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Dense-fluid shear viscosity via nonequilibrium molecular dynamics
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A novel fluid-transport calculation by computer simulation, via nonequilibrium molecular
dynamics, of laboratory methods of transport measurement is described. Shear viscosity of
soft-sphere (r 2 potential) and Lennard- Jones particles (r -r 6 potential) has been obtained
from molecular dynamic modeling of Couette flow. Soft-sphere deviations from Enskog
theory are similar to those found for hard spheres by Alder, Gass, and Wainwright, using
time-correlations of equilibrium molecular dynamic system fluctuations. For the Lennard-
Jones shear viscosity near the triple-point region, there is agreement between the equili-
brium calculation of Levesque, Verlet, and Kurkijarvi and the nonequilibrium results using
108 atoms in a cube. However, systems two and three cubes wide give lower results, which,
when extrapolated with inverse width, yield close agreement with the experimental argon
shear viscosity. Comparison of the Lennard-Jones shear viscosity with experimental argon
data along the saturated vapor-pressure line of argon confirms our successful simulation of
macroscopic viscous Qow with few-particle nonequilibrium molecular dynamic systems. A

new result of the nonequilibrium molecular dynamics is the characterization of nonequili-
brium distribution functions, which might provide the basis for a perturbation theory of
transport. Since momentum transport is primarily accomplished by the repulsive potential
core for high temperatures, the Lennard-Jones shear viscosity must behave like the soft-
sphere system for high temperatures [viscosity divided by (temperature) 3 is a function of
density divided by (temperature) ]. In fact, the calculated excess shear viscosity (that part
above the zero-density temperature dependence) has been successfully correlated in terms
of the 12th-power scaling variables for temperatures as low as the critical value (along the
freezing line). The utilization of soft-sphere scaling variables yields relatively simple
functions for describing both the excess shear viscosity and the thermal-conductivity be-
havior throughout the Quid phase. The introduction of these scaling variables also clearly
reveals two features: (i) weak temperature dependence, and (ii) the sign of the temperature
derivative at constant density (negative for shear viscosity and positive for thermal con-
ductivity). While both of these features have been experimentally observed in simple fluid
experimental data, their cause has not been previously traced to the dominance of the core
potential. Thus, the soft-sphere scaling variables should be useful for correlating experi-
mental data.

I. INTRODUCTION

Fluid transport of mass, momentum, and energy
is proportional, as a first approximation, to linear
gradients of concentration, velocity, and tempera-
ture. Many fluids experimentally obey these linear
relations and are known as Newtonian fluids. For
dilute gases, where only isolated binary molecular
collisions are important, the Boltzmann equation
has excellent experimental agreement for the self-
diffusion D, viscosity q, and thermal-conductivity
~ transport coefficients. ' For dense gases, where
finite molecular size affects the collision fre-
quency, Enskog's rigid-sphere transport model
has been moderately successful. ' In addition to
transport by molecular streaming motion, instan-

taneous transfers of momentum and energy be-
tween molecular centers occur in dense gases.
Comparison of dense-gas transport data (tempera-
ture range 225-350'K) with Enskog-model esti-
mates4 indicates an adequate portrayal for densi-
ties Nv'/V up to 0.2, which corresponds to 600
times atmospheric density for helium and only 160
times for argon. For liquid-argon shear viscosity,
the model of Enskog predicts a uniform dependence
upon density which is not observed experimentally.
Therefore, to extrapolate transport properties
beyond available data, or for very dense fluids,
the alternative method of molecular dynamics
offers the only realistic description of transport
phenomena.

Molecular dynamics means the numerical solu-
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tion of Newton's equations of motion. With the
availability of electronic computers, solutions for
as many as 1000 interacting particles are feasi-
ble." Equilibrium molecular dynamics has pre-
viously been used to calculate the average time
correlation of fluctuations in equilibrium systems.
Green, Kubo, and others' have given explicit rela-
tionships for the transport coefficients in terms of
these time correlations. Molecular dynamics
studies of rigid-sphere transport by Alder, Gass,
and Wainwright' have revealed deviations from
the Enskog model at high density. The exact rigid-
sphere shear viscosity is about twice the Enskog
value near the freezing density. This failure of
the Enskog theory indicates that long-time many-
body correlations, some decaying' as (time) ' ',
are important in dense-fluid transport. However,
a rigorous analytical treatment of the total corre-
lations is not possible.

Many investigators have utilized the Green-Kubo
relations combined with the Lennard-Jones inter-
molecular potential to describe transport in liquid
argon. Rahman" followed the motion of 864 atoms
and calculated a self-diffusion coefficient within
15% of experimental values. Verlet" has pre-
sented similar results. Bruin" presented results
for a 64-atom system for D, q, and ~ at one den-
sity-temperature point near argon's critical point,
and Lagar'kov and Sergeev" presented D and q
for two combinations of density-temperature (using
32 atoms). Comparison with experiment indicates
disagreements of order 20%.

To obtain the transport coefficients directly,
without using the Green-Kubo relations, we gen-
erate nonequilibrium systems with the desired flux
by numerically simulating laboratory methods of
transport measurement. The method is described
in Sec. II and the results in Secs. III-V. Two ad-
vantages of this novel approach are (i) more effi-
cient transport determination and (ii) the charac-
terization of nonequilibrium velocity and spatial
distribution functions. In this work we describe
the successful simulation of Couette flow, which
determines the shear viscosity coefficient.

II. MOLECULAR DYNAMICS

In most of this work we consider N (32 or 108)
particles confined to a cube of volume V. The
computer calculations have been carried out in
reduced units. The reducing quantities are the
molecular mass m, the kinetic energy pro, where
4' is Boltzmann's constant and To is the desired
temperature, and the volume cube edge L (=V' ').
Special boundaries on the z faces are used to pro-
duce nonequilibrium fluxes, and periodic x and p
boundaries are used to reduce the influences of

finite size on the results. We have followed Ver-
let" in using the explicit time-centered finite-
difference equation

r,.(t+at) —2r,.(t)+r,.(t 4t—) F,
(at)'

for the particle accelerations. Notice that the
particle velocities are not needed to follow particle
trajectories. However, to define the time-depen-
dent kinetic energy, a centered particle velocity
is calculated as

v,. (t) = (1/2b t)[ar (t + ,'at) + a-r (t ——,'at)],

where hr (t + —,'at) =sr(t ent) vr(t). Use of the two
increments &r reduces truncation errors relative
to those resulting from differencing particle posi-
tions.

Various types of boundaries have been tried to
simulate nonequilibrium flow. The simplest modi-
fication of a periodic system is a boundary condi-
tion that gives an impulse to atoms in the x direc-
tion as they cross a particular z plane, with the
sign of the x impulse depending upon the sign of
the z velocity component. Except at low density,
we feel that this boundary condition would establish
not a simple shear flow, but instead a roughly
sinusoidal velocity profile. An additional com-
plication is that, while energy is being dissipated
throughout the system, no heat is being removed,
and the system would heat up. Heating was en-
countered by Gosling, McDonald, and Singer" in
calculations using a somewhat different method,
an applied sinusoidal external force which pro-
duced a sinusoidal velocity profile whose ampli-
tude is inversely proportional to the shear viscosity
coeffic ient.

With undirectional heat flow, periodicity in the
flux direction is impossible. The thermal expan-
sion required to maintain a uniform hydrostatic
pressure implies a monotonic density variation in
the flux direction. Thus we concluded that for
systems free of external forces, nonperiodic
boundaries would be needed to establish simple
shear and heat flows.

The simplest nonperiodic boundary condition
would force atoms reaching either z cube face to
rebound with the z-face wall velocity component
(the other two velocity components could be se-
lected to maintain the overall energy or tempera-
ture). Such reflecting boundaries were very pro-
mising when first investigated for the soft-sphere
system at low density. However, when the density
was increased, this method produced a large den-
sity increase in the region near the wall (and a
resulting decrease in the center), since the atoms
repelled each other strongly but did not interact
with the wall until they attempted to eros~ "
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decrease the excess boundary density, moving
walls with various repulsive potentials mere tried,
but nothing really very satisfactory was obtained.
Consequently, the plane wall was replaced with
a lattice layer translating at the desired velocity.
The fixed solid-like arrangement of the mall atoms
again imposed an unacceptable density gradient
upon the system. Therefore, fluid-like walls
were selected (even though more computation was
required).

The fluid-wall system is shown in Fig. 1. A unit
cube of fluid is driven by two fluid-wall regions
at the z cube faces. Periodic x and y boundaries
are used. The two fluid-mall regions are intended
to provide realistic extensions of the bulk fluid
with properties and gradients smoothly continuing
into these regions. The smooth continuity into
fluid-wall regions cannot be perfect, however, as
the fluid particles never mix with the bulk fluid.
The fluid-wall particles are confined in the z di-
rection betmeen the z cube face and a second plane
chosen so that the fluid-mall density matches the
bulk density. A typical plane is shown in Fig. 1.
If any particle center attempts to cross any of
the four bounding z planes, it is elastically re-
flected from that plane. This reflection is easily
accomplished by checking each particle's new
position and, if it has passed a z boundary, re-
turning the particle to its previous position with
a reversed velocity component. Thus a reflected
particle behaves as if it had undergone an elastic
collision at a distance half the current spatial
increment from its previous position. Conse-
quently, the bounding walls are somemhat fuzzy,
with a width of order the average increment size.

External forces are applied only within the fluid-

mall regions to maintain the desired gradient in
the z direction. The rate of work done by these
external forces is the product of force times ve-
locity. Thus, if the external force is equal for
each fluid-wall particle, no work will result if the
fluid-wall particles have zero mean velocity. To
maintain a net shear flow, with nonzero (du,./dz),
the external x-direction force must do work each
time step, since the x-direction mean velocity will
generally be nonzero. Elastic boundary collisions
in the z direction induce impulsive changes in the
mean z velocity component. In order to reduce the
amount of external work done (and hence the amount
of cooling required to maintain constant energy),
it is desirable to rezero the average z-direction
momentum whenever an elastic wall collision
occurs. For each fluid wall, the total momentum
loss due to elastic wall collisions is divided by
the number of fluid-wall particles and added to all
the particles of that fluid wall.

Only the potential bonds betmeen the fluid-mall
particles and the bulk particles (i.e. , those bonds
crossing the z cube faces) need to be balanced by
external forces. For Couette flow, the x compo-
nent of these external forces is equivalent to the
wall shear stress times the area of the xy plane.
The time-dependent external force (for each fluid-
wall) is

This external force, which acts on fluid-wall par-
ticles only, maintains a constant average fluid-
wall velocity (zero for heat flow) while the distribu-
tion of fluid-mall particle positions and velocities
is unconstrained. The distribution of particle ve-
locities about the mean velocity (v) defines the
fluid-wall kinetic temperature,

', (N„—1)kT(t) = —.'-m g [v,.(t) —(v)j '.

I
W

X or Y PLANE

FIG. 1. Unit cube with N particles; N particles in
each fluid-wall region maintain the desired z-direction
flux. The z planes shown elastically reflect particle
centers. Periodic boundaries are used in the x and y
directions. A few particles are shown for the case
N=GN

To maintain a constant wall temperature T each
velocity component is scaled (by, at most, a. few
percent) each time step by

[v,.(t) —(v )i„,,„.= [T /T (t)1' 'I v,. (t) —(v)1 „,„.
This velocity scaling corresponds to external
heat transfer from the fluid wall; the product of
external force and group average fluid-wall dis-
placement is the external work. For steady-state
Couette flow, the work done is equal to the heat
removed from the fluid-wall regions. The actual
heat transfer is the change in kinetic energy of
the fluid-wall particles. This is determined by
computing the velocity at time t, prior to velocity
scaling, and subtracting its square from the square
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of the actual new scaled velocity at time t.
A similar calculation can be used to determine

thermal conductivity. To maintain a steady-state
heat flow the rate at which heat is added to the hot
fluid-wall to maintain its temperature is the energy
flux through the system times the xp area and
must be equal to the rate at which heat is removed
from the cold fluid-mall to maintain its lower tem-
perature. The time-average energy flux and tem-
perature gradient between the walls (z cube faces)
determine the thermal conductivity coefficient.

For the shear flow, the velocity profile is deter-
mined by dividing the distance between the fluid-
wall regions into a number of zones (e.g. , ten)
and averaging fluid momentum, energy, and num-
ber density in each zone. Initially, the N particles
are uniformly distributed (face-centered cubic
structure). Zero bulk velocity is achieved by al-
ternating the direction of the x, y, and z thermal.
velocity u, [=( kT /m)'~'] components of particle-
pairs. The average flow velocity component (x
direction) is initially made to vary linearly in the
z direction. Since the outer zones have a nonzero
mean velocity in the x direction, a local-zone
temperature is given by subtracting the mean ve-
locity squared from the local-zone kinetic energy.
The flow temperature can now be defined as the
average of the zone temperatures (T),. The steady-
state local temperature distribution in shear flow

may also be used to estimate the thermal-con-
ductivity coefficient. The energy dissipated by
the shearing action leaves the system via heat
conduction to the fluid-wall particles. For equal
wall temperatures, a parabolic temperature dis-
tribution must develop with the quadratic coeffi-
cient depending upon the shear viscosity q, square
of the shear rate u„', (u„= (v„)), and the thermal
conductivity ~,

where z is the distance from the plane of sym-
metry. The thermal-conductivity value may be
determined by fitting a quadratic to the zone tem-
peratures and using the calculated shear viscosity.
Because of the quadratic shear-rate dependence,
the higher shear rates produce less scatter in this
thermal conductivity estimate. Reference 15 pre-
sents a FORTRAN computer program of the non-
equilibrium molecular-dynamic method.

For actual calculatioris an intermolecular poten-
tial must be specified. A soft-sphere system
[potential Q~z (x) = e (s/r)" ] was initially investi-
gated for several reasons.

First, the popular Lennard-Jones 6-12 potential

(&) = 4&[(o/&) ' —(o/&)'],

which combines the inverse 12th-power repulsion
with an inverse 6th-power attraction, has been
successfully used to describe gas and solid equilib-
rium properties and dilute-gas transport proper-
ties. Thus, after initial development of the com-
puter technique using the inverse 12th potential,
simple addition of the 6th-power attraction will
yield a Lennard-Jones system. (The equivalent
reduced number densities are ¹'/V and Ns'/v2 V. )

Second, each inverse nth-power potential has
special scaling properties. ""The dynamic evolu-
tion for different systems with identical scaled
initial conditions [time and length scales from
(kT/I)'~' and ( V/N)'~'] and with the same dimen-
sionless value of (Ns'/V)(e/kT)'~" will be identical.
Also, the reduced viscosity 7is'(me) ' ' and the
thermal conductivity &s'(m/e)'~'/k, when divided
by (kT/e)' '" ", are functions of (iVs3/V)(e/kT)' "

only, not density and temperature separately,
throughout the fluid phase (there is no gas-liquid
phase transition for these pure repulsive systems).
At high temperatures repulsive forces dominate
and the Lennard-Jones system must approach the
scaling behavior of the inverse 12th-power poten-
tial. For moderate temperatures the attractive-
power effect might be amenable to analytical treat-
ment by utilizing the nonequilibrium distribution
function for this scalable potential as the basis
for a transport perturbation theory. Equilibrium
perturbation theory has already proved success-
ful, "but a successful nonequilibrium perturbation
theory has not yet been developed.

III. SOFT-SPHERE SHEAR VISCOSITY

A. Nonequilibrium molecular dynamic results

Both the shear viscosity and the thermal-con-
ductivity coefficients have been calculated for
dense soft-sphere [P =z(s/r)"] fluids using the
nonequilibrium molecular -dynamic technique.
Shear viscosity has been determined by simulating
Couette flow. ' The momentum flux I'„,between the
walls (z direction) corresponds to minus the shear
stress v„, =7,„=q(u, ,+u, „). For this flow, the
hydrodynamic velocity components u, and u, are
zero, while u„has a simple dependence upon the
z coordinate. For small wall velocity, a linear
velocity profile is generated in a Newtonian fluid.
The velocity profile also has a very small (of
order u„', ) cubic term due to the temperature de-
pendence of the shear viscosity coefficient. ' The
viscosity coefficient may be determined from the
measured velocity gradient across the channel
and the wall shear force per unit area from

P„,= -rju„, (note u, „=0).
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In order to determine possible number dependence,
some N =32 calculations have been made. Com-
parison with the 108 results (Table 1) reveals dif-
ferences that are within the calculational uncer-
tainties.

Using 108 soft spheres in a cube, the shear vis-
cosity has been calculated for reduced densities
[p(e/kT)' '] of 0.4, 0.6, 0.7, and 0.8. The results
are presented in Table I and in Fig. 3 as a func-
tion of shear rate. For the lowest density con-

TABLE I. Soft-sphere shear viscosity from nonequil-
ibrium molecular dynamics. Dependence on system size,
shear rate, and density for the isotherm e =kT: N =32
and 108 soft spheres in a cube withN~=8 and 18 soft
spheres in each fluid wall (+ indicates a two-layer fluid
wall withN~ =36). TheN =216 system is composed of
two 108-particle cubes. A "run" includes 8000 time
steps of 0.002L (m/kTO)~, whereL is the cube edge
length and Tp is the desired temperature. Beginning runs
that reflected starting conditions were rejected. The
shear rate cu =u„~ and temperature T are averages over
the 10 zones of bulk fluid. The shear viscosity g is cal-
culated from the average wall shear stress and the aver-
aged shear rate. Standard error is computed from the
individual. run va1ues of the viscosity,

guns Ns3 m
used ~2V

QS2

(~~ )
1/2

1—4
2-4
1-3

32
108

0.4 0,19
0.16
0.05

0.45+ 0.03
0.50+ 0.01
0.33+ 0.1

0,98
0.95
0.99

1-4
1-4
1-6
1-4

0.6 0,29
0.22
0.15
0.08

1.37+ 0.08
1.26+ 0.08
1.30+ 0.17
1.18+0.22

0,97
0.99
1.00
1.01

1 00

0./5
OI-
I-
Q 050

0
0.25

0.00

C5

0 .6 Estimate for zero
shear rate 1.3+ 0.1

N= 32 108 256 0.6 0.21
0.16
0.1,0
0.05

2—4
1-4
2-4
1—4

0.96
0.97
0.98
0.99

108 1.25+ 0.04
1.30+ 0.02
1.38+ 0.04
1.44+ 0,1

108 0.6 Estimate for zero
shear rate 1.5+ 0.1

0.7
0.7

32
108

0,16
0.11
0.05

2-7
1-4
1—4

2.34+ 0.17
2.27 + 0.6
2.54+ 0.2

1.01
0.98
0.99

I I l ] I j I I

-0.50 -0.25 0.00 0.25 0.50
-0.50 -0.25 0.00 0.25 0,50

-0.50 -0.25 0.00 0.25 0.50

0.7 Estimate for zero
shear rate 2.8+ 0.2

0.8 0.17
0.12
0.05
0.05

4.14+ 0.12
4.05+ 0.13
4.96+ 0.6
5.7+ 0.5

108 0.99
0.99
1.00
1.00

2-5
2-5
2-5
2-5+

A V E R AG E F LOW V E LOG I TY, V „/ I&T

FIG. 2. Velocity profiles of soft-sphere Couette flow
for three system sizes (N =32, 108, and 256) at 4 freez-
ing density. The reduced density [+s /(V 2)l (e/kT) ~4 is
0.576 with a reduced velocity gradient of u„,L (m/k T)~ ~

=1 and calculated with a reduced time step qf 0.002
&&L(m/kT)~ for 8000 time steps.

0.8 Estimate for zero
shear rate 5,4+ 0.5

4.7+ 0.10.8 0.12 0.96

A soft-sphere system" has been investigated at
reduced densities between ap& and p&, where p& is
the reduced freezing density [N&3//&2V =0.813
&&(kT/e)'i']. The initial development of the non-
equilibrium molecular-dynamic method used 32
soft spheres at a reduced density corresponding
to & the freezing density. After the fluid-wall
method was decided upon, two other system sizes
were investigated (cubes of 108 and 256 particles)
to determine an optimum size in terms of compu-
tational time and calculational uncertainty. The
same reduced unit velocity gradient u„,I.(m/kT)'i'
was used for each system size, and each system
was followed for 8000 time steps with 4t
=0.002K(m/kT)' '. At equilibrium such systems
maintain the total (energy)/NkT constant in the
first four digits. For particles with potential pa-
rameters appropriate for argon (s =3.5 A, e/k
=120'K) and at room temperature, the calculated
nondimensional time period corresponds to a real
time period of only 10 " sec. The computer time
on the SLL CDC 6600 is about 14 orders of mag-
nitude greater, 10 min, 1 h, and 4 h, for N = 32,
108, and 256.

The velocity profiles resulting from the three
calculations are shown in Fig. 2. The 108-particle
profile is much smoother than the 32-particle re-
sults. Increasing the system size to 256 particles
does not noticeably further improve the velocity
profile. Therefore a procedure of using several
runs with N=108 was selected as a good compro-
mise between a very-large-system calculation or
a smaller system observed for a very long time,
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sidered (0.4), the large-shear-rate result has the
lower uncertainty and thus appears to provide the
best estimate. For a reduced density of 0.6, shear
rates of u„,L(m/kT)'~' = ~, —,', +, and 1 with N
=108 produced a slight shear viscosity dependence
upon shear rate; see Fig. 3. Comparison of 32-
particle and 108-particle results indicates no
difference larger than the calculational uncer-
tainties. A linear extrapolation of the 108-particle
results with shear rate yields a zero shear-rate
viscosity of (1.5 +0.1)(kT/e)' '(me)' '/s'. Shear-
rate dependence is larger for 0.7 reduced density,
and linearly extrapolating the two calculated shear-
rate values (N =108) yields (2.8 +0.2)(kT/e)'~'
x (me)'~'/s' (the 32-particle result at larger shear
rate does not disagree with this extrapolation).

Near the freezing density, the shear-rate de-
pendence becomes much larger. The shear vis-
cosity at a reduced density of 0.8 was calculated
at three shear rates, u„,L(m/kT)' ' = —,', —,', and f.
Fitting these results to the Bee-Eyring relation, '

sl/qo = (sinh 'ru„, )/ru„, , yields a zero-shear-rate
viscosity of si, =5.0(kT/e)'~s(me)' '/s', with a re-
laxation time of T =9.2 s(m/e)' '(e/kT)' " (with a
fit error of 8%). This relaxation time corresponds
to 20 times the period of an Einstein oscillator
in a face-centered crystal at the same density.

SOFT SPHERF SHEAR VISCOSITY

4(~)= s(-„s)

The two-layer (N =86) result at the lowest shear
rate appears to have a larger viscosity value.
Considering the standard errors, an average of
the two means might be the best estimate. A fit
of all four values with the sinh ' function yields
5.58, with a relaxation time of 13. Thus the zero-
shear-rate viscosity is estimated to be ass/(me)' '
x (kT/e)' ' =5.4 +0.5. For the middle shear-rate
value, the result for a system twice as wide (two
108 cubes together, A'=216) agrees with this esti-
mate.

These zero-shear-rate shear-viscosity esti-
mates are presented in Fig. 4 in terms of the 12th-
power scaling variables,

ass(m6) & s(6/kT)s

versus

x =—[Ns'/(v2 V) t(e/kT)' '.
The excess shear viscosity hg =—g —qo, where the
dilute-gas limit is

q s'(me) ' '(e/kT)' '=0.171

can be approximated (-10% error) by

b, qs'(me) ' '(e/kT)'~s =12.1x4

(see Fig. 4). An equally good fit is obtained with
the exponential function 8'" —1, which is similar
to Andrade's expression for liquid shear viscosity
Ae' r. A better. fit (-1% error) is given by the
empirical relation

g~s2(m&)-i/s(&/kT)sls P P22(es 83% I)
E

7
N
I-

6-

I-

O

x' 2-
—0~-o——

$2 B

IQ8 o & (2 LAYERS)-

216 O

OENSIT Y / TEMP E RATURE

V (kT)

0.8

0.7

0.6
0~ I O~

7
'4

E
6-

uI

4-

I-
g 30

SOFT- SPHERE SHEAR VISCOSITY

ESTIMATE
VISCOSITY

EXCESS VISCOS

(m )'"(I T/

h, q =0.022 Ie
Qq =12.1 X4

ANDRADE TH
~~=8.35 X'

For density near zero, this fit indicates a first
density correction of 0.15x, 10% larger than the
Enskog value. Fitting with the density correction

0 I

.0 .05 .IO

0.4
I I I I

.I5 .20 .25 .50 .55

SHEAR RATE, ~ s(ln/e) (s/kT)

I
- DILUTE GAS

L IMIT,

, p
—0. I7l

0 I I I I
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HEORY

FREEZING
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FIG. 3. Soft-sphere shear viscosity dependence upon
shear rate and system size for the a=aT isotherm at
reduced densities N(s/L) /&~2 of 0.4, 0.6, 0.7, and 0.8.
Four-run viscosity averages are shown. {vertical line
denotes one standard error); a single run is 8000 time
steps of 0.002 L(m/kT)~ . See Table I.

DENSITY/ TEMPERATURE, X= ——
t
—

)V tkT)

FIG. 4. Estimated zero-shear-rate infinite-system
soft-sphere shear viscosity versus (reduced density)/

I
(temperature) . This curve provides the complete
fluid-phase shear-viscosity variation.
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constrained to the Enskog value (0.13x) yields
coefficients of 0.0191 and 7.02 and changes the
curve very little.

B. Approximate models

The best-known approximate model for dense-
fluid transport is Enskog's treatment of hard
spheres which estimates the instantaneous trans-
port of momentum and energy when two spheres
collide. ' The transport coefficients depend upon
the collision frequency, which for hard spheres
is related to the equation of state y =PV/NkT —1.
The Enskog model for hard-sphere transport can
be applied to the soft-sphere system by deter-
mining y from the thermal pressure,

XkT dT

and the effective hard-sphere second virial coeffi-
cient (b) from

dBb=a+T

where B(T) I=3.62959xj is the soft-sphere second
virial coefficient. "' The soft-sphere thermal
pressure was determined from Hansen's fit of
Monte Carlo equation-of-state results. ""

The Enskog shear viscosity and thermal con-
ductivity compared to their dilute-gas values are

q /q, =5 p(y '+0 6+0-761y.).
A.~/X, =bp(y '+ l.2+0.755y).

The first approximation to the dilute-gas thermal
conductivity is

A.,s'k '(m/e)'~'(e/kT)'~' =0.642.

The three terms in the Enskog expressions have
been called the "kinetic, " "cross," and "potential. "
The "kinetic" term and half the "cross" term rep-
resent (kinetic) transport by streaming motion and
the "potential" term and half the "cross" term
represent transport by (potential) collision trans-

fer. Table II presents both the Enskog shear vis-
cosity and thermal-conductivity coeffic ients for
the soft-sphere system. As the density is in-
creased to freezing, the magnitude of the stream-
ing motion remains almost constant, in contrast
to the large change in the collisional transfer (the
former has 20 and 70% increases for q and A.,
while the latter increases from 0 to -12 times the
dilute-gas value). This is similar to the density
behavior of equilibrium properties, where the
kinetic contribution is independent of density.

The Enskog-model viscosity at a reduced density
of 0.6 is

qs'(me) '~'(e/kT)'~' =1.05,

while the molecular-dynamic value is 1.5, a ratio
of exact to Enskog estimate of 1.4 +0.1. Alder,
Gass, and Wainwright' found a 1.10 +0.04 ratio for
hard-spheres at & the freezing density. The freez-
ing-density soft-sphere shear viscosity is approxi-
mately 2-,' to 3 times the Enskog value (Alder et al.
found 2.16 +0.09 for hard spheres at freezing).
Thus the soft-sphere deviations from Enskog theo-
ry are similar to (but a bit larger than) those
found for hard spheres by Alder et al. The hard-
sphere molecular-dynamic results were obtained
by time correlation of equilibrium-system fluc-
tuations.

A second approximate estimate for shear vis-
cosity can be obtained from the simple, but sur-
prisingly quantitative, paradigm of Andrade. An-
drade suggested that the viscosity of a simple
liquid near its freezing point can be estimated by
considering a particle to oscillate at the solid-like
frequency, transferring transverse momentum to
its neighbors at each turning point. Assuming hat
3 of the particles travel in the shear momentum
flux direction yields the simple relation"

q =4mv/3s.

Using the experimentally determined solid vibra-
tional frequencies and Lindemann's melting rule,
Andrade found quite good agreement with available
experimental data (in 1934) for mercury, lead,
tin, copper, and bismuth. Andrade's relation for

TABLE II. Enskog estimate for soft-sphere shear viscosity gz and thermal conductivity'&
based on the thermal pressure y.

1/4

v2V kT
g s2

WLC }i/2

2 2/3

A, (q/pe}~/2 @ T

0.0
0.4
0.6
0.7
0.8

1.0
4.56
9.46

13.46
18.76

3.49
4.49
5.49

0.17
0.51
1.05
1.45
1.92

0.64

4.32
5.89
7.73

3.75
4.29
4.13
4.06
4.02

4.29
2.88
2, 10
1.43
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the melting-point viscosity (poise) becomes

q
— =5.1&&10 (AT )' 'V ' '

cm sec

where A is the atomic weight, T is the melting
temperature ('K), and V„ is the solid-phase vol-
ume of a gram-atom (cm') at temperature T
For soft spheres the melting temperature is re-
lated to the density by

kT /e =(p /0. 844)4,

and thus the Andrade expression for the melting-
point soft-sphere shear viscosity becomes

qs'(me) ' '(E/kT)' '=8.35x' ',

which does agree with the high-density soft-sphere
molecular-dynamic results (and is about twice the
Enskog estimate at the freezing density).

C. Relationship to other transport coefficients

Two dimensionless ratios that involve the shear
viscosity with the other transport coefficients are
the Prandtl ratio (mA/kq) and the Stokes-Einstein
ratio (Dqo/kT). Several simple liquids have a
Prandtl ratio within 10' of 2.5. However, if k

is replaced by specific heat (as in the usual form
of the Prandtl number), then the ratios for argon
(monatomic), nitrogen (diatomic), and carbon
tetrachloride (polyatomic) differ much more. "
The Enskog soft-sphere Prandtl ratio increases
from the dilute gas value of 3.75 to a maximum of
4.33 at y =1.126 (x-0.3) and then slowly decreases
to 4.02 at the freezing density (x =0.813); see
Table II. Using the Enskog soft-sphere thermal
conductivity [the molecular dynamic results for
hard and soft-sphere thermal conductivity indicate
small deviations from the Enskog estimates (see
Refs. 8 and 15)] with the nonequilibrium molecular-
dynamic shear viscosity yields a Prandtl ratio
that decreases with increasing density (for x &0.4);
see last column of Table II. The exact hard-sphere
Prandtl ratio' also decreases more than the Enskog
value and at the freezing density is 1.89, and thus,
like the soft-sphere results, is much closer to
simple-liquid experimental values than is the
Enskog estimate. Horrocks and McI.aughlin" have
suggested a thermal-conductivity paradigm similar
in philosophy to Andrade's, which for the soft-
sphere systems becomes

= 15.55x8~3.

Therefore these two approximations produce a
constant Prandtl ratio of 1.86, in agreement with
the molecular-dynamic hard-sphere freezing val-
ues; but independent of density and temperature.

The experimental simple-fluid Prandtl ratios indi-
cate a positzve temperature derivative, which the
soft-sphere Prandtl ratio also exhibits. This is
easily seen by considering the excess thermal con-
ductivity and viscosity, which can be approximated
by a single power of x (for liquid densities and
temperatures the excess coefficients are essen-
tially equal to the total coefficients). Thus a
Prandtl ratio with a positive temperature deriva. —

tive is produced if the power for 4q is greater than
that for h~. This is in fact the case, since the
soft-sphere excess shear viscosity can be approxi-
mated by x' and the Enskog soft-sphere excess
thermal conductivity by x2 5.

The Stokes-Einstein formula relates the diffu-
sion coefficient D of a macroscopic spherical body
of diameter o in a fluid with viscosity q to the
fluid-sphere hydrodynamic condition

Dqo/kT = I/cm,

where c =3 if the viscous fluid sticks to the sphere
surface, and c = 2 for a sliP boundary. " It is
interesting that molecular self-diffusion can be
closely approximated by this hydrodynamic for-
mula. Experimentally, D, g, and o for liquid
argon and sodium are in reasonable agreement
with the Stokes-Einstein relation. Zwanzig and
Bixon" have generalized the Stokes-Einstein rela-
tion to a sphere undergoing small oscillations at
arbitrary frequency with arbitrary slip. Fourier
inversion of the frequency-dependent relation
yields qualitative agreement with molecular-dy-
namic velocity autocorrelation for the I ennard-
Jones potential (simulation of liquid argon at 76'K).
The hard-sphere results of Alder et al.' are within
10/o of the slip condition for densities down to —,

'
of freezing. Qf course, this relation will not be
true for dilute gases since q becomes independent
of density while self-diffusion becomes inversely
proportional to density.

Equilibrium molecular dynamics was applied to
several soft-sphere systems (%=256), and the
self-diffusion coefficient was determined from the
slope of the mean-square displacement by least-
squares fitting of

which approaches GDt for large t; see Ta,ble III.
The 256-particle results are in reasonable agree-
ment with the 500-particle soft-sphere results of
Ross and Schofield. 2' Both sets are a little higher
than the smaller-system results (%=32 and 108) of
Hiwatari et a/. " The Enskog estimates for D are
two or three times too large when the thermal
pressure is used. Estimates using y =PV/NkT —1

are closer to the molecular-dynamic results; see
Table III. The ratio D/Ds resembles the behavior
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of the hard-sphere system, but the soft-sphere
ratio has smaller deviations from unity. The
Enskog Stokes-Einstein value (see Table III) re-
mains below the stick-wall condition (0.106), while
the soft-sphere results are stick-like at low den-
sity, but the value increases with density and be-
comes slip-like at the freezing density (same as
hard spheres). For reduced densities greater than
0.6, the soft-sphere molecular-dynamic results
can be approximated by

-'(=)'"( ')'"= "
where DO=4. 9 and c=6.3 and x= p(e/—kT)' ' The.
experimental high-pressure (100-1000 atm) CO,
results of Timmerhaus and Drickamer" also have
the exponential form (with D, -15,c-7.9) and do
not follow the Enskog model. Hiwatari et al. show
that the soft-sphere and Lennard-Jones results
agree better than do the Lennard-Jones and hard-
sphere results. The experimental data for krypton
can be described using the Lennard-Jones poten-
tial, and thus the soft-sphere scaling variables
should be useful for correlating experimental data.

D. Shear flow pair distribution

This development of nonequilibrium molecular
dynamics has provided exciting new results: the
first proper evaluation of nonequilibrium pair
distribution functions. For simple dense fluids
the equilibrium pair distribution function g(x) has
been well characterized' and utilized to calculate
equilibrium fluid properties. The equilibrium pair
distribution function is clearly spherically sym-
metric (no preferred direction), while"'" the ve-
locity gradient distorts the distribution, as a first
approximation, into an ellipsoid with principle
axes coinciding with those of the rate of strain
tensor (two preferred directions —those of maxi-
mum and minimum shear-momentum flux). Sum-

ming the xz component of the microscopic-pres-
sure tensor over the volume V yields the shear-
momentum flux between the two walls bounding the
Couette flow,

N N

Z„,V=mg~, .z,. + P F(~,,)
""'".

s=Z
PairS

The above expression is clearly symmetric in x
and z. The first term corresponds to the dilute-
gas kinetic streaming motion and is of little im-
portance for dense-fluid transport. The second
term is the potential contribution, which is zero
for dilute gases. The term xz/x' can also be ex-
pressed as a spherical harmonic

(2n/15)' '(I", —I', ').
Thus, if the nonequilibrium pair distribution func-
tion is expanded in spherical harmonics, only the
xz/&' term will contribute to the shear viscosity
coefficient. Following Pryde, 'o we express the
shear-flow nonequilibrium pair distribution func-
tion as

g(r) =g(r)[1 ~(xz/x')p(x)u, ,j,
where v(r) allows for a radial variation in the
distortion induced by the velocity gradient and has
units of time. To determine v(r) in a nonequilib-
rium system, we need only average xz/r '. Figure
5 presents g(r) and the product g(r)v(r) for the
soft-sphere system at about & the freezing density.
The potential part of the viscosity coefficient can
be expressed

q~= — g(r)v(x) r'dh.2m N' "dP
15 V o

The significant range of v(r) is approximately two
molecular diameters in the dense-fluid states we
have studied.

Until now, little has been known about v(r)
Green" replaced v(r) by a constant value, which

TABLE III. Soft-sphere self-diffusion and Stokes-Einstein ratio from Enskog model and
nonequilibrium molecular dynamics.

W2V T
Estimate Soft- sphere

D

D@
Enskog Soft-spher e

0 4
0.6
0.7
0.8

0.192
0.081
0.055
0.038

0.222
0.096
0.055
0.03

1.16
1.18
1.0
0.8

0,098
0.085
0,080
0.073

0.11
0.14
0.15
0.16

D@/Do = 1/Y, where Y =f (PV/Ã4' T) -1]/(&p ) . Note; The thermal pressure is not used, and
D, (~/~)' (~/i T)' "=0.251/~.

~ From soft-sphere molecular dynamics with N = 256.
From Ross and Schofield, Ref. 27.
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reproduces the exponential temperature-dependent
shear viscosity experimentally found by Andrade, "
Frenkel, "and others. " Chapman" utilizes the
concept of an integral formulation for shear vis-
cosity to correlate the viscosity data of 22 liquid
metals. It is possible to obtain an aPProxinzate
functional form for v(r) from equilibrium proper-
ties based on Stokes's assumption that the viscous
stress gu„, is equivalent to the elastic stress Gy
if the strain y is replaced by strain rate times a
phenomenological relaxation time v„so that 7~
=q/G. If the fluid could be sheared without viscous
flow, then the angle-averaged shear modulus for
this supposed elastic medium would be (in the
absence of thermal fluctuationsP'

War =l5 ITV 0

and integration by parts yields

GV 2g N "dQ dg(r)
XkT 15 kryo, d~ din~

By comparison with the previous equation for q&,
we find

d ing(~)
VX Tm

Maxwell's relaxation time is v =10 "sec for
normal simple liquids. Therefore the nonequilib-
rium distribution function should be approximated
by the change in the equilibrium distribution func-
tion caused by the applied strain. Figure 6 indi-
cates this is a very good first approximation to the
nonequilibrium distribution function. The elastic
shear modulus 6 can be determined from the equi-
librium hydrostatic pressure and internal energy.
Zwanzig and Mountain have approximated C and

from argon experimental data. " If the relaxa-
tion time could be determined from equilibrium
properties o~ from a nonequilibrium reference
system, then the shear viscosity would be known.

IV. LENNARD-JONES SHEAR VISCOSITY RESULTS

%e first investigated the I ennard-Jones system
along the saturated-vapor-pressure line and the
freezing line. The excellent agreement with ex-
perimental argon data was very encouraging.
About this time (January, 1973) Levesque, Verlet,

1,2

.8

4

0

0

I

I

li
II

—4

—.8

—1.2

—1.S

—2.0
1.0 1.5 2.0 2.5

1/12

S

FIG. 5. Soft-sphere pair distribution for shear flow at

4 freezing density g(r) [1+ (xa/r~)u„, v (r)]. The spheri-
cally symmetric equilibrium term g(r) is proportional
to the probability of finding two particles a distance r
apart (solid line). The total potential contribution to
shear viscosity is given by the v(r) term with xz/~t sym-
metry (dashed line). Calculated with .V =108, [N(s/L)3/
42](e/kT)~~4=0. 576, and u «L(m/kT)~/2 =1.

r kT 1/12

5

FIG. 6. Comparison of measured nonequilibrium part
of the soft-sphere shear-flow pair distribution [g(r) v(r)/
I (m/kT)~~2] with that obtained from the equilibrium dis-
tribution t.—T'~ rd g(r)/dr] by applying a rate-of-shear
displacement for a duration equal to Maxwell's relaxation
time 7 N~ /I (m/kT)~ 2=0.0991. Conditions of Fig. 5,
except a four-run average is shown. Integrating the non-
equilibrium curve yields a potential shear viscosity of
gs /(me) =1.18, while the approximate curve (dashed)
yields 1.23.
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and Kurkijarvi sent us a report of work prior to
publication describing their equilibrium molecular-
dynamic calculation. " With some disappointment,
we noted that our nonequilibrium molecular-dy-
namic viscosity near the triple point was some
25Vo below their equilibrium value for the Lennard-
Jones shear viscosity. Comparison of the argon
thermal conductivity with the results of the two
molecular-dynamic methods revealed a similar
disparity. The equilibrium molecular -dynamic
thermal-conductivity coefficient is about twice
the nonequilibrium molecular-dynamic and experi-
mental argon values.

While the nonequilibrium results were closer to
the experimental argon value, it must be remem-
bered that the Lennard-Jones pair potential is only
an approximation to argon. " The proper compari-
son is between the two different statistical methods
of determining the Lennard-Jones shear viscosity
coefficient. This discrepancy between the equilib-
rium and nonequilibrium results for the Lennard-
Jones system could be due to number, boundary,
or gradient dependence of the computer results,
or to errors in the Green-Kubo formulation.

Preliminary runs were made to investigate the
dependence of the nonequilibrium results upon
velocity gradient and system size. For compari-
son with argon, a physically realistic extrapola-

tion to macroscopic size should be used. The
desired Newtonian shear viscosity coefficient
is defined to be independent of the velocity gra-
dient, but mill depend upon mhether the flow is
laminar or turbulent. For Couette flow a laminar
flow is expected" for Reynolds numbers Rn
(mpuL/q) below some critical value (-1500). The
Reynolds number for our simulated Couette flow
is of order one, and therefore our flow may safely
be considered laminar. Any extrapolation to in-
creased system size should maintain this laminar
flow. If the velocity gradient were fixed, the Rey-
nolds number would increase with system size as
Rn-L', while, if the relative wall velocity differ-
ence is fixed, then Rn-L. In either case, a tran-
sition to turbulent flow would occur as L increases
in size (although at a size much beyond current
computation capabilities). Therefore, before
number dependence can be determined, extrap-
olation to zero velocity gradient must be done,
Rn- O. Repeating this procedure for each system
size allows a proper extrapolation to the macro-
scopic laminar hydrodynamic limit. Another dif-
ficulty arises in the small. -gradient calculations.
The average shear stress becomes much smaller
than natural pressure fluctuations. In this case
the boundary effects might lead to discrepancies
with hydrodynamics.

YJg 0

(m&)~~2

fj 0

Runs

TABLE IV. Nonequilibrium molecular-dynamic results for Lennard-Jones shear viscosity
near the tripIe point (Nos/V = 0.8442, k Tp/& = 0.722). Shear-viscosity dependence upon shear
rate (cu=u~ 8) and system width (inL units). See Table I caption (for N =324, 15 zones were
used). Apparent shear viscosity g, was adjusted to the temperature I'

p by ~g/q= —0.65 ~T/T.
Thermal conductivity estimated from the zone-temperature distribution t coefficient of z is
-qk cv 2/(m)] . The experimental. argon value is 6.5+ 0.26, Ref. 39, and the nonecuilibrium
moIecular-dynamic simulation of heat-flow result is 6.6+ 0.4, Ref, 15.

kT

4-9
4-9
1-4+
4-9
1-6
1-6

2—5
2-5
3-6+
1-4

2-6

0.0371
0.0737
0.0852
0.113
0.156
0.248

0.0399
0,0825
0.0885
0.112

0.0200
0.0416
0.0872

N =108 (L. cube)

3.72 + 0.22
3.54+ 0.11
3.41+0.09
3.28+ 0.01
3.07 + 0.04
2.85 + 0.06

N =216 (2L wide)

3.38 + 0.17
3.25+ 0.15
3.21~ 0.09
3.08+ 0.05

%=324 (3L wide)

3.23 + 0.17
3.16+0.06
3.04+ 0.05

0.724
0.715
0.713
0.711
0.699
0.672

0.721
0.689
0.699
0.681

0.717
0.707
0.670

3.73
3.52
3.38
3.24
3.01
2.72

3.37
3.15
3.14
2.96

3o22
3,12
2.90

8.0
3.6
8.1
8.8
6.5

4 7
14.0

5.3
6.3

9.5
6.3
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A. Lennard-Jones triple-point shear viscosity —comparison

with Green-Kubo method

An extensive set of nonequilibrium shear-vis-
cosity calculations has been made in the triple-
point region for comparison with the equilibrium
molecular-dynamic calculation by Levesque, Ver-
let, and Kurkijarvi (LVK)." In the equilibrium
work 864 particles were used with reduced density
No'/V of 0.8442 and reduced temperature kT/e of
0.722, approximately the triple-point values for
both the Lennard-Jones system" and argon (using
o'= 3.405 A and e/II= 119.8'K, the reduced condi-
tions become 1.418 g/cm' and 86.5'K). The real-
time duration of the calculations was (for argon)
10 ' sec. The shear viscosity calculated from the
Green-Kubo relation was

qo/(me)' ' =4 02 +0 29

For comparison with argon the calculated value
is 3.64 mP, while Boon's experimental argon value
is 2.71 mP (+2%).38 The calculated equilibrium
thermal-conductivity coefficient is XII'(m/e)'l'/II
=14.8, which is about twice the experimental ar-
gon value 6.5 +0.26." Nonequilibrium molecular-
dynamic simulation of heat-flow results (6.6
+0.4")ag~ee with the argon value.

Using 108 atoms in a cube, the nonequilibrium
results for shear viscosity at the triple-point
region indicated dependence upon shear rate-
i.e., non-Newtonian behavior. " The apparent
viscosities for five different shear rates (averaged
over a time period corresponding to 10 ' sec for
argon) are given in Table IV and shown in Fig. 7.
The local average flow temperatures (kinetic energy
with respect to the mean velocity) were determined
in the zones used to define the velocity profile.
For the higher shear rates, the average tempera-
ture was approximately 5% below the desired tem-
perature. Therefore the calculated shear viscosity
was adjusted to the desired temperature. The
experimental argon shear-viscosity pressure and
temperature dependence from Hellemans et al."
and the estimate (6 InP/6 lnT)„= 30.4 were used to
estimate temperature dependence at constant den-
sity, with the result

(
5q = -0.65 for the triple-point region.
n p

T

Hence, a 5% temperature increase corresponds
to a 3% decrease of the shear viscosity.

For fixed N the dependence of apparent viscosity
Ii (= P„,/u„, ) on strain -rate can be described by
the Eyring model of non-Newtonian viscous flow,

Ii =go(sinh 'I Id)/I Id,

where g, is the zero shear rate or Newtonian vis-

4.0-

E

b

DE/ SITV

N( ~/L)~0. 8442

O
4P

0
SVsTEM

8 WIOTH

1L {N=IOS)

E3
- (N=324) x

2.4
.0

I

.05
I

.IO .I 5 .20 .25

SHEAR RATE, (d a +fA/e

FIG. 7. Lennard- Jones shear viscosity dependence
upon shear rate and system width at the triple-point
region. Circles are the calculated mean values (verti-
cal line denotes one standard error) and the x's are the
estimated shear viscosity for kT/e =0.722 (see Table
EV~.

cosity, 7 is a relaxation time, and is the shear
rate u„,. While Eyring's model cannot directly
predict q, and v from molecular properties, it has
been shown that this model can adequately portray
the experimental data for many high-viscosity
fluids. The Ree-Eyring model contains two addi-
'tiollRl pR1'RIIle'tel's ('two Rddltlve sl1111 vlscos1'ties)
and successfully describes grease over six de-
cades of shear force and nine decades of shear
rate." The non-Newtonian flow found here in a
monatomic fluid at high shear rates corresponds
to that found in laboratory experiments at low
shear rates on more complicated molecules.

Fitting the adjusted viscosities at the three low-
est shear rates with the sinh ' function produces
a 108-particle zero-gradient viscosity of q~
= 3.82(me)' '/o' and a. relaxation time of r
=10.4o(m/e)' '. Including the two higher shear-
rate values reduces qo and v to 3.71 and 8.30, in-
dicated by the dashed line in Fig. 7. This relaxa-
tion time corresponds to approximately 13 times
the period of an Einstein oscillator in a face-
centered Lennard-Jones crystal at this same den-
sity, 1/I s =0.80o(m/e)' '. The extrapolated 108-
particle viscosity appears to be consistent with the
Green-Kubo result of LVK, but with both methods
predicting substantially larger values than the ex-
perimental argon data.
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The remaining extrapolation to macroscopic
system size (while maintaining laminar flow con-
ditions) was investigated by comparing the 108-
particle viscosity with results from systems two
and three 108 cubes wide. These larger-system
results are also shown in Fig. '7 and Table IV.
They are clearly lower than the 108-particle val-
ues. Fitting the 216-particle results with the
sinh function produces a zero-gradient viscosity
of qo = 3.47(me)' '/o and a relaxation time of
v' =10.4o(m/e)'~'. Thus doubling the system width
decreases the zero-gradient viscosity value, while
the relaxation time does not change. Assuming,
in addition to gradient dependence, an inverse
width dependence, so that q is a function of both

and x, leads to a hydrodynamic shear viscosity
7io o of 3.12(me)' '/cr'. The uncertainty in this
estimate is at least 5%.

To provide some confidence in this arbitrary
extrapolation, a system three cubes wide (N=324)
was studied at three shear rates. The mean values
and temperature-adjusted values are also shown
in Fig. 7, and again they are clearly lower than
those found with smaller systems. The 324-par-
ticle results, fitted with the sinh ' function, pro-
duce a zero-gradient viscosity of q, =3.21(me)'~'/o'
with a relaxation time of 10.0o(m/e)'~'.

The mathematical similarity between stresses in
viscous fluids and stresses in elastic solids" can
be used to support the inverse width dependence of
the viscosity coefficient. Finite periodic harmonic
crystals with fixed center of mass exhibit an elas-
tic restoring force on a particle displaced a dis-
tance x from its equilibrium location. This force
(-yx) is proportional to an elastic modulus, and
the equilibrium mean-squared displacement is
proportional to the reciprocal of the modulus,

Numerical results given in Table V for harmonic
crystals show that (x') increases with system
width,

TABLE V. Mean-squared displacement relative to the
Einstein approximation, 34T/4', where Xz is the near-
est-neighbor harmonic force constant, forN-particle
harmonic crystals with nearest-neighbor interactions.
These crystals are periodic with fixed center of mass.
The large-crystal ratios are of the form R (fcc) =1.6794
—1.56/N and R (hcp) =1.668~ —1.16/N~ ~.

N (fcc) R(fcc) N (hcp)

namics. The wall correction for viscosity experi-
ments in which a sphere of diameter v is dropped
in a tube of diameter D containing viscous liquid
is 1+(-2)v/D, where the coefficient depends some-
what upon the cross-section shape. 4'

The three parameters of interest (q, „~, and
c—the coefficient of 1/N'~') may also be deter-
mined by fitting all the temperature-adjusted shear
viscosity with one general function,

q„, =q, ,(1+c~)(sinh '~&u)/~&u,

where g~, is the calculated shear-rate-dependent
finite-width viscosity, q, o is the zero shear-rate
infinite-width viscosity, c is the coefficient for
width dependence, and 7 is the relaxation time
for shear rate-dependence. Fitting the adjusted
calculated shear viscosities of Table IV with the
residuals weighted equally or by various functions
of the width and/or calculated standard error
produced a range of values for c (1.1-1.38) and
r (6.4-10.2), but little variation in the viscosity
estimate,

q = 2.89(%.06)(me)'~'/cr'

Figure 8 presents the equal-weight fit along with
the similarly adjusted Green-Kubo value (c =1.38),
and l is assumed to be half the cube edge, the
largest possible separation of particles pairs in a
periodic system; i.e. , l is equal to the nonequilib-
rium 108-system width. Considering the uncer-
tainties, it appears at present that the two molec-
ular-dynamic methods (both adjusted to infinite
width) agree with each other and with the experi-

where the constant c varies both with crystal struc-
ture and shape (Table V). Thus the elastic modulus
(analogous to shear viscosity in a fluid) decreases
with 1/N" ~' as the large-system limit is ap-
proached. For harmonic forces the viscosity de-
pendence upon system width would be

q~/q„=1+ c/N'~',

where c is a constant of order 1, which is con-
sistent with a curve fit of the nonequilibrium mo-
lecular-dynamic zero-gradient viscosity esti-
mates. This same functional form is also in rea-
sonable agreement with experimental hydrody-

32
103
256
500
864

1372
2048
2916
4000
5324
6912
8788

10976

0.833 333
1.220 430
1.361 392
1.437 691
1.484 843
1.516 722
1,539 673
1.556 973
1.570 474
1.581 300
1.590 173
1.597 578
1.603 849
1,609 623
1 ~ 6794

2

16
54

128
250
432
686

1024
1458
2000
2662
3456
4394

1.500 000
1.344 141
1.402 399
1.451 938
1.488 476
1.515 363
1,535 618
1,551 298
1.563 745
1 ~ 573 844
1.582 191
1.589 201
1,595 167

1.6685
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nard-Jones triple-point region derived from the
nonequilibrium molecular dynamics is rite/(me)'~'
= 2.9(%.1). Therefore the apparent discrepancy
between the two molecular-dynamic methods and
the experimental argon data appears to be due to
finite flow-field effects. This phenomenon is ap-
parently confined to the triple-point region. Cal-
culations with 108 and 324 systems at a reduced
density of 0.76 on the svp line, and at 0.94 on the
freezing line, indicate no significant width depen-
dence.

B. Lennard-Jones shear viscosity along the saturated-vapor-

pressure line

2.0
2le 2

324 3

Hansen and Verlet" have found good agreement
with experimental argon phase-diagram data using
the Lennard-Jones pair-potential

&.e
.0

I I I I I

.05 .IO .I5 .20 .25

SHEAR RATE, (d o O'FTl/»

FIG. 8. Calculated Lennard-Jones shear viscosity at
the triple-point region. The line is a nonlinear fit with
a function having inverse hyperbolic sine shear-rate de-
pendence and inverse width dependence. Also shown is
the infinite-width-adjusted equilibrium (Green-Kubo)
result of Levesque, Verlet, and Kurkijarvi and the ex-
perimental argon shear viscosity (with an estimated 2%
uncertainty) .

mental argon shear viscosity (also shown in Fig. 8
with the quoted 2%%uo experimental error). Our final
estimate for Newtonian shear flow near the Len-

0 (~) =4ek&/&)" —(&/&)'l,

with o = 3.405 A and e/k =119.8'K. The melting-
freezing agreement "confirms the excellence of
the Lennard-Jones potential as an effective two-
body potential for argon at high density. " The
agreement is not as good along the saturated-
vapor-pressure line (especially near the critical
temperature, 1.26 e/k for argon versus 1.36 e/k
for Lennard-Jones). We calculated the Lennard-
Jones shear viscosity along the experimental
saturated-vapor-pressure line of argon; see Table
VI. For argon, the real time durations are about
10 ' sec, while CDC 6600 computational time
was approximately 104 sec.

TABLE VI. Nonequilibrium molecular-dynamic 108-particle results for Lennard- Jones
shear viscosity along the argon saturated-vapor-pressure line (temperature and density in
first two columns). Four-run average, see Table I caption (W =324) pp is the estimated
zero-shear-rate viscosity, ~ is the Eyring-Bee relaxation time, and pz is the Enskog estimate.

kT p/e k T/e u„,o— 7)0'2

(me )"'-
~~2 7 ~ 1/2

p

(me)"' 0 m

7]@02

(me)

1.228

0.998

0.4774

0.692

1.192
1.220

0.982
0.972

0.116
0.0787

0.135
0.086

0.554+ 0.06
0.593+ 0.06

1.18+ 0.08
1.30+ 0.06

0.641

1.39 7.86

0.532

1.19
0.8723 0.7608

0.7007 0.8531

0.840
0.87
0.860
0.87
0.846
0.87

0.684
0.7
0.700

0.123

0.083

0.04

0.112

0.075

1.84+ 0.08
est. 1.66

1.82 + 0.03
est. 1.75

1.95+ 0.11+
est. 1.89

3.51+ 0.13
est. 3.46

3.95+ 0.09

1.92

3.29

9.2

10.4

1.70

2.87



W. T. ASHUBST AND W. G. HOOVER

It appears to be generally true that the lower-
shear-rate results are somewhat (approximately
10%) larger. For the density of 0.85, the relaxa-
tion time and width correction determined from
the extensive triple-point calculations was used.
A one-constant fit of the two 108 results is qp p

=3.29(me)'~'/o', which does agree with the experi-
mental argon data. The inverse width correction
is apparently only applicable to the very dense
triple-point region. For a reduced density of
0.76 on the saturated-vapor line, the results of a
108-particle system and a 324-particle system
indicate no significant width dependence. At the
remaining two lower-density conditions, the cal-
culated apparent shear viscosities for the two
shear rates have error bars that overlap. Thus a
two-constant fit is not really valid. However, the
estimated zero-shear-rate viscosity values do not
noticeably differ from the calculated 1ow-shear-
rate results.

Thermal pressures determined from the I en-
nard-Jones equation of state determined by Leves-
que and Verlet" have been used to make Enskog
shear-viscosity estimates (shown in Table VI).
For these densities and temperatures, the Enskog
estimates lie approximately 20% below the molec-
ular-dynamic results. For densities greater than
critical and temperatures below critical, the Ens-
kog estimates have similar disagreements with
experimental data. 4'

There is extensive experimental argon shear-
viscosity data for comparison along the saturated-
vapor-pressure line. "'P'"'6 Accuracy within a
few percent is claimed for each set of experimental
results. Yet the various methods of measuring
the viscosity produce values differing by 10-50/p.
The recent experimental work by Haynes" using a
torsional viscometer like DeBock et aL." indicates
good agreement along the vapor-pressure Line

with the results of Hellemanns et al. '0 (they used
an oscillating disk viscometer). Away from the
vapor-pressure line the pressure dependence of
Haynes and Deaock et al. agree for the slope, but
the latter work produced higher viscosity values.
The results of Hellemanns et al. indicated a much
smaller pressure dependence, but their results
away from the saturated liquid line are suspect
since they used helium gas to pressurize the liquid
argon and hence had a helium-argon mixture. The
largest experimental differences occur for pres-
sure-temperature values away from the vapor-
pressure line and near the critical temperature.
Some of the experimental differences may be due
to uncertainty in the experimental pressure-tem-
perature conditions.

Figure 9 compares the nonequilibrium molec-
ular-dynamic estimates with the experimental

argon shear-viscosity data. Considering the dis-
agreement among the experiments, it seems likely
that the experimental and the calculated molecular-
dynamic results have comparable uncertainties.
The overall agreement indicates successful simu-
lation of nonequilibrium shear flow with few-par-
ticle systems.

4.0-
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FIG. 9. Experimental argon shear-viscosity coefficient
along saturated-vapor-pressure line. Boon et cl. used
a capillary viscometer with accuracy better than 3%;
De Bock et al. used a torsionally vibrating piezoelectric
quartz crystal; Hellemens et al. used an oscillating di.sk
viscometer with accuracy better than 2%, The line is
the estimated zero-shear-rate infinite-system-size Len-
nard- Jones shear viscosity from nonequilibrium molecu-
lar-dynamic calculations done with 108 atoms at two
shear rates (see Table VI).

C. Lennard- Jones shear viscosity along the freezing line

The shear viscosity along the Lennard-Jones
fluid freezing line has been calculated at tempera-
tures up to four times the critical temperature.
The results along with Enskog model shear-vis-
cosity estimates are given in Table VII (thermal
pressure from Hansen's high-temperature equa-
tion of state"). These estimates are only 50% of
the molecular-dynamic results, a discrepancy
similar to that found by Alder, Gass, and Wain. —

wright' for hard spheres near their freezing den-
sity. The viscosity dependence on shear rate is
shown in Fig. 10 together with a zero-shear-rate
estimate (fitting the two-constant sinh ' function
through the two calculated values). For a reduced
density of 0.936, a 324-particle system agrees
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TAB LE VII. Nonec[uilibrium molecular-dynamic 108-atom results for Lennard- Jones shear
viscosity along the freezing line for temperatures (kT/~) up to 5. Four-run average, see
Table I caption (*N =324); go is the estimated zero-shear-rate viscosity, 7 is the Eyring-
Bee relaxation time, and gz is the Enskog estimate.

Ng'/V Q O—

1.15

5.0

0.936

1.279

1,114
1.132
1.130

1.955
1.976

2.668
2.740

4.857
4.954

0,215
0.104
0.053

0.305
0.145

0.364
0.171

0.521
0.250

4.19+0.09
4.63+ 0.23
4.79+ 0.18~

5.65+ 0.06
6.36+ 0.27

6.79+ 0.20
7.76+ 0.64

10.51+ 0.21
10.95+ 0.91

6,68

5.02 2.14

2.95

with the 108-particle results and thus indicates
no width dependence. Therefore it is concluded that
the width phenomenon only occurs for conditions
very near the triple-point region.

It is interesting to note that the large-gradient
viscosities have a linear dependence upon tempera-
ture, while the estimated zero-shear-rate vis-
cosity values do not. The potential contribution to
momentum transport is related to the elastic shear
modulus (see Sec. III). Along the soft-sphere
freezing line, this reduced shear modulus is a
constant,

IO-

(&-~)
(~ g) Ilk

which does agree quite well with the soft-sphere
result. A similar expression has been obtained
by I VK." Upon replacing the I -J molecules with
hard spheres of diameter d (chosen to reproduce
the equilibrium structure factor) and using the
hard-sphere viscosity results of Alder et al. along
with the low-temperature I -J freezing-temperature

Thus a rough estimate for the potential part of the
shear viscosity is

For the freezing-line conditions calculated, the
temperature changes by a factor of 4.3 while the
density only increases by 1.4. Therefore the linear
temperature dependence at large shear rate ap-
pears reasonable. Of course, at high temperatures
the repulsive core potential dominates momentum
transport. Thus the high-temperature Lennard-
Jones system must approach the behavior of the
inverse-12th-power system. The special scaling
feature leads to a simple relation for the soft-
sphere shear viscosity along the freezing line,

[(q —7l,)o/(me)' '] (e/kT)' '=4 1(% 4)

A reasonable curve fit (-4' e»or) of the freezing-
line I.ennard-Jones reduced excess shear viscosity
ls

[(q —q, )v'/(me)'~'] (e/kT)'~' =4(&.15),

g
LP

iX

X

SHEAR RATE

(m)~"

8 .P TQ .5
~ —.I T0.25

EST FGR 0.

TE MPERATURE, k T/c

FIG. 10. Lennard- Jones shear viscosity along the
freezing line. Calculated with 108 atoms at two shear
rates (see Table VII). The lowest x is the estimated
infinite-width triple-point value (see Table VI). The
dashed line indi. cates the large-shear-rate linear tem-
perature dependence, while the solid line is a nonlinear
fit in terms of the inverse-12th-power scaling variables.
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dependence, they obtain an approximation for the
freezing-line shear viscosity

q(P/(me)' ' = 5(kT/e)'"

They do not comment on the power dependence of
temperature and its relation to the inverse-power
scaling. Since the viscosity increases with tern-
perature along the freezing line (similar to dilute
gases) but decreases with increasing temperature
along the saturated-vapor-pressure line, there
must be a transition region. Sengers4 discusses
this general phenomenom of the change of slope
of viscosity isotherms when plotted against pres-
sure or density —i.e., (Bq/BT)q changes sign. Ex-
perimentally these isotherms intersect at about
twice the critical density, while calculations for
the isotherms of kT/e =8.5 and 28 indicate an
intersection at three times the critical density
(see following).

D. Density and temperature dependence of the Lennard-Jones
excess shear viscosity

Although pressure is a more convenient experi-
mental variable, the isothermal density depen-
dence of the shear viscosity and thermal conduc-
tivity is simpler to describe. The dilute-gas (zero-
density limit) temperature dependence is well
described by kinetic theory. Experiment suggests
that the excess shear viscosity Aq [=—(q —q, ), where

7lo is the dilute-gas value] is almost temperature
independent. While Andrade's simple paradigm
for shear viscosity has no temperature depen-
dence, the Enskog hard-sphere theory produces a
square-root temperature dependence. However,
the experimental shear viscosity of argon, hydro-
gen, helium, oxygen, and carbon dioxide indicates
a weak temperature dependence with a negative
temperature derivative (at constant density). The
excess thermal conductivity (with the exception of
the critical region) has behavior similar to that of
shear viscosity, except that the experimental data
indicate a Positive rather than a negative isochoric
temperature derivative. ""

Diller ' was able to represent his experimental
shear viscosity for para-hydrogen at cryogenic
temperatures (&100'K) and for densities up to
-800 amagats with an empirical equation of the
form

n =no(T)+&(p)e"" ",
where q, (T) is the low-density viscosity, and A
and B are complicated functions determined from
his experimental data. These same density coeffi-
cients also correlate (within 3%%uo) with Michels
et al. ' experimental shear-viscosity data for
normal hydrogen at room temperature (density up

to 800 amagats). For thermal conductivity, both
Rosenbaum et al. ' and Bailey and Kellner" found
that their experimental argon data could be repro-
duced (to within 3/o) by the empirical relation

A. = Xo(T) +A(esq —1)

(temperature range 90-350'K, pressures up to
1000 atm). Thus the excess coefficients appear to
be valuable density-scaling functions. Therefore,
to investigate this phenomenon, the Lennard-Jones
shear viscosity has been calculated for two iso-
therms corresponding to room temperature for
hydrogen and helium (kT/e =8.5 and 28).

The nonequilibrium molecular -dynamic calcula-
tions used 108 Lennard-Jones atoms in a unit cube
(Table VIII). A few calculations were also made
with 216 particles (two 108-cubes wide), and these
results indicate only a slight increase in shear
viscosity compared to the 108-particle results.
The calculations are done at fixed density, but the
momentum flux (pressure) and temperature are
determined from finite-time averages and thus
have some uncertainty. The compressibility fac-
tors from these runs agree well with Hansen' s
Lennard-Jones equation of state. For densities
near and below critical density (0.36 for I ennard-
Jones, for hydrogen about 520 amagats), the Ens-
kog estimate is in reasonable agreement with the
molecular-dynamic results. For larger densities,
the deviation of Enskog estimates from the molec-
ular-dynamic results grows to about a factor of
2 near the freezing density (-1.5). This disagree-
ment is similar to that found by Alder, Gass, and
Wainwright in their equilibrium molecular-dynam-
ic studies of the hard-sphere system. The Enskog
estimate indicates a positive value for BAq/BT,
the opposite of experimental observation and the
molecular -dynamic results.

Figure 11 shows that the calculated reduced
excess shear viscosity for bo+ of these isotherms
can be correlated with the soft-sphere scaling
var iables,

Sqo'(me) ' '(e/kT)' '=7 07x'

This fit clearly reveals two features: (i) weak
temperature dependence and (ii) a negative tem-
perature derivative at constant density dlnAq/dlnT

Notice that the temperature derivative is
negative for any power of x greater than —', . While
both of these features have been experimentally
observed in simple-fluid shear-viscosity data
(e.g. , argon, helium, hydrogen, oxygen, and car-
bon dioxide; see Refs. 44 and 47), their cause has
not been previously traced to the dominance of the
core potential. For all x, a slightly better fit is
given by the empirical relation
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b, qo'(me) ' '(e/kT)' '=0.024(e'" —1) (2) b,7lo'(me) ' '(e/kT)' '

(dashed line in Fig. 11). Note that the temperature
derivative is Pos&~&ve for low-density —high-tem-
perature combinations and only becomes negative
for x greater than 0.41.

The soft-sphere shear viscosity alone can be
fitted (-3/o error) by the empirical relation

b, qo'(me) ' '(e/kT)' '=0.0152(e"""—1), (3)

where the product of the coefficients was required
to equal the soft-sphere Enskog first density cor-
rection to the dilute-gas shear viscosity [0.107—
see Eq. (26) of Ref. 44]. For x less than 0.5, the
Enskog theory provides a good soft-sphere shear
viscosity estimate; however, for higher densities,
the molecular-dynamic results are 2 to 3 times
the Enskog values.

There is a small discrepancy in the coefficient
values of Eqs. (2) and (3), which at infinite tem-
perature must be equivalent. Procrustean fitting
[guided by the inverse square-root temperature
expansion of the second and third Lennard-Jones
virial coefficients (see p. 1119 of Ref. 1), since
they determine the Enskog first density correc-
tion] of all the nonequilibrium molecular-dynamic
results yields the empirical relation

=0.0152[1 —0 5.(e/kT)'~' +2.0(e/kT)]

&& (exp('7. 02x [1 —0.2(e/kT)'~']j —1),

with a fit error of 5-10/o of the excess or dilute
shear viscosity (whichever is larger). Thus the
utilization of the soft-sphere scaling variables
yields a relatively simple function describing the
excess Lennard-Jones shear viscosity throughout
the fluid phase. The experimental argon shear-
viscosity data of Michels et al." and Haynes"
spans the density range from dilute gas to saturated
liquid; however, compared to the molecular-dy-
namic conditions the reduced temperature varia-
tion is small (0.7-2.9}. Fitting the data using the
soft-sphere scaling variables yields

&qa'(me) ' '(e/kT)' '=0.0324(e"""—1)

Comparison with a fit of b, q versus density p (with
the same function) indicates reduction of the rela-
tive fit error by factors of I (for high p and T}
to 3 (for high p and low T) and thus confirms the
value of the inverse-power scaling variables.
Therefore this new way of scaling excess shear
viscosity should be useful for empirical correla-

TABLE VIII. Nonequilibrium molecular-dynamic 108-atom results for Lennard-Jones shear
viscosity as a function of density along the isotherms kT/e= 8.5 and 28, (dilute-gas shear vis-
cosity is 0.61 and 1.32). Four-run average; see Table I caption (*N =216, ATO/e =9.2 and 30).
Zero-shear-rate estimate marked by *~. Compressibility factor from velocity zone momen-
tum flux and L-J equation of state (Ref. 22). Thermal conductivity estimated from zone tem-
perature distribution.

m ig2

xg'/v I T/e ~„go—
s v/xaam

go (me) Calculated EOS
A, o'2 (m/q) ~/2 /p

Estimated Enskog

0.25
0.35
0.40
0.50
0.55
0.60
0.80
1.00
1.20

1.4Q

0.25
0.55
0.80
1.2
1.4

8.41
8.58
8.58
8.48
8.63
8.51
8.56
9.12
8.72
9.09
9.09
8.85
9.11
9.10

28.67
27.97
27.59
28.30
27.86
29.70

0.20
0,32
0.34
0.36
0.37
0.50
0.56
0.15
0.68
0.16
~Q+g

0.71
0.19
0.19
~0++
0.35
0.75
0.94
1.25
1.24
0.35

0.61+ 0.08
0.74+ 0.06
0.94+ 0.09
1.00+ 0.03
1.28 + 0.11
1.24 + 0.12
2.16+0.07
3.29+ 0.17
6.45+ 0.16
7.83+ 0.30
8.26+ 0.30

12.60+ 0.31
13.97 + 1.1
13.41+ 0.63*
13.62+ 0.63
1.19+0.24
1.71+ Q.Q8

2.85 + 0.30
5.77 + 0.36
9.46+ 0.30
9.95+ 0.40+

1.35
1.58
1.71

2.25
2.48
3.74
5 ~ 65
8.75
8.58

13.03
12.87
12.85

1.35
2.06
3.03
5.65
7.77
7.55

1.34
1.55
1.67
1.98
2,18
2,40
3 ~ 63
5.57
8.76
8.62

13.68
13.2
13~ 2

1.35
2.04
3.00
5.66
7.85

2.1+ 1.6
3.49(~ ~)

2.67(~ 9)
11.1+3
8.0(~ P)

20.4 + 2

31.8 + 4

19.3+ 5

12.1+8
17.5+ 10
36.8 + 15
17.8~ 8

3.57
3.88
4.62
5.11
5.60
8.35

12.6
18.0

24.8

6.3
8.91

12.7
23.2
30.9
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tions of experimental data over the complete fluid
range.

V. CONCLUSION

The method of nonequilibrium molecular dynam-
ics has been developed to simulate dense-fluid
transport of momentum and energy. This new

method also allows determination of nonequilibrium
distribution functions which should provide the
basis for a perturbation theory of transport. Shear
viscosity of soft spheres (v "potential) and Len-
nard-Jones particles (r " T' '-potential) has been
obtained from molecular-dynamic modeling of
Couette flow. Soft-sphere deviations from Enskog
theory are similar to those found for hard spheres
by Alder, Gass, and Wainw'right, using time cor-
relations of equilibrium molecular-dynamic sys-
tem fluctuations. For densities near freezing,
the nonequilibrium calculations have a non-New-
tonian behavior; however, the Ree-Eyring inverse-
hyperbolic-sine shear-rate dependence gives an
excellent portrayal of the calculated results and
has been used to estimate the zero-shear-rate
shear viscosity. For the Lennard-Jones shear
viscosity near the tr iple -point region, there is
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FIG, 11. Calculated Lennard-Jones excess shear vis-
cosity along the isotherms AT/&=8. 5 and 28 expressed
in terms of the single repulsive 12th-power scaling vari-
ables. Also shown, but not used in determining the
curve fits, are calculated Lennard- Jones shear viscosi-
ties along the (L-J) freezing line and the saturated-vapor-
pressure line (of argon).

agreement between the equilibrium result of Leves-
que, Verlet, and Kurkijarvi and the nonequilibrium
zero shear-rate using 10& atoms in a cube. How-
ever, systems two and three cubes wide yield
lower results, which, when extrapolated with in-
verse width, are in close agreement with the
experimental argon shear viscosity. This same
size dependence is in qualitative agreement with
hydrodynamic experiments on spheres moving in a
viscous fluid and is also supported by the mathe-
matical analogy between elastic solids and viscous
liquids. The triple-point equilibrium viscosity
results can also be brought into agreement with
both the nonequilibrium and experimental viscosities
if a similar inverse width correction applies to
that method. The equilibrium result for the Len-
nard-Jones thermal conductivity is twice the ex-
perimental argon value and the nonequilibrium
results (which appear to have weak dependence
upon system size and temperature gradient). Com-
parison of the Lennard-Jones shear viscosity with
experimental argon data along the saturated-vapor-
pressure line of argon confirms our successful
simulation of macroscopic viscous flow with few-
particle nonequilibrium molecular -dynamic sys-
tems.

The soft-sphere system, being a single inverse-
nth-power potential, has a special scaling fea-
ture; reduced viscosity and thermal conductivity
times (E/JET)' ' ' " are universal functions of the
reduced density times (E/kT)' " throughout the
fluid phase. Since momentum transport is pri-
marily accomplished by the repulsive potential
core for high temperatures, the Lennard-Jones
shear viscosity must behave like the soft-sphere
system for high temperatures. In fact, the cal-
culated excess shear viscosity (that part above
the zero-density temperature dependence) has
been successfully correlated in terms of the 12th-
power scaling variables for temperatures as low
as the critical value (along the freezing line). The
molecular-dynamic results for thermal conduc-
tivity differ from shear viscosity in that the equi-
librium calculations for hard-spheres (done by
Alder, Gass, and Wainwright) and the noneguilib-
rium calculations" for soft spheres and Lennard-
Jones potential are in reasonable agreement w'ith

their respective Enskog estimates over the com-
plete fluid-density range (and even into the solid
region for hard spheres). Calculated freezing-
line Lennard-Jones thermal conductivities have
the soft-sphere temperature dependence (kT/E)2~'
and lie only 30/D above the Enskog estimate. The
calculated Lennard-Jones excess thermal-con-
ductivity coefficient agrees with the experimental
argon density dependence. The utilization of the
soft-sphere scaling variables yields relatively
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simple functions for describing the excess shear
viscosity and thermal-conductivity behavior
throughout the fluid phase. The introduction of
these scaling variables also clearly reveals two
features: (i) weak temperature dependence and

(ii) the sign of the temperature derivative at con-
stant density (negative for shear viscosity and
positive for thermal conductivity). While both of

these features have been experimentally observed
in simple-fluid experimental data (e.g. , argon,
helium, hydrogen, oxygen, and carbon dioxide),
their cause has not been previously traced to the
dominance of the core potential. Thus the soft-
sphere scaling variables should be useful for cor-
relating experimental data.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

TWork done in partial fulfillment of the requirements
for a Ph. D. , University of California at Davis, De-
partment of Applied Science, at Livermore.
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