or oscillator strengths are not
well known.

I. INTRODUCTION

Because t f the continuing importance of the
highly ionized members of the lithium isoelec-
tronic sequence in solar and laboratory plasmas,
this research utilizes the Z-expansion method' to
provide accurate wave functions and eigenenergies
for the 3 S, 3'P, and 3'D states of the series.
Variational wave functions expressed in terms
of configuration interaction allow greater accuracy
in representing these states than in earlier work. '
Since the calculations are performed as a function
of nuclear charge, they are easily extended to in-
clude more members of the sequence with only a
negligible addition of computer time. Oscillator
strengths for the lithium sequence from CIV to
SiXII are determined for transitions among the
l =3 l.evels and with the 2'8 and 2'P levels studied
in a previous paper. '
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We require that

(4'), IHol c'), )=e),5),), , k, k = l, 2, . . . , N,

l)~o) to the set of Rayleigh-Schrodinger perturba-
tion equations obtained by expanding the wave func-
tion and energy according to

II. THEORY

A complete theoretical discussion has been
presented previously' and only a brief resume
will be given here. We seek a solution to the
Schrodinger equation where the nonrelativistic
and spin-independent Hamiltonian II, in appropri-
ate units of Z Q0 for l.ength and Z' a.u. for ener-
gy, is given by

H = Ho+ (1/Z) V .

H0 is the hydrogenic Hamiltonian and the electron-
ic repulsion term V can be treated as a stationary
pe r turbation.

Following Dalgarno and Drake' we introduce a
finite basis set 4 „, which, in our case, consists
of three-electron determinantal functions repre-
senting the configurations k. One of these, 4„ is
the hydrogenic solution and zero-order solution

Then &0= E„". Substituting the trial form
N

lv.")=P ~. Ic.)

into Eqs. (3) and (4) leads to the following expres-
sions for the sth-order perturbed wave function
and energy:
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TABLE II. Eigenvalues for 0 v& (Z =8) in a.u,

—E (1s'g d "D)

Weiss (HF)
variational.

This paper Z -expansion

61.268 11
61.299 33
61.299 33

61.148 67
61.190 25
61.190 25

61.112 10
61.156 69
61,156 69

After diagonalizing JI, these recurrence relations
can easily and rapidly be evaluated. Provided the
expansions converge, the results are identical to
those given by diagonalizing the total Hamiltonian
H in the 4, basis for each value of Z.

The oscillator strength for a dipole transition
from an initial state g„ to a final state g„' is given
in the length formulation by

3 2

(9)

and in the velocity formulation by
3 2

(10)

Substituting Eqs. (2) into expressions (9) and (10),
we may generate expansions of oscillator strengths
in powers of Z '. If the wave functions are exact
solutions to Schrodinger's equation, the coefficients
in the length and velocity forms are identical.

III. CALCULATIONS AND RESULTS

In the method of configuration interaction, the
state function is represented as a linear combina-
tion of many electron wave functions representing
various electron configurations. Each configura-
tion consists of a sum of determinantal wave func-
tions chosen to be eigenfunctions of S' and L';
that is, they are coupled to give the desired spin
and angular momentum symmetry. The determin-
antal wave functions are composed of single-elec-

tron wave functions (Slater-type spin orbita. ls)
which are normalized but not orthogonal.

The Z-expansion method converges more rapid-
ly for the higher values of nuclear charge, and the
35-term function for OVI of Weiss" was used as
the K-shell starting point for all three states.
Moreover, some configurations representing the
2'S and 2'P states were added to the 3'S states,
respec tively. Variational calculations with re-
spect to the second root of the secular determin-
antal equation prevented energy collapse to either
the 2'S or 2'P state. We attempted to improve the
wave functions by selectivel. y increasing the num-
ber of configurations. The second-order energy
of a three-electron system may be given in terms
of second-order energies of two-electron systems'.

E i(ls'nl) = E~'~(ls' 'S) + —'Ei" (1snl 'L)

+ —,'E~"(1snl 'L)+ g(nl),

where g(nl) is a sum of single-eiectron integrals.
The form suggests the inclusion of configurations
of "S-core nature for the 3 'S, "P core for the
O'P, and "D-core symmetry for the 3'D states.

In all, 25 configurations involving nine optimized
screening parameters (obtained in the standard
variational minimization of the total energies)
were added to make a 60-term 3'S. Similarly,
27 new configurations involving eight optimized
screening parameters and 20 configurations with
eight improved screening parameters were added
to make the 60-term O'P and 50-term O'D states,
respectively. The values for the screening param-

TABLE III. Energy-expansion coefficients E„(a,u.).

Order s (1s)23s 2S (1s)23P 2~ (1s)23d 2D

0
1
2

5
6
7
8
9

10

-1.O55 555 56(O)
8.182 067 86(—1)

-2.888 903 85(—1)
—2.710 299 45(—2)

1.376946 79(—1)
2.514 446 71(—1)
8.042 91588(—1)
2.941795 34(O)

-1.053 329 40(1)
-7.835 01183(1)
—7.600 777 67(1)

—1.O55 555 56(O)
8.381 19511(—1)

-3.350 2 70 59(-1)
-4.808 533 70(-2)

4.854 924 33(—2)
3.509 586 80(-1)
7.435 292 04(-1)

—6.239 883 42 (0)
-3.551 460 56(1)

1.792 530 08(2)
—8.125 576 78(2)

-1.O55 555 56(O)
8.467 987 O6(—1}

-3.725 900 71(—1)
—6.240 405 29 (—2)

5.626 59O 59(—1)
-2.208 389 01(0)
-5.252 026 58(0)

4.668 582 25(1)
1.287 532 07(2)

-3.821 604 22 (2)
—1.O34 7O4 32(3)
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TABLE IV. 1/Z-expansion eigenvalues (in a.u.) for the
lithium sequence.

Z E(-(ls) 32s ~S) E((—ls) BP rP) E(-(ls)~ 3d rD)

I I I
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5

6
7

8
9

10
11
12
13
14

22.583 84
33.378 65
46.283 66
61,299 33
78.425 86
97.663 37

119.01191
142.471 52
168.042 21
195.724 00

22.540 99
33.312 18
46.195 56
61.19025
78.296 25
97.513 37

118,84164
142.281 06
167.83.1 61
195.493 30

22.526 98
33.294 01
46.170 04
61 ~ 156 69
78.25429
97.462 96

118.782 73
142.213 61
167.755 61
195.408 73

TABLE V. Oscillator strengths for 0 vl (Z = 8).

eters and the list of configurations for the three
states are shown in Table I. Table II contains a
comparison of the energies obtained from Hartree-
Fock wave functions with the variational energies
calculated here.

Using the basis sets derived from the new varia-
tional wave functions, perturbed wave functions
and eigenenergies for the lithium isoelectronic
sequence were generated from expressions (7) and

(8). Our basis sets were found to give values of
E("(1s'3s'S)= -0.2888904 a.u. , E "(Is'3P'P)
=-0.335 0271 a.u. , and E ' (1s'3d'D) =-0.3725901
a.u. for the second-order perturbed energies.
These may be compared with the exact values of
Horak et al. ' which give E(' (1s'3s'S) = -0.304231 7

a.u. , E ' (Is'3P'P) = —0.3441562 a.u. , and
E "(ls'3d'D) = -0.378 0603 a.u. Table II shows the
excellent agreement between the eigenenergies de-
rived variationally for 0 VI and those obtained
from the I/Z-expansion theory. The energy-ex-
pansion coefficients for the 3 S, 3 P, and 3 D
states of the lithium series are given through
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TABLE VII. Zero- and first-order length expansion
coefficients.

Transition

2s-3p
Laughlin {Hef. 9)
this work (1/Z)

2p -3s
Laughlin (Ref. 9)
this work (1/Z)

2P -3d
Laughlin (Ref. 9)
this work (1/Z)

3s -3p
Laughlin (Ref. 9)
this work (1/Z)

0.4349
0.4349

0.0408
0.0408

0.6958
0, 6958

0.0
0.0

-1.2353
102323

0.2388
0.2363

-0.3492
—0.3263

2.1506
2.1506

Laughlin (Ref. 9)
this work (1/Z)

0,0
0.0

0.3906
0,3906

tenth order in Table III. Table IV lists the 1/Z-
expansion eigenvalues for the lithium isoelectronic
sequence from B III to Si XII.

The variational wave functions derived for OVI
were used with the 2 'S and 2'P wave functions
developed previously' to calculate both the dipole-
length and dipole-velocity forms of the oscillator
strengths for the 2P-3s, 3s-3p, 2s-3P, 3P-3d, and

2P-3d transitions. Table V compares the oscill.a-
tor-strength values obtained for 0 VI using varia-
tional wave functions with those determined by
Weiss' employing Bar tree- Pock wave func tions.
We have used experimental energy differences '

to compute ~E so that the inaccuracies in the cal-
culation arise solely from the transition integral.

The oscillator strength may also be expanded in
powers of Z '. Table VI gives the length (fr ) and
velocity (f~) expansion coefficients through 12th
order for the five transitions. For each transi-
tion, the correct value for the leading term in
each series is the hydrogenic value. Table VII
is a comparison between the zero- and first-order
length expansion coefficients derived here with
those determined by Laughlin et al. Tabl. e V dis-
plays the excellent agreement between the oscil. la-
tor strengths obtained variationally for 0 VI with
those derived from the 1/Z-expansion theory.
Table VIII is a collection of the dipole-length and
dipole-velocity oscillator strengths for C IV

through SiXII. It is to be noted that the series
expansions for the oscillator strengths exhibited
poor convergence for the low values of Z.

Table VIII also shows that for high-Z values
the length formulation is more accurate for pre-
dicting the values of the oscillator strength. Dal-
garno and Lewis" demonstrated that, in general. ,

TABLE VIII. Oscillator strengths for the lithium isoelectronic sequence.

10
2s-3P

l.ength (HF)
veI.oc~ty (HF)
length (1/Z)
velocity (1/Z)

2p -3s

0.2004
0.1923
0.19
0.19

0.2354
0.2286
0,23
0.23

0,2617
0.2558
0.259(5)
0,262 (0)

0.2819
0,2768
0.2813
0.2834

0.2979
0.2934
0.2981
0.3003

0.3121
0,3135

0.3234
0.3245

0.3329
0.3336

0.3399
0.3423

length (HF)
velocity (HF)
length (1/Z)
velocity (1/Z)

2p -3d

0.1127
0.1159
0.104
O, 113(3)

0,0965
0.0993
0.0921
0.0966

0 ~ 0861
0.0885
0.0835
0.0862

0.0789
0.0810
0, 0775
0 ~ 0789

0.0736
0.0755
0.0728 0.0692
0.0738 0, 0698

0.0663
0.0667

0.0639
0.0642

0.0620
0.0620

length (HF)
velocity (HF)
l.ength (1/Z)
velocity (1/Z)

Q.6542
0.6455
0.65 (8)
o.66{5)

0.6580
0.6514
o.e55(4)
o.ee2(1)

0.6615
0.6563
o.eeo(o)
o.e64{3)

o.ee4e
0.6603
O. ee36
0.6671

0.6671
Q, 6639
0,6662
0.6703

0.6694
0.6718

0.6717
0.6736

0.6736
0.6751

Q. 6753
O, 6763

length (HF)
velocity (HF)'
l.ength (1/Z)
velocity {1/Z)

3p -3'
length (HF)
velocity (HF)'
length (1/Z)
velocity (1/Z)

0.4812
0.5107

0.0623
0.0568

0,3949
0.4195
o.45(5)
o.4(5)

0.0544
0 ~ 0516
0,05(4)
o.o4(1)

0 ~ 3345
0.3557
0.3353
O, 31(6)

0 ~ 0481
0.0467
0,048(5)
o.o4(2)

0.2902
Q ~ 3084
0.2919
0.27(7)

0.0432
0.0420
0 ~ 0438
o.o4(o)

0.2561
0.2722
Q.2563
O.24{8)

0.0382
0.0389
0,0383 0.0365
O. O38(3) O. O34(1)

0,0337
0.0314

0.0314 0.0266
0.0291 0,0300

0.2326 0.2121 0.1945 0.1677
0.218 (8) 0,196(4) 0.1783 0.1750

Reference 2.
Theoretical nonrel. ativistic energy differences.
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for transitions occurring between closely spaced
energy levels, the dipole-length form is to be
preferred; whereas, for widely spaced levels,
the dipole-velocity form is to be preferred.
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