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We propose here a molecular theory of liquid crystals based on well-known theory of classical liq-
uids. The method of calculation involves the simultaneous solution of two coupled nonlinear integral
equations. The one- and two-particle distribution functions are obtained, as are order parameters as
functions of density and temperature. The results are compared with those of mean-field calculations.

I, INTRODUCTION

In recent years there has been much interest
and research activity centered upon the study of
liquid crystals. However, despite encouraging
progress made along the lines of mean-field theo-
ry' ' and hard-rod model calculations, ' ' a de-
tailed and realistic microscopic theory of liquid
crystals is still lacking.

In the mean-field approximation, short-range
correlations between molecules are ignored, or at
best accounted for in the crudest manner. While
phase diagrams for homologous series can be ob-
tained, in fact rather successfully, properties
which depend on the pressure of the system cannot
be accounted for. Yet some of the most interest-
ing recent experiments are related in one way or
another to this thermodynamic variable: the pres-
sure. For example, there are now available PVT
data for individual members of a homologous
series"; there are measurements of elastic con-
stants"; and there are direct observations on
sound propagation properties. "" Furthermore,
neutron scattering experiments" now provide a
sensitive probe of microscopic structure functions.
To understand and. predict these important proper-
ties of liquid crystals one must move beyond the
mean-field approximation.

Hard-core model calculations do take into consid-
eration short-range intermolecular correlations.
However, in these models there is too much em-
phasis on geometrical or steric effects. In reality,
the intermolecular potentials are expected to be
much softer and of multipolar nature. To bridge
the gap between powerful but qualitative statistical-
mechanical calculations and quantitatively accurate
data obtained from experimentation on real-life
liquid crystals, one must allow potentials of rather
general forms into the microscopic theory.

In this paper, we propose a molecular theory of
liquid crystals based on well-known theories of
classical liquids. Undoubtedly, approximations of

various sorts are present, as mill be made clear
in the following pages. What we provide here is
merely the first step in a strenuous journey. In
subsequent papers we shall deal with applications
of the formalism developed. here, and attempt to
link up with the available phenomenological, hydro-
dynamic theories. ' " To illustrate how quantita-
tive results can be produced from our theory,
some simple numerical calculations are carried
out for two-dimensional systems. The choice of
dimensionality is merely for expediency. We rea-
lize that phase transitions in two dimensions have
intriguing implications in rigorous statistical-me-
chanical theories. Our theory is clearly not suffi-
ciently exact to make any significant statement re-
garding these fundamental questions. We are sat-
isfied with the fact that order-disorder transitions
in two dimensions are not ruled out by exact theo-
ries, the prime example of which being the well-
known Ising model. The success or failure of our
theory will rest on how well the three-dimensional
version eventually fares when tested against em-
pirical data.

In the given context, then, what is the most con-
venient way of representing an order-disorder
transition'P This question was answered a long
time ago by Kirkwood and Monroe. " The one-par-
ticle distribution function becomes extremely im-
portant when one examines systems with long-
range order. For example, as a liquid condenses
into its solid phase, the one-particle distribution
function goes over from a constant to one having
periodic peaks situated on the lattice sites. Again,
in the present case, as an isotropic liquid under-
goes a transition into a nematic phase, the one-
particle distribution function exhibits a sharp max-
imum along some preferred direction: that of the
director. In both examples, we face the following
theoretical difficulty: The only input happens to
be the intermolecular potential. If this potential
has a symmetry corresponding to that of the dis-
ordered phase, the transition to the ordered phase
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represents a lowering of the symmetry. A one-
particle distribution function naively defined in the
usual canonical ensemble theory leads to complexi-
ties. If the potential is rotationally invariant, the
one-particle distribution function is apparently a
constant in either the isotropic or the nematic
phase. One might simply accept this statement
and proceed to look for order in the two-particle
distribution function. Or alternately, one might
introduce an arbitrarily weak single -particle
field —one that furnishes a preferred axis in space
and yet is too weak to affect otherwise the proper-
ties of the system. The latter approach, which we
shall adopt in this paper, breaks the symmetry
and selects the proper ensemble. The fictitious
single-particle field will not explicitly appear in
the equations; its presence will be tacitly assumed.

Let us then consider a system composed of N
molecules confined to a plane of area A. such that
the limit N/A =n exists as N and A approach infin-
ity. n is finite and an input parameter. The inter-
action is assumed to be pairwise. To be more
specific, we shall take it in the following form:

v(1, 2) =- v(r„y, ; ~„y,)
vp(r») + v, (r») cos2&&»

v, (r }= e[(o/r)" —(o/r)'], (2)

and v, (r) a Gaussian as in Refs. 2 and 3,

-rr 2
v (x)=-qe &"~"o& . (3)

The values of the parameters e, v, q, and x, will
be given later. Figure 2 shows qualitatively the
angular and spatial dependence of such a pairwise
potential.

v, (y ) and v, (r) are functions to be constructed to
make v as realistic as possible. Clearly one can,
and perhaps eventually needs to, generate potentials
which are more sophisticated than that given in

E&l. (1}; e.g. , by including higher-order terms in
cosines such as cos4cp», etc. But such a move
will only complicate the issue and adds nothing
substantial to our present effort toward developing
the theory. Also, it is possible to include odd
cosine terms such as cosy», etc. This destroys
the two-fold symmetry of the rodlike molecule
(with respect to a rotation by n), a property which
is rather nice to ascribe to the molecules at this
early stage of our research. For the numerical
work in this paper, we take v, (r) to be of the popu-
lar Lennard-Jones form,

where r; —= (x;, y;) gives the position of the center
of mass of the ith molecule, and y; gives its ori-
entation. r;, -=~ r; -r„(; and y»=y, —y, . Figure
1 shows the geometry of a pair of molecules.

II. DISTRIBUTION FUNCTIONS

We define the v-particle distribution function in
the conventional manner":

f" ~ ~ f ~ ~ ~ exp[-pp;„.v(i, j)]dr„+, ~ ~ dh„dy„+, ' '

P&'&(1, 2, . . . , v) =N(N —1) . (N —v+1)(2w)' J" ~ ~ f„~exp[- PP;„v(i, j)]dr, ~ dr„dy, dy„
0

(4)

f =7r/2

0
I2

FIG. 1. Geometry of a pair of molecules. A molecule
is represented by its symmetry axis.

FIG. 2. Qualitative nature of the angular and spatial
dependence of the interaction potential V(1, 2).
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For systems characterized by pairwise interactions the essential distribution functions are the one-
and two-particle distribution functions

/'2' i'
P(1) (1)= n (~ .

) N(2 ) J ' ' ' j~' ' ' exp[ PZ( &~v(lt j)1dr2' ' d rue 2
' d9 )((

f ' ' ' f ' ' 'exp[ PZl&g v(i) j)]drl' ' 'dr))( pl

p('(I, 2) -=n'p(r„(p, )p(r„(p, )g(r& /p» r2 (p2)

=NN —1 2m
', f;"' ~ ~ ~ f„~ exp[-pp, &,v(i,j)1dr, d r~d&p,

f ~ ~ ~ f exp[-pp«~v(i, j)]d r, d r))(d('p, ' ' 'd(p))(

By restricting our present considerations to iso-
tropic and nematic phases, both of which possess
translational invariance, we find the "density"
p(r, (p) depending only on the orientation (p and the
"pair correlation function" g(r „(p„' r 2', ) depend-
ing only on the magnitude of the distance x„, and

g, and p, . Thus we write

P'" (1)= np((pl)

g(l.„;q „q,) =g(r„; -q„-q,).

(iv) g(x», (p„(p, ) is invariant with respect to the
following transformations:

p, -p, +m, p, -p, +m,

&i+& &~& @2 4 +& ~

P"(I, 2) =n'p(V, )p(q, )g(l », q „y2) .
Let us reiterate these facts and further inspect

other properties of the system: symmetry, asymp-
totic behavior, and normalization. From these
properties we wish to obtain infinite series in
which these functions can be conveniently expanded.

For the density, we note the following: (i) It is
a constant in the isotropic phase. In the nematic
phase, once the rotational symmetry has been
broken by the specification of the x axis from
which one measures y, the density becomes de-
pendent on the orientation of the molecule but not
the position of its center of mass. (ii) It is an
even function of &p; i.e., p((p) = p(-&p). (iii) It is
invariant with respect to a rotation by m: y - y + m.

In other words, the molecules possess twofold ro-
tational symmetry. (iv) It satisfies the normaliza-
tion condition

For the pair correlation function, we observe
'tile following: (1) g(F'») (pl, cp2) ls a fullc'tloll of tile
relative distance between the centers of mass of
the two molecules 1 and 2. (ii) P(')( „lp„(r 2 (p)

is symmetric with respect to an interchange of 1
and 2. This implies

g(+» p 9 ) =g(&, ' v' p, )

(v) g(l'», ' y„y, ) approaches unity asymptotically;
l.e.,

limg(l. ; y„(p, ) =1. (12)

p(&p) = Q a,„cos2ln(p,
ln= 0

where

a0=1,

a,„=((/m) f p(y) aos2my Sy,
0

The coefficients a,~ define the order parameters,
as evidenced by a straightforward calculation of
the latter (l,„) in terms of the usual thermal aver-
ages:

where

=~a, , m40

(vi) g(l'», '(p„(p, ) is a real function of its arguments.
These considerations lead first to the expansion

of the density:

{e)— 0
f" ~ ~ f ~ (9exp[ —(I/kr)g & v(i, j)]dr dr d(p . dhp5&j & j. N 1 N

f f„exp[-( I/O T)Q;&,v(i, j)]dr, dr„d, dcp„
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Next we have the expansion of the pair correlation function:

g(~»; y„y, ) = G,(y„)+2 g G, „(r»)cos2mq»

+2 QQ(y»)(cos2my, +cos2my, ) +2+ G„'(r»)cos2m(y, +y, ) . (18)
m=z m=Z

For an isotropic liquid, g(r»,' y„y, ) is invariant
with respect to a simultaneous rotation of the mo-
lecules; i.e., yz-y, +n and y, -y, +e, where n
is arbitrary. Under this condition, the terms in-
volving G„(r») and G'(y „)drop out. Equation (18)
reduces to

g, (x»; y„)= G,(~„)+ 2 Q G, (r») cos2m(p „
m=z

G, (t=—») +2G, (r») cos2y»

+2+ G, (r») cos2my„.
m=2

free energy of the system at every density n and
temperature T can be expressed in terms of the
distribution functions, one evaluates the free en-
ergy from which all thermodynamics flows. Actu-
ally for equations beyond Eq. (21), it is simpler to
employ functional derivative techniques. There
are more convenient equations than the BGKY
equations which one can derive and use. The bet-
ter known ones are the HNC (hypernetted chain)
and the PY (Percus-Yevick). For liquid crystals,
straightforward generalization of the definitions of
functionals, functional derivatives, and functional.
inverses is sufficient. Compared to the usual
procedure, "the only modifications required are
given below:

III. INTEGRAL EQUATIONS FOR THE DISTRIBUTION
FUNCTIONS

dy dr f(r, y), (22)

It is well known" from the theory of classical
liquids that a heirarchy of integro-differential
equations relating I to all P "I v&X, can be
easily derived by differentiating the defining equa-
tions of P with respect to the spatial variables.
These equations, known as the BGKY (Born-Green-
Kirkwood- Yvon) equations, can be generalized for
present use in connection with systems exhibiting
liquid-crystalline phases. Take p(y). It depends
only on the angular variable q. Differentiating
Eq. (5) with respect to y, and introducing the de-
fining equations (6) and (8) of g(r»,' y„y, ), one
obtains the first BGKY equation:

1 =nln p(cp, ) =-
p sp~ 2w

5

5f( )
9( 1& %18

= llm [E(f(r~, (p ~) + 2M 5(r2 —r~) 5(p2 —(p ~))

(28)

= 2w5(r, —r, )5(y, —y, ) . (24)

One then obtains the generalized Ornstein-Zernike
equation":

x d r,p(y, )g(r„; y „y,)v, (r»)

8
x cos2+ z28+z

(21)

In like manner one could differentiate Eq. (6) to
obtain the second BGKY equation, one that relates
P ' to p and g. Somewhere along the line one
truncates the hierarchy of equations by means of
a closure approximation (such as a superposition
approximation), and thereafter solves the remain-
ing equations simultaneously for all low-order dis-
tribution functions including p and g. And since the

2'
4' s d r3l.g(r»i 0' x~ 0'3) —If

A

xc('r23' 9'2 0'3)&(r3 0's)

(25)

where c(r»,' y„y, ) denotes the direct correlation
function. ' Approximate integral equations may
then be derived by relating in various ways
g(r», cp„y, ) and c(r», y„y, ). In particular, the
PY equation is obtained by making a functional
Taylor-series expansion in the grand canonical
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ensemble and retaining only up to the first deri-
vative. " Thus, one finds a second equation:

and

p(()&) = 1+a, cos21&) +a, cos4p (27)

c(r„;q „y,)=g(r„;y„y,)

)&(I e 8[vp(r») +v2(r12) cof2g&
&) (26)

In this paper we employ the PY equation.

IV. REDUCTION OF THE INTEGRAL EQUATIONS

The substitution of expansion formulas (13) and
(18) into Eqs. (21), (25), and (26) gives rise to an
infinite set of coupled integral equations which are
clearly unmanageable. The expansions must be
truncated at an early stage. Moreover, the major
effects of short-range correlations can be ob-
served without the inclusion of complications like
G„(r) and G„'(r). This amounts to choosing
g(r», y„y2) to be g(r», (&2»), the isotropic pair
correlation function; i.e., we shall assume the pair
correlation to remain isotropic through the phase
transition. In this case p(r„y2) inside the integral
in Eq. (25) can be taken to be a constant, namely
unity. We therefore begin with

8( 12 Vl 92} 81( 12 912)

= G,(r»)+2G, (r») cos2y» . (28)

Likewise for the direct correlation function we
take

c(r12 9 1 9 2) I( 12 9 12)

=C,(r») + 2C, (r») cos2()2» . (29)

The validity of such truncated expansions depends
of course on the strength of the interaction and the
density of the system. In subsequent work we in-
tend to study the effects of higher-order terms and
the range of validity. Our first task is to demon-
strate that under such approximations the coupled
integral equations possess solutions. Next we
wish to compare these solutions with those of the
mean-field theory.

Substituting Eqs. (26} and (29) into Eqs. (25) and
(26}, and decoupling, one finds

G,(r„)e o~ 12 8g pv 2(r»)) +2G 2(r») 8( pv 2(
r»})e'" o"»

and

=1+n dr3 Go rj3 -1 G0rz3 g —8 "0 "23 80 ~2 ra3 -2G, r» e '0 "~3 gg 5 r23 30

G, (»r)[8 (Ppv, (r»)) +8,(Pv, (r»))] e 8""".») + G,(r„)8,(Pv, (r„))e 8"&'»)

= n dr, G2(r»)[G2(r»)[1 -e 2"&"»)[8p(pV, (r„))+8,(PV, (r „))]j—G, (r„)e()"p&r»)8,(PV, (r ))], (31)
A

where g represents the modified Bessel function
of m th order:

y, (r) =G (r)cpa & ),vr

r, (r) =G ()2r'e~",
(35)

(36)

8 (a) = (v&vt'2X1+'«) —(a real)
1

21Ti tm+ 1

These equations can be east in simpler forms:

y, (r)8,(pv, (r))+2y, (r)8,(pv, (r))

(32) f (r) &-&vier)

f.(r}=e '"""' 8.(Pv. (r)-),

f, (r) =e 8"p&") -8p(pv2(r)) -8,(pv, (r)),

(37)

(38)

(39)

=1+2n
"0

sd s[yo(s)f 2 (s)

-2y, (s)8,(Pv, (s))]x(r, s) (33)
(41)r(~, *)=f r.(lr- l)[).I, (lrHvl)]«, -

0

and

y, (r)8,(pv, (r))+y, (r)[8,(pv, (r)) +8,(pv, (r))]

=2n sds[y, (s)f, (s) —y, (s)8,(Pv, (s))]F(r, s),
0

(34)

where

and 8 denotes the angle between r and s.
It is possible to solve the simultaneous equations

(33) and (34) by various iterative procedures. In
fact several were tried. The most efficient algo-
rithm turned out to be the one in which y, (r) and

y, (r ) are simultaneously modifiedat every iteration.
The numerical results reported in Sec. V were ob-
tained with this method. Once yp()') and y, (r), or
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alternately G, (r) and G, (r), are found, the following
moments of v, (r) can be evaluated:

a, =-Pn v, x Q, ~ dr (42)

I.S-

l.5—

and

n, = P-n v, (r) G, (x)dr. (43)

I.O—

These are the crucial quantities in our theory be-
cause the substitution of Eqs. (27) and (28) into the
first BQKY equation (21) results in the coupled
transcendental equations:

(1/2n ) fo'ex'p(n„w, cos2p+-,'- n, r, cos4p) cos2ydy
(1/2II) f,"exp(n, 7, cos2cp +-,' n, v, cos4y)dy

(44)

0.5—

I.O 2.0 3.0 4.0

FIG. 3, Gp(&) and G2(x) at temperature T&.

50

(1/2m) fo exp(ng, cos2y +—,
' n,r, cos4cp) cos4ydy

(1/2II) f,"exp(n, r, cos2y +—,
' n,r, cos4y)dq&

(45)

which can be solved numerically or graphically
with little effort.

V. NUMERICAL RESULTS

The numerical solution of Eqs. (33) and (34) f»
y, (r) and y, (r) was carried out on CDC 6400 and

CDC 7600 computers. For the potential param-
eters, densities, and temperatures considered,
we found the convergence of the iterative proced-
ure to be sufficiently rapid to permit several sets
of calculations. The energy parameters g and e
were measured in units of kT, so that keeping the
ratio q/e fixed a variation in q and e corresponded
to varying the temperature without altering the
potential. We choose q and e to be of the order of
kT, and the range of the Gaussian, x'„ to be arbi-
trarily twice the hard-core diameter o. Since no

experimental data are available at this moment,
we have tried to keep the units of distance and

density as flexible as possible. At a later stage
one can adjust these by choosing a specific unit
for distance and the corresponding inverse square
for the unit of density. All integrations involving

G, (w) —1 or G, (r ) in the plane are carried out to a
distance of approximately 70 .

Figures 3 and 4 show the G, (x) and G, (x) obtained
at two typical densities for

e =1.50, a =0.50, q =0.764, r, =1.00, (46)

1.8—

I.5-

I.O—

0,5—

I
I
I
I

I
I
I

I

I

I

I
I

I

I
I

I
I

I

II I
II I

I

I

I

usual shape of a classical liquid, with sharpened
features at higher density. It correctly approaches
unity at large r. G, (x) decays toward zero with in-
creasing x as expected. It is more pronounced at
higher density, which indicates stronger orienta-
tional dependence of g(r», cp„p,).

Figures 5 and 6 show the results of solving Eqs.
(44) a.nd (45). At this point one should recall that
the order parameters 7, and 7 4 represent the one-
particle distribution function or the density p(p).
Below certain critical density n„l(T) Eqs. (44) and

(45) only possess the trivial solutions v, =0, r, =0.
The phase is clearly isotropic. Above n„i (T), a
new set of nonvanishing solutions appear. So both
isotropic and nematic phases become possible. To
determine which is the stable phase, one must cal-
culate and compare the free energies. To find a
two-phase equilibrium region, one must carry out
a Maxwell construction. Both topics lie outside
the range of present interest. These will be dis-

corresponding to temperature T, and T, = 0.8988T, .
In each figure the solid curves are at the lower
density n, = 0.75. The dashed curves are at the
higher density n, =0.95. Note that G, (r) has the

I.O 2.0 3.0
I

40

Cvp (&) and G2 (&) at temperature T2.

5.0
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cussed in a forthcoming paper. In Figs. 5 and 6,
the dashed curves represent mean-field results.
We wish to conclude our discussion with (i) a brief
review of the mean-field approximation as seen
from the present theory, and (ii) a few remarks
on how the present theory compares with mean-
field calculations.

VI. COMPARISON WITH MEAN-FIELD THEORY 0.6

In the mean-field approximation the short-range
correlations between molecules are discounted.
What this means is that the two-particle distribu-
tion function &(')(1, 2) can be decomposed into two
one-particle distribution functions; thus

~(2)(1 2) ~(I)(1)p(')(2)

By Eqs. (7) and (8), this implies

k"(rga/ pI~ pp) =1
~

or in the expansion formula (18) or (20),

(48) '
0.7

I
I

I
I
I
I
I
I

I
I

I

0.8 I.0

(49)

while all other coefficients G, (r») = ~ =0. Equa-
tion (21) for the density function p(y) reduces to

8
lnp(y, )

P ()v,

FIG. 6. Order parameters at temperature T2. The
dashed curve represents the mean. -field calculation.

or

d4), dr, p(y, )v, (r») cos29 „
(50)

dr p(y, )v, (rI2) cos2Ip„.

(51)
This equation can be integrated readily to give

I.O
with

0.8

0.6

d r p((p, )v, (r) cos2(0»

representing the mean field. A. in general should
be a function of r, . But in the present case we are
concerned with the isotropic and nematic phases
only. A. reduces to a normalization constant:

0.4
)( = (1/2m) d p 8 v(y)/0 T (54)

0.2

0
0.7 0.8

/
/

/
/

I
I

/
/

I
I

I
I

I

I 2
I

I
I
I
I

0.9 I.O

Note that the orientation-independent part v, (r)
does not appear in our present consideration; i.e.,
it does not appear explicitly when one applies the
mean-field approximation to isotropic and nematic
phases. It has "averaged out" as in Ref. 1.

Solving Eq. (50) directly using the technique de-
veloped in this paper, we obtain

FIG. 5. Order parameters at temperature T&. The
dashed curve represents the mean-field calculation.

T, = 8, (mr 0n))T, )/g0 (mr 0nqr, ) . (55)

Equation (55) can then be solved graphically. One
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finds readily that nontrivial solutions exist as long
as

m"Ong ~ 2.0. (56)

In Ref. 2, the self-consistent equations (52) and

(53) were solved approximately. In Ref. 3, a vari-
ational approach was employed in which the free-
energy functional was numerically minimized with
respect to a variational density function. The
present approach, when generalized in a straight-
forward manner to allow for the smectic phase,
is by far the simplest to use. Presently we are
also in the process of calculating the effects of

short-range correlations in the smectic phase.
Results obtained for tPe potential parameters

given in Eq. (46) are shown in Figs. 5 and 6 for
two different temperature'es. The major difference
between the mean-field theory and our present
theory is that 7, in the present theory drops more
abruptly with decreasing density and rises to a
higher plateau.
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c(&&2,.p&, p2) sums only non-nodal cluster diagrams
whereas g{r&&,.tp&, p2) sums nodal diagrams as well as
non-nodal diagrams. c(r&&, y&, p&) approaches zero
with particle separation much more rapidly than
(s'(~~2, v'~, v2) —j.)


