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An explicit expression for the fourth frequency moment of the spectral function of the energy-density
fluctuation correlation function, and hence for the energy-density correlation function, has been derived
for a classical system of particles interacting through a two-body potential. It has been found to
contain correlations up to four particles only. An expression in the long-wavelength limit for the eighth
frequency moment of S(q, co) has also been given.

In a recent paper' (hereafter referred to as I),
explicit expressions for the sixth frequency mo-
ments of the current correlations along with their
self-parts, the first four frequency moments of the
kinetic-energy-density (KED) fluctuation correla-
tion function and the first two frequency moments
of the energy-density fluctuation (EDF) correla-
tion function, were derived for a classical sys-
tem of particles interacting through a two-body
potential. These moment relations were found to
contain correlations up to a maximum of four par-
ticles. In this addendum, we extend our sum-rule
calculation for the fourth frequency moment of the
EDF correlation function. This completes the
derivation up to fourth frequency moments of both
the KED fluctuation and EDF correlation functions.
It is interesting to note that the fourth frequency
moment of the EDF correlation function also in-
volves up to a maximum of a quadruplet correla-
tion function.

Since the details of the method of calculation
have been discussed in I, we briefly present here
the result. Following the definition and notation of
Ianddifferentiating the EDF operator e(q, t) twice
with respect to time, we obtain
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Here H4 represents the fourth frequency moment
of the KED correlation function and can be ob-
tained by substituting the mean kinetic energy
T, =0 in Eq. (34) of I. C, represents the two-par-
ticle contribution to E4 and is given by

Using Eqs. (9) and (13) of I, it is straightforward
to derive the result for E4. We omit the detailed
algebra involved in the derivation of E4 and state
here only the result:
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where 0 (q) has been defined in I. C, represents the contribution to E, arising due to correlations between
three particles only and it is given by
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C, and C~ represent, respectively, the contributions due to the four-particle distribution function and due
to the fluctuation in the energy density. These are given as
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Although one expects that higher-order correlation functions (involving more than four particles) should
enter in E„yet it is interesting to note that E, contains up to four-particle correlation functions only.
During the course of the calculation, we do come across certain terms containing more than four particles
[which is evident from Eqs. (2) and (6)] but all these terms vanish within the assumption of pair potential.
For example, in Eq. (3) the last term will contribute only for k = j or k =m, so that e, contains at the most
two particles. The case is similar with e, . Therefore, only those terms involving a maximum of four
particles will contribute to E,. Looking at the steps of calculation and the results of the frequency moments
of the EDF correlation function, we feel that the sixth frequency moment also will not involve more than
four-particle correlation functions, whereas the moments higher than sixth may involve five-particle dis-
tribution function.

The fourth frequency moment of the energy-density correlation function can be obtained by substituting
in (11) e =0, i.e., substituting the fluctuation contribution C~ =0. Further, in the lang-wavelength limit,
the fluctuation part C~ vanishes. Thus, like E„ the q-0 limits of the fourth frequency moments of the
EDF correlation function and the energy-density correlation function will be equal.

In I, the expression for the sixth frequency moment of the longitudinal current correlation function
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[eighth frequency moment of the dynamical structure factor S (p, (2))] for& - 0 has not been given. We wish to point
out that it is nontrivial to obtain this limit directly from the form of the expression given in I. We there-
fore state here the result:
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An analogous expression for the transverse part
can now be easily written.

So far no sufficient information about the triplet
and quadruplet correlation functions is available
from computer experiments. Therefore it seems
difficult as yet to estimate the various frequency
moments involving three- and four-particle corre-
lation functions. Recently, Machida and Murase'
have estimated the sixth frequency moment of the
longitudinal current correlation function. It may
be noted that their expression for the sixth fre-
quency moment of the longitudinal current corre-
lation function is incomplete and in error (see
footnote 2). Machida and Murase have approxi-
mated the various higher-order correlation func-
tions by the products of two-particle correlation
functions, which seems to be the simplest appro»-

mation, at least initially. They have used the
results of the various frequency moments (up to
the sixth) ot the longitudinal current correlation
function to estimate the Maxwell relaxation time
required in the viscoelastic theory of liquids. Thus
if required the various frequency moments of the
EDF correlation function can be estimated using
the same kind of decoupling approximation for
higher-order correlation functions as used by
Machida and Murase. ' Also, we feel that because
of the possibility of using high-speed computers
for numerical experiments, it may not be impos-
sible to obtain detailed information about the trip-
let and quadruplet correlation functions.
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