
PHYSICAL BEVIE W A VOLUME 11 NUMBER 2 FEBBUABY 1975
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In this paper we present a new approach to the problem of unstable laser resonators. We
consider a stable resonator in which we insert a thin diverging lens near one mirror. By
varying the focal length of the lens, the lens-resonator system can go from stable to unstable.
We expand the field in the lens-resonator system in terms of the normal modes of the origi-
nal stable resonator. The polarization of the lens causes coupling of the stable modes. The
present method allows one to introduce the active lasing medium in a natural way, as is
shown. The normal modes of the unstable resonator are obtained numerically, along with
analytic solutions in certain limiting cases. A physical discussion of the unstable resonator
problem is given in terms of a pseudospin picture.

I. 1NTRODUCTION

Unstable resonators are of practical interest
because their large interaction volume is essential
for high-power lasers, Rnd because they avoid the

problem of damage to semitransparent mirrors. '

The theoretical description of the mode structure
in unstable resonators and the effects of an active
lasing medium are problems of current interest.

Using simple geometrica, l optics arguments, it
was demonstrated that the diffraction loss of the
lowest-order mode in an unstable resonator is es-
sentially independent of the Fresnel number (or
mirror size). ' lt then seemed meaningful to dis-
cuss the limiting cases of Unstable cavities with in-
finitely large Fresnel numbers, for which analyt-
ical solutions were easilv found. ' ' The unstable
modes were simply the analytical continuation of
the modes from the stable region. ' However, they
do not converge in the transverse directions and
therefore can hardly be regarded as physical so-
lutions.

Another popular approach involves calculating
(by numerical means) the "self-consistent fields"
in very much the same fashion as in a. stable reso-
nator. "' The lowest-order modes are shown to
be more or less uniformly distributed in the cavity
bounded by the mirrors, whereas the modes with
higher-order symmetries are shifted more toward
the mixror edges in the transverse directions.

In both of the approaches mentioned above, the
"modes" have been frequently considered only for
'*empty cavities. " In other words, the effects of
the gain' and losses of the lasing media on the
mode structure has often been neglected. s

In the present paper we suggest and investigate
a different approach to the problem. Instead of

concentrating our attention on the unstable reso-
nator Pe~ se, in Fig. 1(a), we consider an optically
equivalent situation as depicted in Fig. 1(b). ln
this way we shaD investigate the modes of the
equivalent unstable resonator as a mixture of the
known modes of a properly chosen stable reso-
na. tor. '" One advantage of this approach is the
fact that most laser theories are developed in
terms of a mode picture and the effects of the ac-
tive medium may be Included ln the present RQRly-
818 in R nRtux'Rl wRy. It ls perhRps worthwhile to
comment at this point that the xesulti. ng multimode
problem has some elements in common with the
multimode studies of Ref. 9.

As discussed above, the introduction of the con-
cave lenses into marginally stable cavities renders
them unstable. These lenses serve as a, "rnode-
coupling media"; their inverse focal lengths are
related to the coupling parameters. The transition
from stable to unst. able cavities will be seen to
constitute an interesting a,rea of investigation. In
particular, we shall see that the mixing of the
stable cavity modes shows "anomalous behavior"
in the (empty cavity) stable-unstable transition
region. Vfe shall show in a later publication that
resonant gain of the active medium as weD as the
diffraction loss associated with the finite mirrors
can modify this behavior. These effects are con-
veniently handled in the present theory.

Figure 1(a) depicts the type of unstable optical
resonator which we are going to investigate. It
has length D' and is bounded at its two ends by
mirrors M,' and M,' with radius of curvature 8,'
and 8,', respectively. Stability of the resonator is
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The effect of the nonresonant part of the cavity
contribution is to change the velocity of light from
c to v. To treat the resonant lasing contribution,
we can use the simple model of quantum-mechani-
cal two-level atoms interacting with the classical
electromagnetic field. ' The wave equation becomes

E = —p, — „+P„„,

where

f R2 P l
E' pXE inside the lens

=0 otherwise . (2 4)

(b)

FIG. 1. (a) Schematic diagram for an optical resona-
tor. (b) Resonator with a lens inserted is optically
equivalent to the system (a).

characterized by the parameter g' defined as,"
g' = (1 -D'/R', )(1 -D'/R, ') .

4
It is unstable if g' & 1 or g' & 0.

Instead of this resonator, let us consider the
e(luivalent system in Fig. 1(b), which has a con-
cave lens L inserted between the end mirrors M,
and M, . Without the lens, the cavity is chosen to
be stable, i.e.,

(2.la)

0 ~g = (1 -D/R, ) (1 -D/RR) ~ 1 . (2.1b)

For this resonator the modes are well known. "
We will take Rg Ry D =D and assume that L

lies very close to M, . The combination of L and
M is assumed to have an equivalent focal length
equal to that of M,'. This can be realized if we take

I 1 1

f R,' RR' (2.2)

The effect of the electromagnetic field on the
atoms in the cavity as well as in the lens is to pro-
duce the macroscopic polarizations P„and Pl,„, .
The total polarization P is then

P =P lens +Pea~

where f denotes the focal length of the lens L. Un-
der these conditions, the systems in Figs. 1(a) and
1(b) have the same stability parameter g'. They
are both unstable.

To describe the behavior of this lens-resonator
system, we shall take the semiclassical approach.
The electromagnetic field will be treated classical-
ly and its vector character (polarization) will be
ignored for simplicity. The field then obeys the
following wave equation

2 1 82 8 2
—())'+—,—,R (r, f) = —g, — P(r, t) .

Zlr, t) Re(Q Et=(t)et(r)),

R( t) = rR (ge& (t)e t( )) t. r

(2.5)

From the orthogonality condition, the parazial and
the slowly varying approximations, ' the wave equa-
tion of (2.3) is reduced to a set of coupled first-
order time-dependent equations,

—+in& E
&

t = —,
' i v&v2gpP f (2.8)

where

~, =2m'/x, =~k~.

If we further assume that the laser field inside
the cavity consists of mixings of high Q modes,
the diffraction loss can be incorporated into our
equation as phenomenological damping I'&&&:

—+ t te t (( ——,
' t t ) + t'te )R t (t )

where

Q fx (gr 8 gt (t ) + V (LOP g

V~c

(2.7)

X« = (~'/c') d're*, (r) Xu;(r)
lens

(2.8)

and

Xg =Xgg ~ (2.9)

The main object of the present analysis is to
establish the feasibility of handling the unstable
resonator problem with the present multimode ap-
proach We see .that the effect of the active (gain)
medium can be incorporated in a natural way by
well-known techniques. ' The active medium will
be treated in a later paper.

We expand the field and the total polarization in
the "complete orthonormal" set of modes, "(P & (r)),
of the empty stable resonator. " Thus,
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III. MODE COUPLING DUE TQ LENS

8=-mrtr+k[z —(r'/2R)] —(2l+m +1) tan rg,

g =- 2z/krv'„ (3.2)

In this section we shall calculate the mode-cou-
pling matrix elements X &&

of (2.8) due to the pres-
ence of the lens. We then obtain the coupled equa-
tions which will determine the normal modes of the
unstable resonator when loss is neglected. VVe then
specialize to a particular resonator configuration
which will be extensively studied below. VVe shall
take loss into a,ccount in Sec. VI.

We a.ssume mirrors M, and M, and the lens in
I'ig. 1(b) are bounded by paraboloidal surfaces so
that the system is axially symmetric about the z
axis. The normal modes of the stable resonator"
which we use in (2.8) are ($ =— q, I, m )

(r) =[fr/rr(l+~) (g)so']!'s~~'L~(s)e ' 'e"
(3 1)

where

8 = (2/rr) cos '([I —(D/R, )][1—(D/R, )]j'i' (3 .8)

and q, l, m are integers. For typical resonators,
q-= 10' while l and m are small integers.

Once k„ is specified for a given mode, then the
minimum beam width, rrr„(qlm), is determined by"

, [D(R, a+, -D)(R, -D)(R, -D)]'"
(3 .7)

which is the diffraction length for the cavity. Note
that this length is the same for all cavity modes.
It therefore follows that the radius of curvature of
the wavefront (3.4) is mode independent, which
allows the boundary conditions on the mirrors to
be satisfied for all modes within the paraxial ap-
pr ox1matlo n.

By (3.7) and (3.3) we see that the beam size in
the transverse direction is mode dependent. How-
ever, we see that

and LP(s) are associated I.aguerre polynomials.
We also have 2 2 1 + (3.8)

rrr' =au', (I +('), (3 3)

which is the beam "size" at g in the radial direc-
tion. The coordinates are chosen so that rrr g =0)
=zo0. The radius of curvature of the wavefront is

R = (krrr', /2)[1+(']g '. (3.4)

lt is planar (infinite) at g =0 where the beam mini-
mum occurs.

Boundary conditions at the mirror require that
the wave vectors be restricted to the discrete val-

By (3.5) we see that the mode dependence of rv' is
therefore very weak, since q

- 10' for typical

reson-

ator

ss.
For a thin lens, its longitudinal dimension is

negligible compared with its radius of curvature
R~. We then take, for the lens centered at z~,

lt (r)-=X if ~z —z ~ ~

& r'/2fl~

=—0 elsewhere .

k„= (rr/D)[q+ I +-,'-(2l+m +1)e]

=~arm/~r (3.5)

The mode-coupling matrix elements X &&

in (2.8) are found by using (3.9) and
(3.1). Thus, if we let rrr',

r
-=rrr'„, we obtain

xexp{-r. (rr/D)[q' —q+ (I' —l)8]z —2(l' —l) tan '(2z/kw', ))e 's Lr (s) Lr (s). (3.10)

We have carried out the rt& integration and have
used (3.5). We have also neglected r'/2R compared
with z, which can be justified on the basis of the
paraxial approximation and the factor e ' appear-
ing in the integra. nd.

We next assume the lens is sufficiently thin that
w'hen w'e carry out the z integration, all z-depen-
dent terms in (3.10) may be evaluated at z =a~.

f '==x/&g (3.11)

thus remains constant. Then (3.10) becomes

This requires that we let the susceptibility X and
the radius of curvature R~ of the lens both ap-
proach infinity but keep their ratio constant. The
dioptic power f ' of the lens,
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X~I.~m~'
i/2

(I ), (I +m)) exP[-z(w/D)[q' —q+(I' —l)8]z~

-)()' — ))tan ')'~) f dse " "L
, (s)1".,, (s),

0
(3.12)

M) z:=K 0 (I + g ~ ) .

If we next use the recursion relation"

(3.13)

(I+1)L,)„,(s) —(2l+m+1 —s)I.) (s)+ (1+m)1.),(s) =0,

together with the orthogonality relations for I aguerre polynomials, (3.12) reduces to

2

Xq ) ~,)~ =2Z
—

D& exp[-&(&/D)(q' -q)] id„, (2l+m +1) e'&z-5, , „,[(1+1)(l+m+1)]')"
I

8 z5) ) )[l(I+m )] j

(3.14)

1/f = - g, —I)2/Z, , (3.16)

(t)z =mzz8/D —2 ta,n '(2z~/kzv'0) . (3.15)

We therefore see that modes of different m are not
coupled by the lens due to the cylindrical symme-
try. Furthermore, only modes whose l values dif-
fer by +1 are coupled. Also, it should be noted
that corrections to (3.14) are of order (k, ,-k„)/k, , « I .

We next relate the lens susceptibility and radius
of curvature R~ to the focal length f. We have from
geometrical optics" that

where n~ is the index of refraction of the lens (for
a concave lens, Rz & 0). But

llf = -x/&, —

The coupled equations (2.7) now become
($ =-q, I, m) (neglecting loss)

(3.17)

where c~ is the lens dielectric constant since y &1.
Therefore

8
t+'~q~~

2 2

1 — (2I+m+1) Z, (t)= f& -X pe-"«'-&i«~ »(e '&~[(&+1)(I+m+1)]' 'Z, „, (f)
I I

+e'~&[I(l+m )]' 'Z, , (t)] .

(3.18)

where by (3.5) Q»y»gQ (3.21)

= vk„=Q~[q+I + —,
' (2l+m + 1)8],

QD=trv/D . (3.19)

Since modes of different m are uncoupled, we
shall consider only the axially symmetric mode
for which m =0 in the remainder of this paper and
shall therefore omit the index m from all future
equations for simplicity.

We next note that

then we may neglect the coupling between different
longitudinal modes. (It can be shown from a per-
turbation treatment of the coupled equations that
there is very little coupling for modes of different
q by the lens. )

We next assume that the lowest-order transverse
mode (l =0, m =0) with fixed longitudinal mode num-
ber gp is in exact resonanc e with the las ing mole-
cules so that

q+1 l q t D& q 1+1 q E D (3.20) (Oo:Q~ (qo + 1 + p 8 ):=co o . (3.22a)

so that the longitudinal modes are farther apart in
frequency than the transverse modes. If we as-
sume that the linewidth y of the active medium is
large compared with the frequency spacing of the
transverse modes and narrower than that between
different axial modes, i.e.,

co, , =co, +l8Qqo'

If we then let

z, , (t) =e-'"'z, (t),

the coupled equations (3.18) reduce to

(3.22b)

(3.23)
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[-i ttf/dt)+l —(4E) '(2l+1)]A, = —(4E) '[e '~ 1(l +1)A,+, +e'8&lA, ,], (3.24)

where we have introduced the dimensionless time id 8 ——Q D (if8 + 1) . (3.37)

v=0 8t

and the mode-coupling parameter

(3.25) By (2.1), (2.2), (3.17), and (3.34), the stability
parameter for the unstable resonator is

X I OO

R~D Q~ 8
(3.26)

g' =1 —(D/R. )(1 -E-') .

Therefore,

(3.38)

If we use (3.19) and (3.13), E ' may be written as

(3.27)

From this and (3.7), we see that E ' is mode in-
dependent. Also by (3.13) and (3.19), (3.26) may
be written as

0 0=——1+
'N

O 2@1

Rz D &ceo

xQD go+ 1+ (I+~ )8 (3.28)

In the remainder of this paper we shall restrict
ourselves for simplicity to mirrors such that

R, -~ (planar),

R, »D.
From (2.1b), we have for this case that

@=1-D/R, = 1,

(3.29)

(3.30)

so the resonator without the lens is near being un-
stable.

From (3.29) and (3.6), we see for this case that

= —(4E) '((1+1)A,„,+/A, ,],
(3.40)

where E ' is given by (3.34). The field over the
lens, by (2.5), (3.23), (3.1), and (3.2), becomes

Ez (x, t) = e ' 0' g A, (t )it), (s ),
1=0

where

it), (s) =e'~'L, (s),-s = 2r'/tv', .

(3.41)

(3.42)

The constants have been incorporated into the A,
It should be noted that the case we study is that of
a "short" cavity, but this restriction is by no
means necessary.

0&E& 1 (unstable), 3.39

stable .
&p

The coupled equations (3.24) thus reduce to

Ct—) „—+l —(4F) '(2)+1))A,

8-=(2/. )( /R, )"«1.
Also by (3.7) we see that

k giv2 = , I= (DR )"-
By (3.31), (3.32), and (3.27) it follows that

E '=—|)t/R~)R, (1 +zz/DR, ) .

(3.31)

(3.32)

(3.33)

IV. NORMAL MODES FOR LOSSLESS UNSTABLE
RESONATOR

We neglect diffraction loss and look for solutions
of (3.40) of the form

(t) e-ix&B eix Q8Dt B
where the B, are time independent. Then (3.40) re-
duces to the eigenvalue equation

However, the lens is located near M„so that

z~ =D, and by (3.29—) it follows that

E-'=- ()t/R, )R, . (3.34)

E 'Q88= 2vg/R~)(R2/D)'~

Also, by (3.15) with z~ =D, it follows that

= 7iz 8/D —2 tan ' (2z /ku ', )«1

(3.35)

(3.36)

By a similar argument, since go= 10', it follows
from (3.28) that

Q((-A. +l')6, r, +(4E) '[ (2l'+1)6, , , -
r'

+1'6, , „,+ (l'+1)5., . .])B,, =0.

(4.2)

Since the matrix is Hermitian, the eigenvalues are
real. If we let A.

' be the A;th eigenvalue which we
order in increasing values of A., and B, be the kth
eigenvector, then the field across the lens by (3.41)
and (4.1) is for mode k

so e "~i -=1.
If we use (3.31), the resonant frequency (3.22)

reduces to where

(&, t) =e '"~' PB",P, (s) =e'"«'U, (~), (4.3-)
g=0
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Q„=—QD (qo + 1 + OX~) (4.4)

are the eigenfrequencies.
There are two limiting cases for which the eigen-

value problem and field distribution over the lens
may be solved exactly. Although these cases have
limited physical significance, they provide some
useful insight into the behavior of the unstable
resonator modes. z, (rt)=,f dr G('g (rt), ,

0
(4.14)

Laguerre polynomials and (4.10). If we use (3.42),
(3.35), and (3.32), this may be written as

(r t) G(r)e-IQJ [01 r/( -2/D)j-f (4.13)

In order to relate this to normal modes, we
write it as

Case 1: E —0 pens removed) . (4.5) where

This corresponds to the removal of the lens
(X-0) as may be seen from (3.34). From (4.2) it
follows that

and

(4.15)

yk

and by (4.4), the eigenfre(luencies are

Q), =QD[go+ 1 + [)l] = M

(4.6)

(4.7)

which are the original stable-resonator normal-
mode frequencies as expected.

Case 2: E '»I (geometrical optics limit) .

For this case we have by (3.34) and (3.17)
E-' = (-f)-'Z„ (4 .8)

and we may realize it by keeping (-f) fixed and
letting 8,» (-f). Thus mirror M, is also approx-
imately planar in this case. In this limit, we may
neglect l compared with (4E) '(2l+1) in (3.40) so
we have

—i ' = (2l+1)A, —(l+1)A„,—IA.
. dA,

d7
(4.9)

where we have let

7 =(4E) 'r =(4E) 'Q Ht=—2v()(/It )(8,/D)' 't

and we have used (3.35).
A solution of (4.9) is

(4.10)

A, (t) = ds' e""P, (s')G(s'), (4.11)

00

=s-'"0' ds' e""G(s')5 (s' —s)
0

=G(r) exp[-i[+, —s(4E) 'Qvt)]tj. (4.12)

We have used the completeness relation for

where G(s) is an arbitrary function of s. To show

this we substitute (4.11) into (4.9) and use the re-
cursion relation (3.14) with m =0. If we use (4.11)
in (3.41), we obtain the field distribution across
the lens

00 00

E~(r, t) =e '"o' ds'e""G(s') g p, (s')Q, (s)
0 E=O

Q„i=+,[I -r "/(-2fD)] . (4.16)

The modes E~ (r, t) have a simple geometrical-
optics interpretation. They represent light rays
parallel to the g axis bouncing back and forth be-
tween two plane-parallel mirrors, since in our
result we may let F '-~. The variation in fre-
quency (u,[1 -r'/(-2fD)] in the radial direction is
the result of small increases in the optical path
due to the presence of the concave lens whose
thickness is proportional to r'. The frequency is
downshifted for concave lens (-2f& 0) and upshifted
for convex (-2f &0).

These modes obviously do not represent physical
solutions in real unstable resonators since by
(4.15) they have zero radial width, whereas it is
known experimentally that the radial width in un-
stable resonators is very large. They arose be-
cause we neglected the l term. If one studies the
derivation of (3.40), it arose from the term
co, , —~, = lQDO, which is the transverse mode fre-
quency. When we neglect it, we are assuming com-
plete degeneracy in the transverse modes. This
term is necessary in order to take into account
transverse frequency shifts to give a finite beam
width. This point will be discussed again quantita-
tively in Sec. VIII when we obtain asymptotic solu-
tions when l-~ and then let F '-~ and obtain
physically meaningful solutions. This points up the
care that must be exercised in the order in which
the limits l- ~ and F '- are taken.

V. NUMERICAL RESULTS FOR LOSSLESS
UNSTABLE RESONATORS

The normal-mode frequencies Qk and the coeffi-
cients B', in (4.3) and (4.4) are found by solving the
eigenvalue problem (4.2) by computer. We there-
fore must restrict l to a finite number of modes,
l . The choice of l depends on how fast the series
in (4.3) converges.

In Fig. 2 we show the numerically computed
eigenvalues )(, from (4.2) with ten modes coupled,
i.e., l =10. They are plotted as a function of F '.
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FIG. 2. Dependence of the eigenvalues A. on the sta-
bility parameter & ~: Ten modes are coupled, i.e., I,~
=10, in the numerical calculations for ~ ~ = 0, 0.4, 0.8,
1.0, 1.2, 1.6, 2, 2.4, 2.8. Special attention is called to
the transition region E ~ -1.
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FIG. 3. Behaviors of the eigenvalues A. in the severely
unstable region I ~ —: The vertical scale here is I,
the inverse of that in Fig. 2.

For each value of E ', there are ten eigenvalues.
The modes are stable for 0 +E ' &1 and unstable
for E '& 1. In order better to display the results
in the strongly unstable limit, F '-~, the same
results are shown in Fig. 3 with the vertical scale
changed to E. The horizontal axis is measured in
units of E '.

%e see that all the eigenvalues A.
~ are positive

for stable resonators, whereas they all become
negative in the strongly unstable (E-0) region.
Some eigenvalues (beginning with the lowest) start
becoming negative in the transition region, E =1,
as seen in Fig. 2.

The singular feature of the transition region is
more evident if we look at the field distribution
for the new eigenmodes. Figure 4 illustrates how
the lowest-order mode (smallest X'), which is pure
Gaussian for E ' =0 (lens absent), changes near
the transition region E = 1. The field amplitude
is plotted as a function of the normalized radius,

/

/ /

/
I/&

I
I I

10

I"IG. 4. Mode pattern for the lowest eigenfrequency
mode: Vertical axis is the field amplitude Uo(r), hori-
zontal axis denotes the normalized radial distance x
=V 2x//M&p and the third dimension indicates the stability
parameter E ~. Solid curves, / =10; dashed curves,
l =20. Abrupt changes in mode pattern near the transi-
tionl ~ =1 is observed.

r =W2r/w, The s.olid curves are plotted for l = l0
and the dashed Curves for l =20.

%e observe that, whereas the mode is essentially
confined near the axis of the resonator, i.e., near
r =0, for E '&1, it flattens out as we approach the
marginally unstable case E ' =1. The only reason
the field pattern stabilizes as F '- ~ and that it
peaks about a finite r is that we have taken a finite
number of modes. From Fig. 2, we see that it
peaks at a bigger radius for l =20 than for l =10 ~

In the limit l - , the mode will no longer be con-
fined to any finite region in an unstable resonator.
This is just what one would expect from simple
geometric optics.

To demonstrate further the effect of finite l on
the eigenvalues, X~, we plot in Fig. 5 the eigenval-
ue variation as a function of l for the limiting
case F '-~. As l increases by unity, the addi-
tional eigenvalue which appears is always more
negative than the last and as l -~, the last eigen-
value approaches negative infinity. The first one
to appear when l =1 approaches zero as l -~.
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VI. EFFECT OF FINITE MIRROR SIZE

So far we have neglected the finite transverse
dimensions of the resonator which accounts for
large diffraction loss in the unstable resonator.
We can account for the finite mirror size by the
artifice of assuming that the lens contains absorb-
ing molecules, mainly in their ground state, which
are uniformly distributed. Since the lens thickness
varies quadratically with radius, the loss in-
creases quadratically with radius if we assume X

is constant, but complex, over the lens:

X =X +i X = X (I +ir) .

The coupled equations (3.40) then become

(6.1)

-i —+l —(4E) '(I+ir)(2l+1) A
d7

Also, the spacing between the eigenvalues diminish
as l -~.

use a plausibility argument based on geometrical
optics.

If we again consider the case E '» 1 and omit
the lone I term in (6.2), we see that the solution
found in (4.7)-(4.17) is still valid if we replace E
by E '(I+ir) so that

where

/y th —& ~ tP -t' I(-&fD)j- t/7'g(r) (6.6)

I/v„(r) =[&@,r'/( 2fD-)]r . (6.6)

As we saw earlier, this solution corresponds to a
light ray traveling parallel to the axis and a dis-
tance x from it. The effect of the lens now not only
causes a frequency shift, but also introduces a de-
cay due to the presence of loss.

The effective radius is now defined as the maxi-
mum radius beyond which the decay time is shorter
than the time it takes the light ray to go one round
trip within the cavity, i.e.,

= —(4E) '(1 +il )[(I+1)A„,+lA, ,],
(6.2)

where now by (3.34)

E-'-=(X'/ft, )ft, . (6.3)

The loss is seen not only to cause each mode to
decay but also to affect their mixing.

This model replaces the sharp edges by tapered
edges. The finite size of resonators is usually
characterized by a Fresnel number'

r, (a,ff) =2D/v.

From (6.6) it follows that

k,a', ff I'/(-f ) =1,
where

k, =(u, /v =2~/X, .
If we use (6.4), we have the relation

r = (-f )/2mN~D

(6 7)

(6.9)

N~ =a, , /A. OD, (6.4)

where a,ff is the effective radius of the mirrors
and A. 0 is the fundamental mode wavelength. We
would like to relate a.ff to our model. We shall

= (EIN, )(a,/2~D) . (6.10)

Obviously, the limit of large Fresnel number
(N~-~) and/or strong coupling (E-0) will corre-
spond to the small-loss limit (I"-0).

VII. NUMERICAL RESULTS FOR LOSSY CASE

—15 —10
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. 13

-12
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1
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The eigenvalue problem (4.2) is modified so that
(4E) '- (4E) '(1+iI") and the eigenvalues X~ will be
complex when loss is included. We have obtained
numerical solutions by diagonalizing the matrix in
(4.2) with loss included.

In Figs. 6(a)-6(j), real and imaginary parts of
the eigenvalues are plotted along the horizontal
and vertical axes, respectively. In each plane cor-
responding to fixed values of I' and F, the circles
indicate the eigei'values when l =10, the triangles
when l =-20, and the squares when l =40.

The weak coupling limit, E '- 0, are shown in

Fig. 6(a). By inspection, one finds that in this
case

ir(2k+ I) + ~ ~ ~ . (7.1)
FIG. 5. Eigenvalues in the limit E ~ ~: The effects

of the finite number / taken in the numerical calculation
is shown here with the vertical axis denoting the chang-
ing values of l .

Figs. 6(b)-6(d) are for the marginally stable
case of E ' =1, while Figs. 6(e)-6(h) are for the

unstable case with E ' =2. For sufficiently large
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FIG. 6. Effects of the diffractional loss on the eigenvalues A,: The horizontal and vertical axes denote, respectively,
the real and imaginary parts of the complex eigenvalues A, . The numerical results are shown as circles, L =10; tri-
angles, i~=20; squares, i~=40. (a) Stable region with weak coupling E ~ «1, I'=0.1. (b)-(d) Marginal ease E =1:
(b) 1=10, (c~ 1=10, (d) I'=1. (e)-(h) Qase in the unstable regionE =2: (e) I"=0.1, (f) I'=0.5, (g) I'=1, (h) I'=g.
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I", there are two types of eigenvalues. " Type-I is
independent of E as seen by the fact that circles,
triangles, and squares coincide. They have rela-
tively small real and imaginary parts and thus lie
close to the origin. On the other hand, type-II
eigenvalues depend very strongly on l . They tend
to have large values of either the real and/or
imaginary parts as l increases.

Field distributions as a function of x for each A~

are evaluated according to (4.3). The lowest- as
well as the next-to-lowest-order mode of type I
are plottai in Figs. 7 and 8, respectively. (The
modes are ordered here according to the modulus
of their eigenvalues, from small to large. ) The
vertical axis denotes the field amplitude, ~U~(r) ~,

whereas the abscissa is r =&2r/w, . The results
for E =10 and 20 are indicated by solid and dashed
lines, respectively. They are virtually indistin-
guishable except for small 1'. This case will be
discussed extensively later.

The amplitude dependence on r for the lowest-
order modes is Gaussian-like. The width narrows
and thus it peaks more toward the axis ~ =0 as I'
increases. Similar behavior also occurs for the
next-to-1owest-order modes, although the ampli-
tude has two peaks rather than just one.

The fact that these type-I modes are virtually the
same for l =10 and 20 is also clearly illustrated
in Figs. 9and10. The complex vectors B', and B', are
shown for the lowest- and the next-to-lowest-order

I,O-
U 0

0.5-

l0-
U

0.5-

2 0-
I

I I
I

I I
I
I I

I I
I I

I

I I
I I
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I I~l I I
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I L I I~i
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I I
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I II
I

I I
I I
I I—~

6

FIG. 8. Field patterns for the next to the lowest-order
mode in the marginal case I" ~ =1. Solid lines, i~=10;
dashed lines, l =20.

eigensolutions, respectively. Their amplitude de-
cays almost exponentially for large values of E,

and contributions from modes with l greater than
10 are negligible. Furthermore, the angle between
successive complex vectors B,'s are almost con-
stant. For the particular case chosen in Figs. 9
and 10 (F ' =1 and 1" =1), these angles are almost
all equal to ~m.

A satisfactory explanation of this observed be-

I.O

0.5

0 I I
I I

I II

/
I

I I

I I

I S
I

I I

I I
I It

I I
I

I
I I

I l
I I

-0,

ImBL
l1

--0.5

0.5
= ReBL

.
/0 --0.5

FIG. 7. Lowest-order mode patterns in the marginal
ease&' =1: The field amplitudes, Uo(&), are shown
for various loss parameters, I'=10 2, 10 ~, 1, 10. Solid
curves, l =10; dashed curves, l =20. Except for the
case I =0, the results for l =10 and 20 are almost in-
distinguishable here.

L=O
---

I

FIG. 9. Components B, for the lowest mode are shown
in the complex plane.
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ImBL

---05

FIG. 10. Components B~& for the next to the lowest-
order mode are shown in the complex B plane.

havior will not be attempted until analytic solutions
are obtained in Sec. VIII.

To compare the field distributions of the type-II
modes with those in Figs. 7 and 8, we also show
the results for the two modes with the highest loss
(denoted by HL) and the highest frequency (denoted
by HF) in Figs. 11 and 12, respectively. As ex-

FIG. 11. Mode patterns for the type-II HL mode (with
the highest loss) in the marginal case & ~ =1: Field
amplitudes are plotted for various losses; T =10 10
1. Solid curves, &~=10; dashed curves, i~=20.

FIG. 12. Mode patterns for the type-II HF mode (with

the highest frequency) in the marginal case + ~ =1.

pected, the high-loss modes are sharply peaked
and far away from the axis r =0, while the high-
frequency (low-loss) modes are sharply peaked
and close to the axis. The limitation is only due

to the finite number / of modes that are taken into
account in the numerical calculation. This trend
is clearly brought out by these figures as / in-
creases from 10 to 20.

In contrast to Figs. 9 and 10, the fact that type-
II modes never stabilize no matter how big E be-
comes is illustrated in Figs. 13 and 14. The com-
plex values of B,'s are depicted for the HL and

HF modes for / =10 and l =20. In both the high-
loss and the high-frequency modes, dominant con-
tributions come from a few modes near /=10 when

I =10 or near /=20 when L = 20. It is thus clear
that the corresponding summation for the spatial
mode function will not converge as I tends to in-
finity.

We contend that the type-I modes represent the
only real physical solutions. We argue as follows.

One common property of all the type-II modes is
that the amplitude of their eigenvalue A~ tends to
infinity as E tends to infinity. Necessarily, they
must have infimte real parts and/or infinite imagi-
nary parts. When the imaginary part of the eigen-
value is very large, the eigenvalue is discarded
on the grounds that th threshold is too unrealisti-
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ImB Im BL

(a)

ImB
Im

= Re8L

FIG. 13. Components (B,}for the HL mode are shown
in the complex plane for I" «=1 and for (a) l =10, (b)
t =20.

FIG. 14. Components {B,}for the HF mode are shown
in the complex B-plane for & ~ =1 and for (a) E =10, (b)
l~ =20.

cally high ever to excite them into lasing. When
the real part is too big, its mode frequency is too
far off the resonant center frequency cv, for it to
lase.

So far, we have been concentrating on the mar-
ginally stable case E=1. In fact, the same discus-
sion applies as well to any unstable case with
0 & E& 1. For example, eigenvalues are plott-
ecl ill Flg. 6(c) fol' E =0.5. Again, two distinct
types of modes are observed. Type-I modes still
have eigenvalues close to the origin. Although the
relative positions of the type-II eigenvalues seem
to shift to the left as a whole, the condition that

"o

I
I

I
I

I
t

I
I

I
I

1

as I—
for these modes still prevails. Plots similar to
Figs. 11-14 could be drawn also for I' = 0.5 and
would show essentially the same features. They
represent unphysical ill-defined solutions and will
again be discarded.

We draw in Figs. 15 and 16 the amplitude plots
of the field distribution for the case Il =0.5 in the
same manner as in Figs. 7 and S. The lowest- and

I
I

I
I

1

I
I

I

FIG. 15. Lowest-order mode pattern for the unstable
easel =2 with 7=0.5, 1, 5.
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complex plots shown in Fig. 6, further confirm our
plausibility argument. The type-I modes have
small absolute values of A,, and are well defined.

For these reasons it is not surprising that the
following analytic solutions we obtain in the asymp-
totic limit are in very good agreement with more
exact numerical results.

4 lo
A. Asymptotic condition and

lowest-order mode

log

I
I

I
I

I
I

I
I

I
I

In the present paper our approach is to construct
unstable (as well as stable) resonator solutions as
mixings of well-known stable resonator modes, as
given in (4.3) when X~ is complex. For well-de-
fined physical solutions, it is necessary that the
series

FIG. 16. Next to the lowest-order mode pattern for
the unstable caseE ~=2, with I'=0.5, 1, 5.

next-to-lowest-order type-I modes show essential-
ly the same features as in the case I' =1.

VIII. ASYMPTOTIC THEORY OF STRONG

COUPLING

In this section we obtain analytic solutions in the
asymptotic limit of l and A. small and finite.
These solutions are in excellent agreement with
the previous numerical calculations. This should
not be unexpected for the following reasons.

Our resonator is tuned so that its symmetric qp
mode is in resonance with the active medium, i.e.,
e, =A~(q, +1). The most important modes in the
combined lens-resonator system so far as lasing
is concerned are those which have low losses and
whose frequencies are near ~p These are just the
type-I modes discussed earlier whose eigenvalues
A. are small. The existence of such modes is ex-
pected in the unstable region when loss is included.
The loss increases in the radial direction and tends
to compensate the divergent effects due to the con-
cave lens and thus confine the low-loss modes near
the axis.

We have shown earlier in the geometrical optics
limiting case (F '-~), that the "effective optical
path" parallel to the g axis increases monotonical-
ly as r' as we move away from the axis. We there-
fore expect that low-loss modes which are con-
fined near the axis will have frequencies close to

wp, whereas modes far from the axis will have
frequencies too far from ~p to lase.

The numerical results of Sec. VII, especially the

(8.1)

converge. A necessary condition for convergence
is that

IBll-o as I--.
The B~ obey the difference eigenvalue equation

(-A, +l)B, = (4F) '(1+Zr)[(2l+I)B, —(I+1)B„,

(8.3)

Since we are obviously interested only in physical
solutions, the corresponding eigenvalues X„must
all be finite. Therefore for large enough values of
l we may neglect A. . The asymptotic conditions are

I»1, /» lA, l. (8.4)

To avoid confusion, since the B,'s which satisfy
(8.3) will be independent of A. and therefore of any
particular mode k, we let

Cg asl- (8.5)

(8.8)

as l»1, where

and

p = (p'+ir)/(I +sr)

p' =1 —2E.

(8.V)

(8.8)

In terms of P', the stability conditions now become

(For a given F and I, all modes have same asymp-
totic behavior. ) In this limit, (8.3) reduces to the
simple difference equation



MULTIMODE APPROACH TO THE PHYSICS OF UNSTABLE. . .

Stable: P' & 1 convex lens(&& 0),
P'& —1 concave lens (»0),

Unstable —1& P' & —1,
Marginally stable: P' = —1,
Severly unstable limit: P' =1

To solve (8.6), we let

C, = C,n' —= C, exp[(- 1/l'+ i2ii/P')l]

in (8.6). Thus, we obtain the two solutions

n~=P+(P' —1)'" .

(8.9)

(8.10)

(8.11)

U(r) [C /(1 n)] e-s/ es ti/(7l i)

=[C,i(l-n)]e ""
where

(8.16)

We have used (3.42) and (8.10). Since l'&0 for
physical solutions, we see that modes for which
l & I' do not contribute much to the field amplitude.
Thus &' is the effective number of stable modes
needed to describe the asymptotic field, ~' - ~,ff.
Since I nl& 1, the series in (8.15) may be summed,
if we use the well-known generating function for
Laguerre polynomials. " Thus,

By (8.2), the physical solution reiluires that

Icil-0 as l-". (8.12)

By (8.10) and (8.11), this reiluires that" the choice
of g, is determined by

~"/~'. =-(1-n)/(1+n) . (8.17)

The field is therefore seen to be quasi-Gaussian
with ~" as the complex effective beam width.
From this and (8.10) we have that

or

lnl&1

l'= —1/Re(inn) & 0 .

(8.13)

(8.14)

1-e "' +2ie ' ' sin(2ii/P')
1+e '" —e '" 2cos(2/i/P')

(8.18)
B. Field amplitude in asymptotic limit

In the limit of large l and finite small ~'s, the
field amplitude (8.1) becomes in this limiting case

U(r) = P Cl4'l(s) =Ciie "' P n Li(s)
0 0

Since the lowest-order mode has the smallest
eigenvalue, we expect that (8.16) will be a good ap-
proximation to the lowest-order mode. We may
obtain its eigenvalue as follows.

If we let

C e-s/2 P e1'
i/i2ewl /P-'L

0

(8.15)
B, =BE (8.19)

in (8.3) and sum both sides over all l, we obtain

Zi" Din' —(=4&) '(1+if')n 'Zi"=a[(2l+1)n - (i +1)n'-l]n'
rg=o~

(8.20)

Since I nl& 1, all terms may be summed exactly so
that we find after minor algebra that

The unstable region, by (8.9), corresponds to P'
& 1. In this event

z, =n/(1-n) . (8.21) n, = P'+ (1iP' )"', - (8.26)

The mode frequency is thus

Qo = ~0+ 1/Qii Re[n/(1 —n) ]

and the corresponding linewidth is

y, =-en, lm[n/(1-n)] .
We proceed to study several special cases.

1. No loss (I'=0)

When I'=0, we have by (8.7) and (8.8)

P-P'=1 —2E,
while by (8.11)

P& g (PI2 1)l/2

(8.22)

(8.23)

(8.24)

(8.25)

so that

In, l =1. (8.27)

(8.28)

and the asymptotic expansion for the field (8.15)
becomes

U(r) = Coe '/2 P L, (s) = C05(s),
t=o

which is the same as t;ie lcwest-order mode &'=0

(8.29)

However, for physical solutions to exist, by (8.13),
I nl& 1. We conclude that when no loss is present,
no physical solutions exist in the unstable region.

In particular, the severely unstable limit yields,
with P'=1(F ~ ~)
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of Eq. (4.15) obtained previously.
For the marginally stable case P'= —1 (i.e.,

E '=],), the field (8.15) becomes

small loss I". When E '=1, by (8.8), P'= —1. When
I'« I, we have by (8.7)

(8.40)

U(r)=C, e "'g (- I)'I, (&) .
l=0

From the generating function

P y'L, (s) =(I-S) 'e'"~ ",
l=o

if we let y= —1+&, we have for «&1

P (- I)'I ~(s) =-'e"' .
l=o

Thus,

U(r) —const.

(8.30)

(8.31)

(8.32)

(8.33)

and by (8.11)

q, =——1+ (21")'"+i(2I')'"+0(I') (8.41)

The condition (8.13) demands q be discarded.
Thus,

e-(I/l ') (I-i)—i(+ ——e

where

1/l' = 2v/P' = (21')"'.

(8.42)

(8.43)

U(r) = C,/2e-" '", (8.44)

The asymptotic field distribution (8.16) becomes

where the "correlation length" l' is

(8.36)

The numerical solutions of Sec. V show that the
lowest-order Gaussian mode does flatten out as
the transition point (E ' = 1, ) is approached. The
trend, as seen from the l =10, 20, and 40 results.
points toward uniformity over all space as I„-~,
in agreement with (8.23).

Let us study the field as we approach the transi-
tion region from the stable side. We therefore let

(8.34)

where f is small and positive. Then, by (8.25) we
have

rj ='q+ --P +(P 1)&i2 — ] + (2f)&i2 y g(f) (8 35)

for the physically real mode. We may write this

where the effective beam width is by (8.18)

(w, /u), )' = 2 1
' = (2l')"' = —(w;/w, )'. (8.45)

If we compare (8.44) with the numerica. l results
shown in Fig. 7, we see that this asymptotic solu-
tion describes the lowest-order mode very well
indeed. First of all, the Gaussian amplitude de-
pendence is apparent for all I . Secondly, the
width narrows as I' increases as seen in Fig. 7.
This trend is predicted by (8.45), although it was
derived for small I'.

It is interesting to point out that although the
number of modes coupled in the numerical solu-
tions is not large (I =10, 20, 40), the features of
the lowest-order mode agree well with the asymp-
totic predictions.

We may estimate the amount of loss needed in
the numerical calculations in order for the type-I
modes to stabilize when l is fixed. We require
that

I'= 1/(2f)"' (8.37)

and it diverges as we approach the transition re-
gion (f —0).

The field (8.16) then yields the asymptotic dis-
tribution

which by (8.33) requires that

r»1/21.',
U(x)-Co/2e "i"" (8.38) or for l =10, I"»5&&10 '.

(w„/w, )' = 21' = (2/e )"' . (8.39)

Z. Marginally stable case zvitk loss

I et us consider the large Fresnel number limit
in which N~» 1, which by (6.10) corresponds to

The numerical results shown in Fig. 4 indicate the
onset of such behavior. The lack of complete
agreement is limited by the finite l used in the
computations. The beam width becomes very
broad in agreement with experiment.

e -g w/2 e- j./l '

where

I' = -[in (W2 —I)"']-'.
Thus, according to (8.10)

e-l/l e-f(I/2) l
0

(8.46)

(8.47)

(8.48)

The generalization for arbitrary I' is straight-
forward. For simplicity, we consider only the
case of I'=1.

With E ' = 1 and I' = 1, we have that P' = —1, J3 = i
Thus,
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This is in agreement with Fig. 9, which shows a
monotonic decrease of the modulus of the succes-
sive complex vectors B,' as we increase l and the
rotation in steps of -~7t of the phase.

p = (p'+ zr)/(I+ sr),
so that by (8.11)

(8.49)

p
r li2-

@,—= 1+I', [P'ai (1 —P' )"'] (8.50)
+ pI

This is valid if

«& II+P'I. (8.51)

Notice that this condition cannot be satisfied when
P'= —1. Since ~q, ~

=—1+I'[(1—P')(1+P')]'~', we
must discard q, and take

3. I.imit of lavage Fxesnel number

We next consider the general asymptotic solu-
tions in the entire unstable range (-1& p'& 1) when

For small I", by (8.7) we have

C. Higher-order modes in asymptotic limit

It is relevant for mode control considerations in
practical problems to determine the frequences as
well as the decay constants for other low-order
modes. We need to pursue the theory beyond the
lowest order. " For this purpose, let us consider
solutions of (8.3) of the form

Bi =B
e(-z/l '+27t/P') l

l

If we use this in (8.3), we obtain

(8.60)

[A +1+2Pl] b, +lb, ,q '+(l+1)qb„, =0, (8.61)

where

In the strong-coupling limit, P'=1 —e„, where
O'. Then

I'-I' '(2/e„)"', 2m/P'-(2e„)'",
( )

(w„/w, )'- I '(2e„)'", (w, /w, )'- —(e„/2)"'.
Again, we see l' is very large.

e-1/l ef2%/P (8.52)
A = 4FX/(1+ iI') (8.62)

where

l'—= I' '[('+P')/('- P')]"'

2./P = - ta.—[(I P")'"-/P']
(8.53)

and P is given by (8.7).
For simplicity let us only consider the low-loss

case I'«1 near the transition point for which

(8.54)

and P'0 —1.
The asymptotic field pattern (8.16) becomes

U„=[C,/(1 —q)] e

P'= -I+a', (8.63)

where e'-0' and I"«e'. In this case, we have by
(8.58)

where by (8.18)

(w„/w, )'= l'[1 —cos(2m/p')]

and

1 —cos(2m/p')
w, sin(2m/P')

(8.55)

(8.56)

q—= -e-',
where

5 = I/l' i [(2v/p—') —m]

= I'(2/ )e'~' i( 2)e'-'« I

since I'«e'. Also

(8.64)

(8.65)

We have used the fact that l'» 1, which follows
from (8.53). Thus, the beam width is large com-
pared with svo in agreement with experiment.

We consider first the limit P' = —1 + e ', where
e'- O'. To be consistent with (8.51), we also re-
quire that

(8.57)

p = (p'+ zr)/(I+ zi ) = —1.
Therefore, (8.61) becomes

(8.66)

(6 +1 —2l)b, + lb, ,[l —5]+(l+1)b„,[1+5]=0.

(8.67)

As 1-, we have

By Eqs. (8.53)-(8.56), we see that the correlation
length /' and the beam width decrease as transition
point is approached. On the other hand, the pitch
P' and se,' increase. That is, as e'- 0, c'» I':

B-q = —e-6t

so by (8.60)

b, qr - const.

(8.68)

(8.69)

I'- I" '(e''/2)'", 27r/P'- (2E'')"'+r

(w /w )'- (2e')"'/I' (w /w )'- (2/e')"'

(8.58)

We are interested in the limiting case in which
l- ~, 6- 0, so that

(8.70)

becomes a continuous variable. Also
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b, -b(y), b, „-b(y+ 5); (8.71) IX. SUMMARY

and we assume b(y) is slowly varying:

(6 d/dy)" b(y)» (5 d/dy)" "b(y) . (8.72)

In this way, we convert the difference equation
(8.67) to the differential equation

db
(

)db A+2 —6
dy' dy 5

(8.73)

for terms of lowest order in 5. We have expanded
b (y +5) by a Taylor series up to second order.
If we let u=2y, this is the confluent hypergeomet-
ric equation. " The solution which is finite for
y=0 is

b(y) =C,F,(a; b; 2y),

where

(8.74)

a=-(A+2 —6)/25, b= 1.
For y- ~, by (8.68)-(8.71), we have

b(y) e ' - const

Since"

(8.75)

(8.76)

r(b) .. . . r(b) . ,+ I()&
(8.77)

We can satisfy (8.66) if r(a) =~ or

Unlike much of the previous work on unstable
resonator systems, the effects of the active lasing
medium may be naturally included in our approach,
and will be treated in detail in a forthcoming paper.
In the present paper we concentrate on properties
of the unstable resonator from our multimode ap-
proach.

Symmetry considerations enable us to reduce a
complicated three-dimensional problem to a much
simpler one-dimensional linear -chain problem,
which we are able to solve analytically in the as-
ymptotic limit. Our asymptotic theory predicts
the behavior of the lowest-loss resonant modes in
unstable resonators and is supported by numerical
computations.

In the stable-unstable transition region, as well
as in the entire unstable region, the lowest-order
mode pattern retains its Gaussian form when the
losses are included (to account for finite mirrors)
in the model. Without losses, the beam width
diverges as the transition point (F = 1) is ap-
proached from the stable region as indicated by
Eq. (8.39). With the loss included, the beam width
will be finite. For small fixed losses, it decreases
as the transition point is approached from the un-

a= —k (8.78) ~ I I I ~ I I I I I I ~ I I I I l~ [OI 5 IO

where k is an integer. In this case, b(y) reduces
to Laguerre polynomials. By (8.75) and (8.76), we
obtain the eigenvalues

A„= —2+6(2k+I) = 4FX /(1+t'r), (8.79)

where we used (8.62). The mode eigenfrequencies
are

Q~ =e, +AD &Red„

= (u, +0 8[——'+ (2k + 1)r(2/e')'~'/4], (8.80)

since I" '=+1. The mode linewidth is

(0) F «I

t&t t t t t
Io

(b) F = I, I"=0
I.

P

i
5')

& IO( C.
C'

(c) F = I, I"&O

y. =-~.~Im~.
(8.81)

ik ik ik lk ik )k ik ik ik ik ik dk ik lk ik ik

= n, e(2k+1) (2e')'~'/4

It is interesting to note that the linewidth is in-
dependent of the loss 1 and the Fresnel number
N~. This is consistent with the geometrical optics
arguments of Siegman. '

It is also interesting to point out that the lowest
eigenvalue obtained in (8.11),

X =q/(I -q), (8.82)

agrees with (8.80) and (8.81) for k=0. This is seen
if we use (8.64) and (8.65) with 5«1.

0 5 10

(d) F '=~

FIG. 17. Pictorial representations of the asymptotic
solutions in different regions of stability: (a) Stable
region with IE

I
«1. Short-range order prevails.

(b) Marginal ease without loss (P ~ =1, 1"=0). Anti-
ferromagnetie type of order occurs. (c) Marginal case
with loss (+ ~ =1, I'&0). The effects of the loss are
twofold: One is to render the correlation length I' finite;
the other is to cause a twist with pitch P'. (d) Strong-
coupling limit + ~ . Ferromagnetic type of ordering
results.
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stable side as shown in Eq. (8.58). It again de-
creases towards severely unstable region as il-
lustrated by the strong-coupling result of Eq.
(8.59).

We find the following physical picture for what
happens when a resonator goes unstable useful
(see Fig. 17).

We regard the modes in any resonator, stable
or unstable, as mixings of the well-known modes in
some appropriately chosen stable resonator, each
of which is represented by a fixed site, equally
spaced on a straight line. The complex mixing
coefficient (Bf ) of the mode is represented by a
"spin" on that site, free to rotate in the plane
perpendicular to the line when the interaction is
turned off (F '=0). When the interaction, which
involves nearest neighbors only, is turned on, the
spins mill couple as in a. linear chain and behave
cooperatively. In the stable region, there exists
only short-range order and it is described by a
small correlation length. On the other hand, long-

range order involving a large number of spins
occurs near the transition point (marginally sta-
ble), an antiferromagnetic type of ordering, with

neighboring spins aligned antiparallel, occurs.
[See Eq. (8.80).] The effect of diffraction loss is
to render the correlation length finite and to cause
a "twist" of the spins, relative to one another, all
the way down the linear chain.

In the limit of very severe instability (F '-~),
a ferromagnetic type of ordering, with all spins
aligned, results [see Eq. (8.28)] and the correla-
tion length becomes large again.
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