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Transition probabilities in a strong external field*
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The exact Green's function for a harmonic oscillator interacting with an oscillatory external electric
field in the dipole approximation is used to evaluate the transition probabilities in closed form. The
case of a particle in crossed electric and magnetic fields is also considered.

We shall investigate the behavior of a charged
particle in a strong, time-dependent external field.
In Sec.I, we consider a charged oscillator in a har-
monically varying but spatially constant electric
field; in Sec. II, an electron in a constant magne-
tic field and an orthogonal, harmonically varying,
and spatially constant electric field. We shall use
the exact Green's function for these systems in or-
der to study these systems.

GV, P'; t) =&PI UIP'&.

by similar considerations, i.e.,
PG = g+j(p' (I/i) s/sP', t) G,
p'G =g (P, (1/i)-slsp, t) G,
isG/st=H(- (I/i)s/sp, p, t) G,
GV, P';0)=oV -P') .

(8)

I. FORMALISM

G(x, x; t) =&xI U(t) I x'& .
If the "Heisenberg" operators

x", (t) = U ~x' U =f„(x",p', t),
x" (t) = Ux'"U ~ =f (x', P", t)

(2)

(3)

can be found as explicit functions of x",p'", and t,
then we can find a set of partial differential equa-
tions for C:

The unitary time-displacement operator U(t) sat-
isfies

i BU/Bt =H(t)U(t)

The Green's function' for the system is given by

Linear systems, i.e., those for which the differ-
ential equations for x"," or P',"are linear, can al-
ways be solved explicitly.

II. HARMONIC OSCILLATOR

We first consider the case of a harmonic oscil-
lator' interacting with an oscillatory external elec-
tric field in the dipole approximation. Since the
motion normal to the field is unaffected, this is a
one-dimensional problem with Hamiltonian

H = —,
' [(p"')'+ u&'(x"')2] —eEx"'cosQt .

We shall treat the case Q = separately even
though, as we shall see, the Green's function and
other quantities are given correctly as Q- .

From

xG ={xjx'~Ujx')=&xj Ux"„"(t)jx'&

=&xjUf, (x ~, p", t)jx &

=f+(x', —(1/i)9/Bx', t)G,

x'G =&xj Ux'
I x'&=&xj x" Uj x')

-f (x, (1/t) s/sx, t) G,

(4)

isxP/dt = [x,"",H(x",~, p", ', t)]

eE OP

x = x P- cost+ sj.ncot~2 Q2

eE
+ 2 2 COSQte2- Q'

and using

Ux+ U = x"" tIx""U =x""

(12)

(13)

isG/st =H(x, (1/i)B/sx, t) G

These partial differential equations can be
solved for many simple systems and the G ob-
tained explicitly when subjected to the boundary
condition

G(x x'0)=5(x —x') .
It is clear that we can also obtain G(P, P', t),

eE+, , (1 —cosgt cosset); (14)

xg =x"'cosset+ (p""/&u) sin~t+ (eE/2co)t sin&et

we obtain

Pj' . Q eEx"P = x"l' cos(dt — sinet- — sin(dt sinQt
(d (d CO —Q
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x"= x
"~cosset —(P "/(t)) s inst+ (eE/2(d2) sin2(dt .

(18)
s..(t)=J' dxdx t:(x)d(x, x, t)t.(x) (20)

After substitution into the partial differential
equations, the Green's function is found to bq of
the form

(*'*" )=(txtsinst)'" * (ts'intst)

x[x cos(t)t —2xx

+x"cos(ttt+ u(t)x+ p(t)x ], (17)

where

I g(t) I =1

with

tt'„(x) = (~/tt)"' [1/(2"n! )'"]e " "It„(&'"x),(21)
which can be readily evaluated from the generat-
ing function for Hermite polynomials'.

e ,2+2( )) l2,„"h„((t)'l2X)
S

nf
n=p

If we define

2 2 f 2 + 1/2(&&+'s2 & ')
dxdx e

x e +" " "G(x, x', t)
and

u„„=—[2eE/((d2 —Q')] [(Q/&) stuart sinQt mt n=p

s"s'"I) „(t), (28)

—(1 —cosQt cosset)],
(18)

p„„=[2eE/((d2 —Q')] (cosQt cos«—),
then

+m n
& 2tI2m mn

or for 0=
u R = (eE/(d2) s in2(et

PR-(eE/~)tsin~t .
(19)

(24)1/2

e -i td tl2
SS

xexp [-(~/16sin'&ut)(u'+2uPe ' '+g)]

(NR means nonresonant and R means resonant. )
It is to be noted that where

xexp[2e ' t(ss'+sA. +s'A. ')]

lim u„R = u R, lim P„„=PR .
Q~ Q) Q~ QJ

The transition amplitude from a state n to a state
m is given, as usual, by

)t. = (itt)'l2/4 sin(t)t)(ue' ~ '+ p),
x'= (i(d'"/4 sin(ut)(pe' "'+ u),

which leads to4

2m nt 1/2

(dg(t)e-t td tl2 exp (u2+ 2uPe-itd t P2) ) t n Ln titttt( 2-e-i id -t )(gt)16 sin2~t nf

where Lm™and L„"are associated Laguerre
polynomials.

If we let

7= —2e '~'~A. ' —(tt — ) sin' —,'(ts sit)t) (29)

I

e'E' 0' —e'
sin'Qt+ (Q+ (t)) sin' —2'(&u —Q)t

= (&u/8 sin'ut)(u '+2uP cos(dt+ P'), (27)
2+2—((d2t'+ 2ut sin(dt cosset+ sin2&ut) .R 8~3 (80)

=e '(m! /n! )T" L" "(r)'

= e '(n! /m! )T" "L„""(T)', --(28)

There are several points to be noted. First, if
Qc~ the state n is never permanently depleted
although the time taken for P „ to return to zero
(from its initial value of zero) may be quite long.
On the other hand, if Q = co then the state is rapid-
ly depleted with all probabilities -0 as t- , i.e.,
transitions to all states become infinitesimal but
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in such a way that the total probability remains
one. That this must be so follows from the uni-
tarity of G, but an explicit proof will be given in
the Appendix. Second, if 0 is an integral multiple
of ro, contrary to usual expectations, there is no
resonance with states n away from the initial
state. This is the result of assuming a dipole in-
teraction: It seems reasonable to expect that if
higher multipoles were taken into account, then
resonance would occur with frequency n times
the fundamental frequency for the case of a 2"

multipole interaction. Third, the time dependence
at resonance does not go like e ' but rather like
e-t 2

III. CROSSED FIELDS

Let us now consider a particle in a magnetic
field in the ~ direction and an oscillatory electric
field in the x direction. The Hamiltonian is

G(I, P'; t) = G(P,P., P,'P.'; f)G'(P. , P.'; t), (32)

and in what follows we shall only be concerned
with G. (We shall drop the bar for simplicity. )
We shall only deal with the resonant case: If
&u= eB/m and Q =+ (note that this is double the
Larmor fre(luency),

p', ~+
——~m(ux,"'(I —cos(i) t) ——,'m(i)x,"'sin&st

+ —2' sin&et+-', p'„"(1+cosset)

+ (eE/4e)(3 stuart+(()t cos(i) t), (33)

p,",= —,'m(dxP(1 —cosa&t) ——,'m(dxP sin~t

——;P'„"sinu&t+ —,'P,"(I+cosset) —,'eEt sin~—t

(34)

pP = —,'m&i)x," sin&et ——,'mux2" (1 —cosset)

+ —,'p,"'(1+cos(dt) ——,'p,"sinurt

—(eE/4u&)(&et + 2 sin&et+ sin(dt cos~t), (35)

H=(1/2m)Ip'"- e(A")'] —eEx) cosQt (31)

In this case, we shall obtain G(p, p; t). We shall
use the symmetric form for A:

pp = —,'m(dx,"sinvt+ —,'mex, '"(I —cosset)

+ —,'p,"'sin&et+ —,'p2)'(I+ cos(()t)

—(eE/4(u) sin'(ut . (36)
A= —2xxB

Thus, the behavior in the z direction is that of a
free particle and

Inserting the above to obtain the partial differen-
tial equations and solving them, we finally obtain
for G

(, G'; ())=.i.(, 2-exp( . '(, @)(cos(~i/2)((), -)'l)'+(p. -p')*)+2(Kp. -),)', )sin(~i/2)

—(eE/2&v) [(p, —p', ) cos ((dt/2)(&et+ 3 sin&et) + p,
' sin(&et/ 2) ((dt —3 sin(dt) —p, sin(&at/2 + sin —,&et) ]}

(37)

with g(t) a complicated phase factor. For t-0, G
is so chosen that it goes to 5(P, —P', )5(P, —P,').

Physically, G is the probability amplitude that
a particle entering the crossed fields at t =0 with
momentum (p'„p,', 0) has momentum (p„p2, 0) at
time t. As can be seen, the wave packet spreads
as time progresses. But let us consider the times
t„=2nn/v =n T, i.e., integral numbers of Larmor
periods. Under these circumstances sin(&ut„ /2) = 0
and we must take the appropriate limit. Then

G(P, P'; t„)=g(t„)5(P, —P,')5(P, —P', —eEt„), (38)

where g (t„) is a phase factor. Thus, the packet
collapses and becomes sharp in momentum again
but u)ith the x component of momentum increased
by jz~st the amount exPected classically. Hence,
a particle in crossed electric and magnetic fields
behaves in a manner very similar to that of a
classical particle, and this clearly shows why
the electrons in a cyclotron emerge with relative-

ly well-defined energy.
Finally, if one considers the nonresonant case,

i.e., QgeB/m, then we find that once again after
an integral number of Larmor periods, we return
to sharp values of p, and p» but in this case

G(P, P'; &.) = g'(t. )&(P, -P,')&(P, -P',),
and there is no gain in energy. This is true for
any QaeB/m including integral multiples of eB/m.
For there to be an effect of an integral multiple
frequency, the spatial variation of E must be sig-
nificant; i.e. , nonlinear interaction terms must be
present.

APPENDIX

We present a proof that

g P„„(f)=1 for arbitrary n, t.
rn= 0
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We proceed by induction with respect to n:

a, (t) = e-'(1/m! )T (A2)

+-t' )' +m+1-n (I m+t. -n)2
(~ —j.)!

m, n-1— m! n-1
m m=o (A4)

since Lo~ =1. Hence,

=e-' g —,T" =1 .m!
m=o

(A3)
But4

00

p e-& ' Tm-n L m-n 2

m=o

(A5)

We assume l. "„(x)= (1jn) [(n ~ n)L, "„,-xl, „',"], (A6)

Tm n I m "[Wgm-n Tgm-n+t. ]
!" ~n-1~~

mn=e
f n n-1 n-1m n

m=o

~
~m nLm-nLm-n ~

Tm n+1Lm nLm-n+1
(m-1)! ' ' '- — ' mt' ' n, n-1

m= 1 m=0

and'

m-n Lm-n+1 Lm-n+1Ln n n-1

Therefore,

t,
'n- 1)!7 ~ ' Tm-nLm-nLm-n

mn ~ (~ 1)t n n-1
m= 1

(A8)

v' ""t." "+'t ""+ ' ' r" ""(t "")')m! n n-1 m! n-1
m=0 m=0

t' -'l t' m-n+l(1 m-n+1)2
m! n-1

m=o
(A10)

if we change summation variables in the first tensor. Thus,
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