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A detailed theoretical and simulation study of resonant absorption in a hot plasma is presented which
isolates the behavior of the plasma for times short compared to an ion response time. The extent to
which an electron fluid model can describe the absorption process in the kinetic regime is discussed. At
high intensities the absorbed energy is observed to be deposited in a suprathermal tail of electrons
whose energy varies approximately as the square root of the incident power. The density profile
modification due to the ion response to the ponderomotive force is also discussed.

When an electromagnetic wave is obliquely inci-
dent on an inhomogeneous plasma and polarized in
the plane of incidence, it is well known that it can
be absorbed resonantly by linear mode conversion
into an electron plasma wave.'”” This process,
known as resonant absorption, has important im-
plications for laser target experiments and micro-
wave laboratory experiments.®! Most theoretical
work has been done for a cold plasma,?**~" while
warm-plasma calculations have been either in-
complete® or incorrect.!

For gradient lengths long compared to the wave-
length of light or 2,L >1 (where k, is the incident
free-space wave number and L is the density scale
length), computer simulations in a hot plasma
with fixed ions show that the absorption coeffi-
cient is virtually unmodified from the cold-elec-
tron case. Theoretical calculations based on a
fluid description which agree with these computer
simulations indicate that the absorption coefficient
is virtually unmodified for temperatures up to
100 keV. At low intensities these theoretical cal-
culations predict the field structures seen in simu-
lations, while at high intensities a nonlinear dissi-
pation must be added to obtain agreement. This
nonlinear dissipation is required at high intensi-
ties to account for the acceleration towards the
low-density region of the plasma of a small num-
ber of electrons to very high energies.

To describe resonant absorption in a hot plasma,
we combine the linearized electron-momentum
equation with Maxwell’s equations. An adiabatic
pressure law is assumed for the high-frequency
electron motion, ion motion is neglected, and the
fields are assumed to vary as e!“t:
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where 7, is the background plasma density; 7,,
m, and e are the electron’s temperature, mass,
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and charge, respectively; c is the velocity of
light; and vy is the usual ratio of specific heats
and is chosen equal to 3. In factoring the damping
in the electron-momentum equation a different
damping rate appears in the electric field term
than in the electron pressure term. The signifi-
cance of this phenomenological damping is dis-
cussed below. Combining these equations we ob-
tain the general steady-state wave equation for E:
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where wi=4me*/m. In particular, we consider
the case of a slab of plasma with 7, =n,(x) only
and the electromagnetic wave obliquely incident on
this slab, with the electric field polarized in the
plane of incidence, the x-y plane. The y depen-
dence of the field is assumed to be periodic in ¥
and of the form e**»”, The coupled equations for
E, and E, are solved numerically by a standard
Gaussian elimination procedure for coupled sec-
ond-order complex linear differential equations®
with arbitrary outgoing wave-boundary conditions.
The use of the phenomenological damping rate
v, mentioned above permits large damping of the
electrostatic component of the wave without alter-
ing the electromagnetic component. Comparison
with computer simulation results shows that the
exact form of v, is not very important at low in-
tensity as long as it is sufficiently large to damp
the plasma wave in the underdense region, in order
to prevent plasma wave reflection from the under-
dense region back to the generation region. At
high intensities simulations show that the electric
field accelerates electrons locally to high energy,
with relatively little energy going into the plasma
wave. This effect can be modeled in the fluid
equations by an appropriate local increase in v,.
It is useful to consider the size of v and v, re-
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quired to model the kinetic effects in this fluid
model. For weak damping in the WKB approxi-
mation the spatial damping rate on a plasma wave
with the above form for the damping is

Imk 1 w? v 1y,
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Thus, very close to the turning point (1 - wj/w?
«1) v, is much less effective in damping the plas-
ma wave than is v, which is equivalent to the usual
collision frequency in that regime. An extra fac-
tor of 1/€ =w?¥/(w?— w?)~ w?/yk?%?2, where v2=T,/m,
is then needed in v, to model electron Landau
damping:

(v2/0) = ) a(y /e Ve, @

It has been shown?® that the convection of plasma
waves away from the turning point is equivalent
to an effective collision frequency of v.;/w=1/
BminL =(ve/wL)2/3 in terms of loss of energy from
the region. If the plasma wave were to dissipate
all its energy locally at the turning point, as it
must in a cold plasma, we would have Imk/Rek~1.
This requires a v/w~1/k.;, L or v, /w~1, Thus,
in the simulations described below, if local depo-
sition of energy in hot electrons is important, we
would expect to find Imk ~Rek and would require
v,/w~1 in order to model this effect with the
fluid equations.

Equation (2) has been solved for a range of an-
gles, density gradient lengths, and electron tem-
peratures. For linear density profiles Fig. 1 con-
tains a plot of the absorption coefficient as a func-
tion of (k,L)?/3sin?6 for k,L>1 (L is the distance
from zero to critical density where w=w, and 6
is the angle of incidence) for two electron tem-
peratures 7,/mc? =0.005 and 0.1, i.e., 2.5 and 50
keV, respectively. Even over this range of tem-
perature the peak absorption is still nearly 50%.
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The case T,/mc?=0.005 is virtually identical to the
results for a cold plasma. The analytic solution

of Piliya' is the dashed curve shown for compari-
son. The points with error bars are the absorp-
tion coefficients measured with the computer simu-
lation code described below.

The equation for the longitudinal component of
ﬁ, E,, has been shown by Piliya' to have approxi-
mate Airy-function solutions near the plasma-
wave turning point in a linear density profile.
Numerical solutions of Eq. (2) show that near the
turning point E, oz(koL)l/“T;l/3 and n, oz(IeOL)"l/6
XT, 2/3 at the optimum angle for absorption
(koL)Z/3 sin?6=~0.5, consistent with these Airy-func-
tion solutions. For a linear density profile with
koL =12.5, numerical solutions for #,, E,, and B,
are shown in Fig. 2. A light wave with amplitude
e|E|/mwc=v,/c=0.015 is launched at an angle
sinf=0.4 at the left boundary into the plasma,
which has an electron temperature 7,/mc?=0.001 25,
i.e., 625 eV. Strong damping is put on the plasma
wave to prevent significant propagation away from
its turning point, which is at x =16.25¢/w. Note
the factor-of-8 enhancement of the E, field as the
light wave is converted into a plasma wave. Com-
parisons are also made in the figure to simula-
tions discussed below.

A two-dimensional (2D)electromagnetic PIC (par-
ticle-in-cell) code WAVE (a version of the code used
to do the first 2D cold-plasma simulations of resonant
absorption discussed in Ref. 2) which is periodic in
the ¥ direction and aperiodic in the x direction has
been used to carry out extensive studies of the
linear and nonlinear behavior of resonant absorp-
tion without having to make the fluid approxima-
tion discussed above. The agreement between
these kinetic simulations and the fluid linear theory
is surprisingly good, even for nonlinear power
levels, i.e., power levels where the incident field

FIG. 1. Absorption as a
function of (K,L)%/3sin20
given by numerical solutions
of Egqs. (1) for two tempera~-
~ tures T =T, /mc*=0.005
and 0.1 and 2y L>>1;

- 0y=sin" (, /k,) is the
angle of incidence. Simu-~
lation results are shown
for 2y L =12.5 at three
angles. The dashed line
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E is so large as to predict #,/n,~ O(1). The ab-
sorption coefficient and the size and spatial depen-
dence of B, agree exactly with theory, independent
of v,, whereas #, and £, agree within a few per-
cent of theoretical predictions if v, is enhanced
above the Landau value near the plasma-wave
turning point.

For diagnostic purposes the various field com-
ponents as well as the electron density are Fourier
analyzed in the y direction, and the resulting am-
plitudes for each ¥y mode are plotted as a function
of x. The incident light wave has the ¥ component
of its wavelength equal to the size of the box in
y. Hence it and the plasma wave it linearly excites
appear in the fundamental mode in . Such a
diagnostic has two advantages. First, it allows
the separation of the perturbed plasma-wave den-
sity from the nonuniform equilibrium. Second,
the averaging process inherent in the Fourier
analysis reduces the noise level by about an order
of magnitude over that of a line plot versus x at a
fixed y. '

For comparison with the linear fluid theory we
show the magnitude of ©n,, E,, and B, in Figs.
2(a)-2(c). Note that #, and E, peak near the criti-
cal density at x =16.25¢/w, while from Fig. 2(c)
we see that B, tunnels in from the electromagnetic
turning point at 14.25¢/w (w =w,sec?), coupling
energy into the electrostatic peaks. Note also that
the plasma-wave amplitude as seen in E, decays
in just a few wavelengths implying, Imk/Rek=<1.
Thus we expect that the plasma-wave damping
v, /w must be large near its turning point. In fact,
to obtain the agreement shown in Fig. 2 v, /w was
chosen equal to 0.09 at the critical density, with
a rapid spatial drop away from that point. The
field amplitudes, however, are not sensitive to
the form of the spatial dependence of v, .

If one considers the v,-x component of electron
phase space over a narrow band in ¥y (a fraction

FIG. 2. Simulation [(@)—
(¢)] and theoretical [(d)— ()]
results comparing #ny, the
perturbed electron density

in units of the critical den-
sity; E,, the electric field
along the density gradient

direction; and B,, the wave

magnetic field. The fields
are expressed in the units
mcw/e. The electron tem-
perature is 7',/mc?=0.00125,

i.e., 625 eV.

of a wavelength in y), one can determine the source
of plasma wave damping. A small fraction of the
electrons are accelerated by the localized electro-
static field toward the lower-density region at
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FIG. 3. (a) Simulation results showing the maximum
value of  and E, as a function of power, P;A} (watts)
=101%}/c?. Theoretical results lie along these curves
if a nonlinear damping v; is used. (b) Fractional density
of hot electrons nz/n, and the hot electron temperature
Ty (triangles) as a function of power. The background
temperature in all cases is T, =625 eV. (c) Electron
distribution function along the density gradient direction
for vy/c=0.015; v, is in units of ¢. A gradient of 2, L
=12.5 was used.
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A typical high-power sim-
ulation showing the ion
density profile at three
times for the simulation
parameters vy/c=0.1,

velocities which are a large fraction of the speed of
light. These electrons are accelerated to this
velocity in only a single transit of the structure,
giving rise to substantial dissipation of the plasma
wave.

The dependence of the peak values of ”1/”0 and
eE,/mwc as a function of incident laser power P,
is shown in Fig. 3(a). Note that at low powers both
n, and E, vary directly with the square root of
P, according to linear theory. At higher power,
e.g., v,/cz0.015 or 2X10'2 W/cm? for 10-um
light, it is clear that the maximum of », increases
much more slowly that PL/2. This is due to the
increased nonlinear damping of the plasma wave,
as evidenced by the increased electron heating and
by the reduction in the amplitude of the plasma
waves radiated from the critical density. In fact,
for the fluid theory to agree at higher powers
v, ~w is required, since Imk/Rek~1. Clearly, at
this point it is not useful to call the highly local-
ized electrostatic perturbation a plasma wave.

At still higher powers the effect of the electron
pressure is negligible and one obtains the cold-
plasma picture described in Ref. 2. The transition
to the regime of strong damping is determined by
comparing the maximum value of E, determined by
the breaking condition of Ref. 2 with that deter-
mined by the linear convective loss of the plasma
wave. The threshold is then v,/v,> (koL)l/z(ve/wL)l/3.

To give some idea of the large amount of elec-
tron heating which resonant absorption can cause,
we plot in Fig. 3(b) the fractional number of hot
electrons and their corresponding energy T, as a
function of incident laser power. Although the hot
electrons do not necessarily make a simple Max-
wellian velocity tail, 7, is a useful parameter to
give some idea of the energy in the tail. For the
chosen gradient length we find T, (keV)
~0.012, (em)[P, (w/cm?)]'/2 a scaling predicted in
Ref. 2. Almost all of the absorbed energy goes
into producing these electron tails.

For completeness, Fig. 3(c) shows a typical
electron velocity distribution of v, for v,/c=0.015.
Velocities are inunits of the speed of light. Initially
electrons are accelerated in x by the local elec-

_ trostatic field towards lower-density regions at
velocities which are a large fraction of the speed

20 v, /c=0.07, kgL =12.5,
X and M/m =100.

of light. These electrons reflect off of the low-
density electron sheath and return to higher den-
sities. They are then replaced by thermal elec-
trons when they strike the right boundary of the
simulation box—-simulating interaction with a
region of high-density cold plasma. After a time
T =300w™", the steady-state distribution is as
shown in Fig. 3(c).

We expect that the excited electron plasma wave
should itself be parametrically unstable in cases
where the ions are mobile. This has already been
considered theoretically.’® Simulations show that
this effect may reduce the extreme electron ener-
gies by stochastically heating the electrons rather
than coherently accelerating them. Simulations
with mobile ions also show rather dramatic pro-
file modification, wherein the initially linear den-
sity ramp begins to develop a density depression
near the critical density. At higher power and
late times a flat density shelf below the critical
density and a steepening of the profile at the criti-
cal density develop.'' Figures 4(a), 4(b), and 4(c)
show what happens to the ion density profile as a
function of time for a typical high-power simula-
tion. Particular parameters are v,/c=0.1,
T,/mc*=0.005, ion-to-electron-mass ratio
M/m =100, and sin§=0.4. The initial density pro-
file rises from zero density to twice critical in a
distance 25¢/w, i.e., k,L=12.5. We see that after
resonance absorption begins (7 =100w™?) the pon-
deromotive force makes a density hole around
critical density, while at later times, as the ions
blow off, a density shelf forms. At this time the
absorption rises significantly. This will be dis-
cussed further in a subsequent paper.*?

To summarize, we find that a simple set of two
coupled second-order differential equations can
accurately model the behavior of resonant absorp-
tion in a hot plasma. Furthermore, we can solve
these equations for a wider class of density pro-
files than can be done economically by numerical
simulations. For example, they can be inter-
faced with a hydrodynamics code to determine long-
time absorption and profile-modification effects.
Details of how this can be done will be given in
another paper.'?
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