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Laser intracavity absorption
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The characteristics of a laser with an intracavity absorption cell have been calculated for the case
in which the gain atoms are homogeneously broadened and the absorber atoms are inhomogeneously
broadened. The sensitivity of the laser intensity to the density of absorbers is determined.

I. INTRODUCTION

Recently, there has been interest in using laser
intracavity absorption to detect small quantities of
atoms or molecules. ' '' Typically such experi-
ments consist of a laser cavity containing a gain
cell (a dye cell) and an absorption cell filled with
the sample gas. The laser frequency is tuned
through one or more resonance frequencies of the
sample atoms, and the laser output intensity de-
creases over the absorption line in a way which
depends upon the density of the sample atoms. Be-
cause the laser intensity is much more dependent
on intracavity losses than on extracavity ones,
this method promises increased sensitivity over
standard techniques.

The purpose of the present paper is to treat the
above experiment for the single-mode case, in
which the gain atoms are assumed to be ho mo-
geneously broadened and the absorbers inhomo-
geneously broadened. The paper begins by de-
scribing a single-mode dye laser with no absorber
and continues to describe the properties of the ab-
sorber and then to obtain the output with both gain
atoms and absorbers present. The method is
semlc las sic al.

II. LASER WITHOUT ABSORPTION CELL

%e start with the problem of the gain atom. As-
sume it has two levels, a (upper) and b (lower),
with widths y, and y„respectively. Atoms are
excited to state i at a rate A, (number/cm' sec).
The laser light is characterized by an electric
field in the x direction of magnitude E cos(vt+ rp)
&&sinKz, where z is measured along the laser axis.
If a and 5 are the amplitudes of the states, and

p gQ 2)('. then th e time de
pendent Schrodinger equation gives'

p,„.= ~, —y,p„—Be[(ip,*/8) E sin(Kz )e""+~~p„],

p„=&, —y,p„+Re[(if1, /0)E sin(Kz)e'("" ~~
p „],

ii., = -(y., +i~.,)p.,
—(ip,E/28)e '("' ~' sin(Kz)(p„—p„),

where y, „=2(y, +y, ) and p, —= e 1 y,*xy2dv.
The solution to these equations is found by a

Fourier-series method. ' lt is

where N„=)(,,/y, —A, /y, .is the unperturbed inver-
sion density, and the B„'s are determined by re-
cursion relations. 4 Here

where

2

1+8o.,G, + (1+8(2,G,)

1 ab
1 8ir2y y ) 1 (p )2~ 2

The induced dipole moment per unit volume is

P(z, i}= 2 Be(p,P ~1) .

To compute the output, one needs

P(Z) = (2/Z) j )'(z, t) sis()cz)zh
0

= B [(C+iS)e '(u' )+]

where L is the cavity length. The output is ob-
tained from the following equation, ' balancing gain
and loss:

S/E = e,/Q, -
where Q is the cavity "Q". Equations (4), (6), and
(7) give

)p (2EX., f
1 Qs

ab

where f, is the length of the gain cell. Equations
(8) and (9) give

zz)z) (h — 1
0

ab

where (N, 2)(z is that value of N, 2 for which n, =0
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at v=a„. The solution of Eq. (10) for n, is

Bn,G, = —,'(4u —1 —v8u+1 ),
where M=Gy'ply For some purposes, it is useful
to approximate Eq. (11) by

6n G =u —1 (u~1)

=0 (u «I). (12)

III. LASER WITH INTERNAL ABSORPTION CELL

Now consider the inhomogeneously broadened
absorber atoms. Assume they have two levels, c
(upper) and d(lower), with widths y, and y„re-
spectively. The equations for the density matrix
components are the same here as Eqs. (1)—(3) ex-
cept for the fact that they now apply in the rest
frame of the moving atom, so that z is now time
dependent. The solution for S in this case is'

where

Re(B,R,) W(v, ) dv, ,
YgQ —oo

(13)

1 1
0

V —(d~g —+Vg + lf~g V —(d~g + @V

This is accurate to better than 10% for u smaller
than 3, and very good near threshold. From Eq.
(12) the maximum value of n„ for v = +„, is (n, )„,,„„
=~(n, —1). n, goes to zero at u =1 or (v —~„)/y„
=a(n, —1)' '. The full width at half-maximum is
[2(n, —1)] '. Curves of 6n, as a function of tuning
are shown in Fig. 1. The solid curves are derived
from Eq. (11), the dashed ones from Eq. (12).

where the quantities here are the same as those
previously defined for the gain atoms with 1, a,
and b replaced by 2, c, and d. Equation (15) is
correct oely for

2

n,'« . " (1+2n, ) .
~C~

For the case v = ~,~, the quantity [1/(1+2n, ) ']
&[(1+n, G, )/(1+ 2n, G, )]is replaced by [1/(1+4n, )'~'].

In order to calculate the output of a laser with
both a gain cell and an absorber, we add Eqs. (9)
and (15) to obtain Sr= S, +S,. Then, from the equa-
tion Sr/E= -e,/Q results

2n, G, k 1+A.n, G2
1+8n,G, +(1+Bn,G, )

' (1+2An, )"' I+2An, G,

=1. (16)
Here A. = n, /n» A. determines how much the ab-
sorbers are saturated for a given gain saturation
parameter. Also A,'=he ', where

(
—~„)

P', ' (&)' 'y, ~I

In Eq. (16), (Ã„)~ is the previously defined thresh-
old value of N„ for the case k =0. If g = (absorption
coefficient) && (abeorytiea length), then

and

W(v, ) dv, = e

the Maxwellian velocity distribution. Here 8, is
found from the recursion relations„' but, unlike the
zero-velocity case, there is no simple exact ex-
pression for &,. For very low intensities or satu-
ration parameters (n), one may use B, =—1
—2aReR, . This is equivalent to the "third-order"
result of Lamb' and is good up to n = 0.05. Another
approximation is

1
1+2~BeR, ' (14)

This is good to & 10% up to n-1 and will be used
here for now in order to get an analytic solution.

In the Doppler limit (y,„/Ku «1), Re(BOJt, ),
where B, is given by Eq. (14), can be integrated
over the velocity distribution to yield

—(P. l'&& ( )' '
& (,g .)

Mg

1 1+n2G~
(1+2n,)~' 1+2n,G, '

Q-2
(v-~, b)/Y

FIG. 1. 6&&, preyortional to the power output of a
single-mode hceaagemeeusly broadened laser, as a func-
tion of cavity tunieg. Solid curve, from Eq. I'll); dashed
curve, froxn Eq. (12).
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n, k 1+AnG,
1 +6+, 1 +A. n, 1 +2k, e,G,

(18)

Since we have assumed y,~ «ZM (Doppler limit), we
can consider the region away from the central nar-
row resonance by taking the limit (v —u„)/y, ~- ~
or G, -O. With these approximations, Eq. (18)
gives +, as the solution to a quadratic equation
which is readily solved for each individual case.
In particular, for A. =6, a, =-,'(n, —1 —k), as shown
in Fig. 3. This expression is larger than the A. =O

solution by a factor 1+k. Therefore, if +, =0 for
some y, increasing A. from 0 to 6 only influences

(o,),„ is defined analogously to (N~),„; it is the
threshold gain.

Equation (16) can be used to express o, as a
function of n„k, y, and X. The simplest case is
that for which X-0 (no absorber saturation). Then
n, is given by Eq. (11) or Eq. (12) with

u =n, G/(I +k) .

For the experiments in question, the effective
homogeneous width of the dye is large compared to
the Doppler width of the absorber so that, in the
region of the absorption, G, can be replaced by 1.
Then Eq. (12) gives

6 o.', —= [n, /(1+k)] —1.
Figure 2 shows 6&, as a function of y for n, =2 and
for several values of k. Only half of each curve has
been shown since they are symmetrical about y = 0.

If A. is different from zero, there is a central
resonance of width near 2y,„, which will be dis-
cussed later. The effect of absorber saturation
on the rest of the absorption curve will be con-
sidered now. For the case n, & 2 and A. «6, one can
expand the square roots in Eq. (16) to obtain

the midpoints of the curve of +, vs y, not the end
points.

If A. is greater than about 6, one can find ny as
a function of k graphically by plotting

k

(1 + 2g~ )~~2

as functions of n, and finding their intersection for
various values of k. The results of such a deter-
mination, for n, =2, are shown in Fig. 4(a), It can
be shown that if A, is «12, n, is zero for k =n, —1
= 1; for a & 12 (and n, = 2), the value of k needed to
make o., zero is [(A. +12)/(48K)'~'] &1. Thus, for
A. &12, saturation of the absorber affects the end
point as well as the midpoints of the curve of Qy

vs y. This effect is shown in Fig. 4(b), where in-
tensity-vs-tuning curves are plotted for A, =60 and
A. =O. The A. =60 curves are derived from Fig. 4(a).

In order to calculate the shape of the narrow cen-
tral resonance, we use Eq. (18) with G, &0. [For
more accurate results, one could solve Eq. (16)
numerically, with the appropriate correction at
line center. ] Because we assumed the Doppler
limit, y is taken to be zero over the widths of the
resonances. Figure 5 shows the shapes of the
resonances for n, =2, for several values of k, and
for the cases A. =6 and A, =3. One can see that in
the middle range of k, where the peaks are largest,
the heights of the A. =3 peaks are about half the
heights of the A. =6 peaks. It can be shown, using
Eq. (18), that 6[n, (0) —o.,(~)]—= 0.025K. at k.= 0.5.
The heights of the resonances increase over the
range k=0 to about k=0.8 and then decrease to
zero at k =1. The widths are approximately given
by 2[1+A o.,(~)] over the range k = 0.2-0.8 and fall
below that as k approaches 1.

I o0—
i 0—

.8

.6 eal

0
I.O 1.5

g
= (v —cu d)/KU
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FIG. 2. 6m& as a function of cavity tuning with an ab-
sorber present for A, =O and n& =2.

FIG. 3. Effect of absorber saturation on the intensity-
vs-tuning curves. Dashed curves, A, =6; solid curves,
A, = 0. n

&
= 2 for all.
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FIG. 6. 6n&E& vsy, where'& —-e, for the case

n(=2, A, =O.

FIG. 4. (a) 6a«as a function ofk for A, =O, 6, and 60,
and n&

——2. (b) 6&& vs y for n&
——2, k=1 and 10. Solid

curves, A, =O; dashed curves, A. =60.

IV. DETECTION WITH EXTERNAL CELL

0— k=o

.9—

The calculation so far has completed the deriva-
tion Gf the power output vs tuning of a single-mode
laser consisting of homogeneously broadened gain
atoms and inhomogeneously broadened absorption

atoms. In order to detect small quantities of ab-
sorber atoms, one can tune the laser over the ab-
sorption curve and measure the decrease in power
output as a function of tuning. One very sensitive
way of measuring this decrease is to use an exter-
nal cell filled with the same atoms as the internal
absorption cell and measure the fluorescence from
the external cell. The detected intensity is ob-
tained by multiplying n, (y), where y = (v —e,„)/Ku,
by the external absorber detection efficiency, a
function of y. If the region of the external cell
viewed by the fluorescence detector is l„and the
absorption length leading up to that region is l,',

k=0.2

7—

Ga!
5—

k =0.4

4 k=0.6

.3—

~ 2 k =O. S

k =0,95T ! I I

-6 -4 -2 0 2 4 6

FIG. 5. Narrow central resonances for n&
——2 and

several values of k. Solid curves, A, =6; dashed curves,
A. =3.
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-3 -2 —
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ln k

FIG. 7. lnf; vs ink, where f; is proportional to the
integrated detector signal.
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then the detection efficiency is proportional to

(e(- 1 0/10) ae
) (1 e-ae

where o is the absorption coefficient times l, .
For l,'=0 and v «1, +=or '. Figure 6 shows
6 a.,e ', where +, is calculated for n, = 2, A. = 0.
This is proportional to the intensity which would
be measured by the fluorescence detector if a
single-mode laser were scanned in frequency. The
integrated fluorescence intensity is also a sensi-
tive measure of the absorber density. Figure 7
shows 1nf, vs 1nk, where f, is the integrated detec-
tor signal:

E=e~2
1

2 2e-10e (1 e-lae e
)

e-e (1 e-(0.1) e
)e

For i =1-3, n, was calculated for n] 2 I, 0 A
fourth case, f„was calculated using +, and the
case n, = 2, A. = 6, for ~,. The integrations were
performed numerically.

In case 1, f, is reduced to 1/e for ink = —0.4 or
k =0.67. Since k = (o,)/(o, ),„, this is for &r, = (0.67)
&&(o,),„. If (o,),„ is determined by the mirror re-
flectivity, it can be typically of the order of 0.01,
so that the signal is reduced to 1/e for o, =0.0067.
This can be compared with the sensitivity of a
conventional absorption experiment in which I
= fae '0, so that the signal falls by 1/e at o, = 1.
The improvement in the present case is thus of the
order of a factor of 150. Even greater enhance-
ment is achieved in the multimode case.'
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