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Theory of coherent two-photon resonance
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A theory of coherent two-photon resonance is developed by applying a canonical transfor-
mation on the Heisenberg equation of atomic motion, The theory leads both to the optical
Hloch equation and the second-order induced polarization. which drives the classical Max-
well's equation. The expressions for the Habi frequency and the induced polarization are
given explicitly for two-photon absorption and Haman effect. The results are applied to co-
herent steady-state propagation, and two kinds of pulses are derived for different-frequency
two-pboton absorb ptlon, including the RtoLQ3.c frequency shift.

I. INTRGDUCTIGN

Recent progress in the study of coherent reso-
nant interaction between light and a collection
of atoms has led to the observations of sUch novel
effects as self-induced transparency, photon echo,
superradiance, optical nutation, optical free in-
duction. decay, and optical adiabatic inversion.
Experimental and theoretical works have been
reviewed in recent books. ' However, these works
have been limited almost exclusively to one-photon-
resonance cases. Belenov and Poluektov' first
discussed the coherent two-photon absorption, but
a related experiment appeared only recently„'
Nore recently, a new' experiment has been re-
ported in. a. resonant three-level system. '

In a. previous paper, ' the author examined the
validity of the two-level approximation for atoms
in the coherent resonant interaction and showed
that other nonresonant energy levels yield Stark-
like secular shifts of two energy levels under con-
sideration, , which may be important for two-photon
resonance. In this paper, we shall discuss co-
herent two-photon two-level resonance using the
same canonical transformation of Ref. 5. The
main improvements over the previous paper are
the following three points.

First, the Heisenberg equation is used for the
description of atoms instead of the Schrodinger
equation. For two-level-resonance phenomena,
the Heisenberg method is much more straight-
forward. Secondly, the second-order induced
polarizations which drive Maxwell's equation are
given explicitly for two-photon absorption and the
Haman effect. Lastly, the results are appl. ied to
coherent two-photon-resonance propagation. effect.

II. CANGNICAL TRANSFGRMATIGN

The time-development of any operator A which
is time dependent only implicitly may be described
by the Heisenberg equati. on

where X is the one-atom Hamiltonian which con-
sists of the unperturbed part and the perturbation

Here d is the electric dipole-moment operator and
E the classical radiation field,

E = 2$ e cos(p, (p =- wt —kg + y.

The unit polarization vector g, amplitude e,
phases ~0 and P, and wave vector k are introduced
in the usual way.

Although we are interested in the case where
the field frequency is almost resonant with an
atomic transition frequency 0, the real atom
has many energy levels in addition to the resonant
two levels assumed nondegenerate. Since two-
photon resonance occurs inevitably through virtual
nonresonant states, they must be taken into account
from the onset. The perturbation Hamiltonian
therefore gives rise to both resonant and nonreso-
nant second-order processes. 'This situation. is
3nconven)elItt for treat Ling resonance phenomena.
Thus we search for some canonical transformation
which could eliminate the nonresonant interaction.
from the (revised) perturbation Hamiltonian and
renormalize it into the unperturbed Hamiltonian.
Then the Pauli-spin-operator formalism for the
"two-t.evel" atom would be applied straightfor-
wardly to the revised Hamiltonian.

The canonical transformation in radiation theory
is well known. for quantum-electrodynamic self-
energy renormalization. In oux case the self-
energy-type Stark shift is the nonresonant process
which should be renormalized to the unperturbed
atomic energy. After renormalization, only reso-
nant processes have to be considered. We borrow
the physical spirit from Heitler, ' but the calcula-
tion is much simpler than quantum-electrodynamic
theory because we treat the field classically. Com-
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pared with usual time-dependent perturbation theo-
ry, our approach has the advantage of systematic
treatment of resonance phenomena of any kind and
order.

The canonical transformation on A may be writ-
ten as

A=e 'Ae'

where S is a Hermitian operator. It is easy to
show that A obeys the equation

ifz = -[K,A],

K=e ' Xe' +I—dS
dt

We now determine the explicit matrix form of S
so that the revised Hamiltonian K is divided defi-
nitely into the resonant and nonresonant parts.
According to the above consideration, we rewrite
the original Hamiltonian as

connecting the two resonant states ~+) and
~
-).

The degree of resonance condition depends on the
problem. We here require only vaguely that the
off-resonance ~ = +0 — must be small enough
compared with the transition frequency nearest
to (do, and denote the critical off-resonance by
5(d.

The requirement

(12)

on Eq. (10b) and the assumption that the eigenvalue
variation is negligibly small compared with optical
energy yield the result

() sd „c e '+ g~&

(d„+(d +„—(d

where d =d E and +„=+„-(d . For resonance,
we require

s&'„&=0,

in order to leave only the resonant term in K"',
X =X( ) X(') X("
X(') =II+II,$&

X"' =-d E

X(2)

(Va)

(Vb)

(Vc)

(Vd)

K+ = -2d+ 6 cosEp.

Next in K"', -X"' is chosen to be the Stark shift
of the unperturbed energy,

where II~ is the energy-shift operator. Since we

are interested in two-photon effects, it is sufficient
to take II~ to second order in. E. Now X"' is re-
p'arded as the new zeroth-order Hamiltonian.

In terms of this new order, operators 8 and K
are expanded,

(H, )..=-X&'& =--,'z([S& & X& &]

I(&d', —&d')
'

The requirement

K&2„)=0, i i
(0 „[—(0,

/

& 5(0

(16)

(&) g$(2) + ~ 2 ~

K =K(0) K") K(2'

Using the expansion

(8a)

(8b)
on Eq. (10c) implies that

dS"'
2
[$(2) +(0)] 1 i [$ (1) 3Q(1)] 0 (18)

K(o) X(0)

K"' =&")—z[$"',K")]+lz dS")/dt

K 2 =X(2 —i[S(1 X(&)] —i[S&2) K(0)]

L[$(1) [$(1) $Q(0)] ]+@dS(2&/dt

The eigenstate of K"' is chosen as the base,

K&0)~m)=lcd ~m),

(10a)

(10b)

(10c)

which is also the eigenstate of the original unper-
turbed Hamiltonian. ' The eigenvalue k may be
time dependent when the system is subjected to
optical pulses.

We choose 8"' and 8"' so that the new perturba-
tion Hamiltonians K"' and K"' contain only terms

e (s Xe&s =-X- z[S,X]--,'[$,[S,X]]+~ ~,
substituting Eqs. (V) and (8) into (6), and equating
the terms of the same order, we have the relations

where , is a, two-photon combination frequency
and [ ]„,means that only the optical-frequency
term should be taken in the bracket. In deriving
Eq. (18) we used the relations K"' =0, [S&"dS&'/)dt]

=0, and Eq. (16). For resonance, we require

S&'„'=0,
i

[(0 „[—(dJ&5(0

in order to leave only the resonant term in K"',
K(2& 1i[$&1& $(&&1&]

(a) Two-photon absorption, (00= 2(0~,

K&2& [R+e 2( qI y R ezi & L]e 2 (21)

From Eq. (20), expressions for the new inter-
action Hamiltoniav K+" are explicitly calculated
and given below for typical three cases. Two kinds
of field are defined by

Er, .s =2~ eI. s cos&pr„,s~ pr, .s =~~,st —~~,ss+ 4,s.
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(22)

(b) Two-photon absorption, &oo=&o~+&vs, R~ =Rs

K"' =-[(R~+Rs)e "~&'~s'

+(R~+Rs)e«&I.'&s&]e e

dg2 2 (2)0'~ ——K~ v3 cos(II)~ q

dg3 2 (2) (2)= —K~ a2cosy, ——K~ a, sing, .

(30b)

(30c)

(c) Raman effect, &do = &o~ —a&s, R~ =Rs,

KP'=-[(R~+Rs)e &&~r ~s&+(R yR')e'&&s, ~s&]e e

Taking the expectations s&
——(o&), transforming

s,. to the Bloch-vector variables

Here

g d, d„

(23) s, =u cosy, —v sing„

S2 =Q Sing~+ V COSCp~,

Ss = 28)

(31a)

(slb)

(31c )

(24)
and using the rotating-wave approximation, we

have finally

In summary, the revised Hamiltonian is divided
into the unperturbed Hamiltonian including the
energy shift and the resonant perturbation Hamil-
tonian, which is written for two-photon resonance
as

du/dt = -Q, v,

dv/dt =Qou+Qw,

K = -Qvq

where

(32a)

(sab)

(32c)

(0) +K(2) (as) Q -(d+ —&0 —Q =6 + &~E'~ + uses —
Q~q (32d)

c os+ —gK& s j.ny

&p =apr. or &pi+ps (26)

III. OPTICAL BLOCH EQUATION

Since the perturbation Hamiltonian now connects

only two resonant levels, it is sufficient to take

the Hamiltonian in the form

K =-,'5(d+ g, +K„")0,cosy, +K,"'o, sincp„ (27}

where o& (i =1, 2, 3) is the Pauli spin operator and

the new transition frequency is written using

Eq (16)

where K"' is given by Eqs. (21)-(23) according
to the problem of interest. Since K"' is in general
imaginary, we put

Q = - (K"' +K~&s')/ah. (32e)

The optical Bloch equation (32) is the analog of

the usual one-photon-resonance equation. Essen-
tial differences are that 0 is now second order in

the field amplitude and , in 00 includes the
atomic frequency shift. Using Eqs. (32e), (26),
(25), and (21)-(23), we can obtain the expressions
for 0 explicitly for the following two cases:
(a) Two-photon absorption, &o, =2&@~,

Q =2R~es~/It. (33a)

Q =4R~e~es/h (ssb}

IV. INDUCED POLARIZATION

(b) Two-photon absorption, ~, =&d~+&vs, and Raman

effect %0 COL S

CO+ —Qr
2 (28a.) The optical Bloch equation which describes the

atomic motion with two-photon resonance has been

derived in Sec. III. In this section we give the

expressions for the atomic two-photon polariza-
tion which drives Maxwell's equation

(28b)

A comparison of Eqs. (28b) and (24) shows that
S+L ~ is comparable with RL and therefore cannot
be neglected for two-photon resonance.

Using the commutation relation

()2E g2 ()2E 4g ()2P
2 2 gt2 2 gt2

(s4}

where q is the refractive index of the host medium.

The induced polarization may be written in the

usual manner as
oxo =2io, o =(o„o„o,), (29} P = &&,

' P =N[Tr(pd}],„, (ss)
we can derive immediately the Heisenberg equa-
tions for spin operators,

da, 2
o2+

@
"I v3sxny= -CO K(2)

where N is the atomic density, p the density ma-

trix, and [ ].,„represents the average over the

atomic resonance -frequency distribution. Us ing

the transformed operators introduced in Sec. II,
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p =-,' Trp+-,'(II) ~ II =-,'+-,'s ~ o, (37)

whele s =(o) and the relation Trp =I is used. In

a similar way, the operator d is written

d =2 Trl+ pD' Gq (38)

P can be rewritten

P =N[Tr (Pd) ],„.
We now calculate explicitly the induced polariza-
tion (36) for two-photon resonance using the result
of Sec. II.

The two-level density matrix p can be written
using the Pauli spin operator as'

(c) Raman effect, Id, =~~ —mls, R~ =Rs,

Pl =N[(RlesII —sIInlel K +sknltl )2 cosyl
—(Rl,e s v)2 Slnyl ] dv,

Ps =N [(Rl ere —sknsesK + sIInses)2 cosys

+ (Riel v)2 slnys] uv . (45e)

P"' =N(U cosy —V siny),

the slowly-varying Maxwell's equations yield

(46)

These induced polarizations are coupled with
Maxwell's equation (34). When P is written as the
sum of the in-phase and in-quadrature components
as

where

D = (2dq s, -2d+ I, dq+ —d ) (39)
B C 'g . %Pl'

+ —C— V,Bz c c'g

&p +~ ~a =2~~a

it is easy to prove the relation

P =N[-, Trd+-, s D]. .

(40)

Since we are interested in two-photon resonance,
it is sufficient to take

and the subscripts R and I mean the real and imag-
inary parts. Using the operator identity

8 p II ~ NII&v
+ —

Q = —— U, -
Bz c c'g6

The optical Bloch equation (32) and Maxwell's
equation (47), with the induced polarization (45)
and (46), are the fundamentals for treating coher-
ent two-photon-resonance propagation. Sec. V
deals with this propagation effect in steady state.

V. PVLSE PROPAGATION IN STEADY STATE

d=e "de" =d —i[S"',d] (42)

The first term on the right-hand side contributes
to the usual one-photon-resonance polarization

P"' =Nd+ [s,]„=Nd+ [ucosy —v siny],„. (43}

The matrix elements of the second term, -i[S"',d],
can be obtained in a similar way with the calcula-
tions of Eq. (16) for (Hs)„and Eq. (20) for K',".
For example, the first term in the brackets in

Eq. (41) is calculated as

~s Tl"d = -s 1 Tx'[S, d] =knl sel s cosyl s (44)

The combined optical Bloch and Maxwell's equa-
tions are very complicated, especially for two-
photon resonance. Even for one-photon resonance,
analytic solutions are possible only for some
special cases such as steady-state propagation. '
We show below that the steady-state Pale propa-
gation for two-photon absorption allows an analytic
solution. Only the sharp-line case is discussed
for simplicity.

Comparing Eqs. (45} and (46b}—(46e), we have
from Eqs. (4'7) the field equations

where nz s is given in Eq. (28b). The calculation
of the second term in Eq. (41) is straightforward
but rather involved. We therefore give only the
final results, after transforming s, to the Bloch-
vector variables according to Eq. (31), for the
three cases
(a) Two-photon absorption, &do = 2&v~,

Pp' =N[(Rz, u ——,'II n~lv +2' n~)2@~ cosy~

—(R~ v )2e~ siny~].,„.
(b) Two-photon absorption, Id, =~~+&us, R~ =Rs,

Pr =N [(Rl as@ —2Knl El Iv + sSnl ez }2cosyl

Be q ~ 2m&LX
+ —E = --—Rc U

C
L

Cg

B6~ 'tl~ ~ 2p(d~+
+ —6 Re -U

C
S C'g L I

8 Ql, Ill 2IIId~N
+ Ql, = — (Rl E sly

—s fIn~ e ~ Iv
BZ C C'gL 6L

+,Iin, e, )

sos q, ~ 2II&v N +
+ —Ps -—-— (Rl el@ —s/fn e IU

BZ C

+2Nnses).

(48C)

—(Rl e s v)2 Slnyl ],„1 (45b)

—(Riel v)2 Slnys ]~„. (45c)

Ps =N [(Rl elQ —senses K + 2IInses)2 cosys

In Eq. (48b), + and —correspond to two-photon
absorption and Baman effect, respectively. Steady-
state equations are given as usual by the trans-
formation, Se/ss - -e/Vo, where the differentia-
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tion is with respect to the locaI time,

g = t s/-V„ (49)
and Vp is the constant velocity. Introducing con-
stants

which means the relation

&2L(p —&) = const.

For a single pulse we have clearly

Q =2m~ NR+V /zl (c —zl V ),

we have from Eq. (48)

EL QLes v,

&s =~seLV i

(5o)

(51a)

(51b) u=-BCI V, (6Oa)

(59)

That is, the phase modulation exactly cancels the
off resonance in steady state. Then the Bloch
equations (32) become the more transparent forms

e

QL =QL —u—

0

@e

CM~ kA~

(Slc)

(sld)

Equations (51a) and (5lb) imaze8'iately lead to
the relation

v =++Esu+C~z

K= -CE~V.

(60b)

(6Oc)

(e'L) = ~sr(c, + C,esr —C,e4L)'z', (61a)

It is easy to derive the differential equation for
eL from Eqs. (54a) and (60a) to (60c). The result
iS

Qser +QL~s =Qs~~ro+QL~ss. (52) where

Qs&L=QL s. (53)

With the relation (53), Maxwell's equations (51)
reduce to simpler expressions

~L ~QLQs ~Lv ~ (54a)

where ~~p and E$p are the initial VRku@$ Ild Bluest

be zero for single pulses. We here~er eoNLfine

our consideration to the experimentally woet in-
teresting case of Pulse propagation. 5 ix clearly
seen from Eq. (52) that the steady-state stggle-
pulse solution does. not exist for the Ramel effect.
For two-photon absorption

Ci =4QLQs vo,

C, =-4v'QLQs (Bu~+Cut ),

C =J3'+C',3

(61b}

(61c)

(61d)

4C, exp[-~C, (g —g,)]
[exp[-MC, (C —&,)] —C,j'+4C,C, ' (62a)

whsre pp 18 the 1nteg ration constant. Th is ex-
presses a pulse with "area"

and up, v„avp are the initial values for u, v, so.
Equation (81a) has two types of solution, (a) v, w0,

LQL IQL
QL =VQLQs u — + W+ (54b)

=
1

&L df = ~ n'+2 tan
OO 3 j. 3

(62l )

(54c)

(55a)

(55b)0 =Ca~~,

hzrsQs kzs~sQs
fs = vQLQs u — + zv +

I I
as well as the components Qo [Eq. (32al)] and 0
[Eq. (33b)] of the torque vector

Qo=b, —Q+Besr,

(b) v, =o,

c,/c,
1+ (c'/4c )(g - g )' '

This is a Lorentzian pulse with area

(63a)

(63b)

where

8 = nL + zzsQs /QL C = (4RL/I) vQs/QL . (55c)

Comparison of Eqs. (56) and (54a) gives

4&L =2(& —4)&L, (57)

Adding Eqs. (54b) and (54c), differentiating and
inserting the expressions (32a} and (32c) for u and
uz with (55), we have

Q = QL+ Qs = 24QLQs (4 Q)v. (56)

The second type of solution (63) with u, =0 and

wp = -1 covers previous results. When 1. =~
and QL =Qs, o.'L = o.'s, it agrees with the equal-
frequency exact-resonance case of Belenov and
Poluektov. ' Tan-no et al. ' obtained a Lorentzian
pulse for different-frequency two-photon absorp-
tion neglecting the atomic frequency shift. Our
result shows that the steady-state Lorentzian pulse
is still valid with the frequency shift. The effect
of the frequency shift is seen to be to loosen the
pulse and decrease the pulse area.
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