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Starting with a 1s vacancy in the neon atom, Auger rates are calculated for transitions to the final
I.S-coupled states of Ne++. Electron correlations are found to have a significant effect on these rates.
Although the configuration mixing of Ne++ (1s)'(2s)'(2p)' S and (1s)'(2p)' 'S is important, good
results are only obtained by also considering the other correlation effects representing mixing with other
configurations. The ratios of calculated Auger rates relative to the 1s-2s2s 'S rate are in close agree-
ment with experiment. However, the calculated absolute rates are all higher than the experimental val-
ues of Mehlhorn, Stalherm, and Verbeek by factors ranging from 1.4 to 1.5.

I. INTRODUCTION

Recently there has been considerable interest in
studying the Auger electrons emitted in heavy
particle collisions with neon. ' ' The positions
and intensities of the many resulting Auger lines
reveal much information about the initial colli-
sion. Theoretical calculations' ' carried out for
many different initial vacancy configurations can
be of considerable aid in understanding the experi-
mental data. In such calculations it is important
to be able to estimate the accuracy of the calcu-
lated results; and it is desirable, therefore, to
be able to carry out calculations which agree with
known experimental data.

Reviews of Auger-effect experiments and calcu-
lations have been given by Bambynek et al. ' and by
Burhop and Asaad. As discussed by Burhop and
Asaad, for light elements relative intensities cal-
culated theoretically are in poor agreement with
the experimental results. Recently, Bhalla has
calculated the relative intensities of the KLL lines
of Ne using Hartree-Slater orbitals and including
configuration mixing between the final Ne" states,
1s'2p 'S and 1s'2s'2p' 'S. The importance of in-
cluding the mixing of these two configurations was
first pointed out by Asaad' who found that inclu-
sion of this mixing considerably improved the
agreement between theory and experiment of ele-
ments of Z ranging from 12 to 36. For Ne when
LS coupling is used, there are five different lines
corresponding to final states: (1s)'(2p)' 'S,
(1s)'(2s)(2P)' 'P, (1s)'(2s)(2P)' 'P, (1s)'(2s)'(2P)~ 'S,
and (1s)'(2s)'(2P)4 'D. The configuration mixing of
(1s)'(2P)' 'S and (1s)'(2s)'(2P)' 'S can only directly
affect the intensities of these two lines. In calcula-
ting the ratios of the intensities for the other four
lines to the 1s'2P' 'S line, Bhalla' found consider-
able improvement over the direct Hartree-Slater
results when this configuration mixing was in-
cluded. However, the ratio of the (1s)'(2s)'(2p)' 'S
intensity to that of (1s)'(2P)' 'S was still found to

be rather poor, being 0.99 as compared with 1.55
and 1.5 from two different experiments. "'" Also,
Bhalla' did not report absolute intensities, although
absolute intensities had been measured for all five
lines in the interesting experiment of Mehlhorn,
Stalherm, and Verbeek. "

In this work the absolute intensities are calcu-
lated for all five lines, first using the Hartree-
Fock approximation and then including correlation
effects by use of many-body perturbation
theory. " " We have used LS coupling and neg-
lected spin-orbit effects. In a previous paper"
we have discussed the use of many-body theory
for calculating Auger rates. The total K Auger
rate for Ne' was calculated to lowest order (es-
sentially in the Hartree-Pock approximation), and
a rough estimate of some higher-order terms was
given. However, as shown in this paper, the
treatment of the higher-order terms was not ade-
quate. Also, the previous work did not specifically
list the separate contributions to the five distinct
lines in LS coupling. In this paper these deficien-
cies are corrected, and comparison is made with
the experimental results of Mehlhorn et al."

II. THEORY

In Ref. 15 it was shown that the Auger rate is
proportional to the imaginary part of the energy
when only Coulomb interactions are included and
denominators D are replaced by D+ip, where p-0.
The denominators are treated according to

(D+iq) i = PD ' —is6(D),

where I' represents principal-value integration.
In calculating the Auger rate by diagrammatic per-
turbation theory, ""we may either calculate the
imaginary parts of all energy diagrams for Ne'
with a 1s vacancy or we may calculate the diagrams
for the Auger transition matrix elements. These
diagrams are obtained by separating the energy
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diagrams into two parts where a vanishing denom-
inator is treated according to the —im5(D) of Eq.
(1). We then consider only that part of the energy
diagram which is either above or below the singu-
larity. The total Auger rate is proportional to the
absolute square of the sum of the matrix element
diagrams. There are, however, small normaliza-
tion corrections" which are treated separately.
This treatment is completely analogous to that for
obtaining photoionization cross sections where we
consider the sum of "open" diagrams contributing
to the many-particle transition matrix element
from the initial state to the continuum. "

In Fig. 1 are shown the diagrams corresponding
to the two lowest orders of perturbation theory.
Note that certain exchange diagrams have not been
explicitly drawn. For example, in Fig. 1(d) the
bottom matrix element (1sk'~v ~Pr) may be re-
placed by (k'1s

~
v ~Pr). To obtain a given many-

particle Auger matrix element, one can project
the determinantal state corresponding to a given
diagram onto the given final (LS-coupled) many-
particle state. Alternatively, one can calculate
the many-particle Auger matrix element in the
Hartree-Fock (HF) approximation, obtaining a
linear combination of Coulomb matrix elements
involving single -particle orbitals. Corrections to
these Coulomb matrix elements are obtained by
calculating the higher-order diagrams which have
the same external hole and particle lines as the
first-order Coulomb (HF) matrix elements. The
diagrams are essentially equivalent to configura-
tion mixing by Rayleigh-Schrodinger perturbation
theory. We interpret diagrams (b), (c), (d), and
(i) as corresponding to configuration mixing (or
correlations) in the final state where the initial
1s vacancy is filled. Diagrams (e), (f), (g), and

(h) correspond to configuration mixing in the ini-
tial state where there is a 1s vacancy.

but this effect was found to be rather small. Also,
there were only small changes in the matrix ele-
ments when the initial-state 1s orbital was used
rather than the 1s orbital of the final state. The
overlap matrix element (2Pf~ 2Pi), where 2Pi is
the HF 2P orbital of the initial configuration
ls(2s)'(2P)' and 2Pf is the HF 2P orbital of the
final configuration (1s)'(2P)', is 0.999286. Al-
though the overlap factor of the full matrix ele-
ment involves ((2Pf ~

2Pi))', this is still a small
effect.

E] =Eg+ ~k' (2)

where E& is the energy of the initial state
1s(2s)2(2P)' 'S and Ez is the energy of the given
final state of Ne". Atomic units are used through-
out the paper unless specified otherwise. The
energy e~ or ak' was calculated both by evaluating
the difference between Hartree-Fock calculations
for E& and E& and also by including estimates of
the difference in relativistic and correlation ener-
gies between E, and E&. The results are listed in
Table I along with the experimental values of K5r-
ber and Mehlhorn. "

The Hartree-Fock results were obtained with a
program generously provided by Fischer. " The
relativistic corrections were estimated from the
Dirac-Fock calculations on Ne by Desclaux" and
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A. Auger energies

The energy of the ejected electron e~= &k' and is
determined by

III. RESULTS
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The numerical calculations of this paper were
carried out using the methods described in Refs.
14 and 15. In calculating matrix elements such as
(1sk~v~pq) of Fig. 1(a), the orbitals 1s and k were
calculated with the configuration of the final state
and orbitals P and q were calculated with the con-
figuration of the initial state. In this way, some of
the higher-order diagrams of perturbation theory
are approximately included. In a few cases, the
accuracy of this procedure was verified by calcu-
lating the higher-order diagrams starting with a
complete orthogonal set of single-particle states
corresponding to the initial state, 1s(2s)'(2P)' 'S.
The final-state continuum orbital k was orthogonal-
ized to the other orbitals of the same symmetry
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FIG. 1. Diagrams contributing to the Auger-rate ma-
trix element. (a) lowest-order diagram; (b), (c), (d),
and (i) are correlation correction diagrams equivalent
to configuration mixing in the final state. Diagrams
(e)-(h) involve correlations or configuration mixing in
the initial state. Diagrams (d) and (e) also represent
the diagrams obtained by including the exchange of the
bottom matrix element.



HUGH P.

the Lamb-shift calculations by Hartmann and Cle-
menti. " The correlation energies were estimated
from the results for pair correlations in Ne given
by Viers, Harris, and Sehaefer" and by Barr and
Davidson. " The correlation energy of Ne'
1s2s'2P' relative to that of Ne was taken from
Ref. 15 as was the correlation energy involved in
2P- 2s transitions when there is a 2s vacancy.
The correlation energy involved in 2s-2P transi-
tions when there is a 2P vacancy was estimated
from previous work" on oxygen (Is)'(2s)'(2P) .
However, the correlation energy associated with
2s 2P and 2P 2s2 transitions wa, s calculated
explicitly.

For the 1s2s'2P' state of Ne', which we may
denote as Ne' (ls '), we obtained the relativistic
energy of the ls orbital by considering the value
of the one-electron integral I„as defined by
Desclaux' which reduces in the nonrelativistic
limit to the kinetic energy and interaction with the
field of the nucleus. From Ref. 19, the relativis-
tic contribution to I„ is -0.0664 a.u. for Ne. Since
this relativistic contribution is proportional to Z
and the 1s screening parameters for Ne and Ne'
1s2s'2p' are 0.484 and 0.288, respectively, in our
HF calculations, the 1s relativistic energy for
Ne' (1s ') is approximately -0.072 a.u. The
Lamb-shift contribution" is 0.0043 a.u. The rela-
tivistic shift for each 2s electron is approximately'
—0.00545 a.u. The total relativistic energy for Ne
as given by Desclaux, ' excluding the Lamb shift,
is -0.127 a.u. The total relativistic and Lamb-
shift energy for Ne' (ls ') relative to Ne is then
0.0398 a.u. The correlation energy for Ne' (1s ')
relative to Ne is 0.0298 a.u. ,

"and the difference
in HF energies was calculated to be 31.92144 a.u.
The resulting total difference in energy between
Ne' (ls ') and Ne is then 31.9910 a.u. or 870.53
eV. This result is in good agreement with an ex-
perimental value of 870.2 eV reported by Siegbahn
et al. ' and a calculated value of 870.5 eV by Beck
and Nicolaldes. "

In calculating the energy of Ne" (ls)'(2P)' re-
lative to Ne, the difference in HF energies is
4.47056 a.u. The correlation energy difference
has contributions from the negative of all the pair
correlations which are missing for (1s)'(2p)' re-
lative to Ne. That is, we consider the negative of
the correlation energy for all the 2s-ls, 2s-2s,
and 2s-2P pairs. From Refs. 21 and 22, we obtain
0.10123 a.u. There is also a contribution from
2P' 2s' transitions which was calculated to be
0.07276 a.u. There are also other transitions with
one 2P- 2s transition and a 2P- k transition, where
k is an excited orbital. From Ref. 15, the correla-
tion energy due to virtual transitions into a 2s hole
state of Ne' including pair correlations and three-

TABLE I. Energies of theE-LL Auger lines of Ne (in
eV).

Line Har tree-fock CORR Experiment

1s-2s2s 'S
1s-2s2p P
1s-2s2P P
ls-2P 2P 8
ls-2P 2P D

746.99
770.86
783.01
800.97
806.04

748.15
771.71
782.45
801.27
804.51

748.0+ 0.1
771.4+ 0.1
782.0+ 0.1
800.4+ 0.1

804.15+ 0.4

Incl.uding estimates of relativistic and correlation
energy corrections.

"From the experiment of Korber and Mehl. horn, Ref.
17.

body correlations is -0.0791 a.u. Since there are
now two 2s hole states, this contribution is -0.1582
a.u. From the 2s relativistic energy there is a
shift of 0.01090 a.u. for (1s)'(2P)' relative to Ne.
The sum of all these effects is 4.49725 a.u. The
difference in energy betmeen Ne 1s 2s'2P' and
Ne + 1s'2P' is then 27.49375 a.u. or 748.15 eV.

The same methods were used in obtaining the
energies of the remaining multiplets. When there
is a 2P vacancy in the final state, there is a con-
tribution to the correlation energy due to excita-
tions into the 2P vacancy, mostly from 2s excita-
tions. These contributions were estimated from
our previous results on oxygen (Is)'(2s)'(2P)' in
which such correlations were calculated. For
the final configuration (1s)'(2s)'(2P)' these contri-
butions were estimated as -0.0375 a.u. For the
final-state 1s'2s' 2P' 'S there is also a eontribu-
tipn pf -0.07269 a.u. due to 2s' 2P' excitations.
Three -bpdy effects for 1s 2s 2P S when there
is a 2s'- 2P' excitation were calculated as 0.0248
a.u. However, when using the pair correlation
results from Refs. 21 and 22, we have omitted
three-body and higher effects since the pair cor-
relation energies of Ref. 21 and 22 are too low by
approximately the amount of three-body contribu-
tions, and the pair correlation energies sum to
give a good value for the total correlation energy.
In calculating the correlation energy fpr 1s 2s'2p4
'S, the second-order energy cross terms between
the three determinants of the 'S state were expli-
citly calculated for 2P'-kd k'd excitations.

The results of Table I and the 1s removal ener-
gy for Ne are in reasonable agreement with ex-
periment. It is somewhat surprising that the HF
results are so good, and this seems to be due to
partial cancellations between relativistic and
correlation energy contributions. Although it is
possible to carry out accurate correlation energy
calculations using the methods of Ref. 14, this
would have been much more time consuming than
the approximate methods used here; and the main
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purpose of this work is to calculat~ accurate Auger
intensities.

B. Is-Zs2s S Auger rate

We first consider the KI., L,, intensity; that is,
the Auger rate to (18) (2P) S. This transition ls
also denoted 1s-2s2s 'S. The lowest-order con-
tribution to the Auger matrix element of Fig. 1(a)
is (1sklu I 2s2s), where k is the continuum orbital.
As discussed earlier, the 1s and k orbitals are
chosen to be HF orbitals of the state (Is)'(2P)' ks
'S. The 2s orbital is a Hartree-Fock orbital of
the initial state Is(2s)'(2P)' 'S. In order to be
even closer to the physical situation, spin-polar-
ization effects were included by choosing the initial
1s orbital of ls(2s)'(2P)' to be 1s', that is, to have
"spin up." Spin-polarized 2s' and 2s orbitals
were calculated with full exchange and no exchange
with the 1s orbital, respectively. The lowest-
order matrix element is then (1s k

I
v

I
2s 2s').

Our continuum state normalization is '

Z, , (~) =cos[kr +5, +(q/k) In2k ——,'(1+1)xj (3)

as ~-~ with V(x)- q/r Usi.ng Eq. (3), the Auger
rate is"

(4)

where I4',) and I4'&) are initial and final states,
respectively. The value for (ls kin l 2s 2s') was
calculated to be 0.041967 3..u. , with the state I k)
orthogonalized to I1s) and I2s) of Is(2s)'(2P)'.
Without this orthogonalization, the matrix element
is 0.643539 a.u. The Hartree-Fock spin-polarized
result was verified by stRrting with the matrix
element (1sk I

v I
2s'2s') and using perturbation

theory to include the effects of spin polarization.
Using the matrix element (Isklvl2s 2s'), the

KL,K, Auger rate is 0.9508&&10 ' R.u. Which ls
in very poor agreement with the experimental val-
ue (0.35 ~0.07) & 10 ' a.u. measured by Mehlhorn,
Stalherm, and Verbeek. " For comparison, Wal-
ters and Bhalla" and Mcouire-' report values of
0.89& 16 ' a.u. and 0.82&& 16 ' a.u. , respectively,
in Hartree-Slater calculations. If we use the
matrix element (1sklv I2s'2s'), the Auger rate
is improved to 0.760~ 10 ' a.u. However, the
matrix element (lsklv I2s 2s ) is better justified
on physical grounds even though it leads to worse
agreement with experiment; and it is expected
that correlation effects must be included if rea-
sonable agreement with experiment is to be
achieved,

The correlation effects were included by cal-
culating diagrams (b) through (i) of Fig. 1 using
the methods of Ref. 14. Diagram 1(i) with P =2s,
q = 2s', x = 2P, and s = 2P' corresponds to con-
figuration mixing of the final states of Ne"

(Is)'(2P}' 'S and Ne" (ls}'(2s)'(2p)' 'S as con-
sidered previously by Asaad"'" "for Z between 12
and 36 and by Bhalla' for Ne. The calculations by
Bhalla only gave the ratios of intensities but did
not give the absolute intensities due to this con-
figuration mixing. In this work this effect was
calculated both by evaluating diagram 1(i) and also
by conf lgurRtlon mlx1ng Us1ng HF orbltRls. The
results by each method are very close and a con-
tribution of -0.005927 a.u. was obtained for the
Auger matrix element. At this point the Auger
rate is 0.70116~10 ' a.u. , which is appreciably
better than the HF result but is sti. ll in rather
poor agreement with experiment. Diagrams (b)
through (h) of Fig. 1 were then calculated and
found to contribute significantly. The largest
contribution by far came from the diagrams of
Figs. 1(b), (c), and (d) with P = 2s, q = 2s', k = ks,
k'=O'P, and x=2P, where ks and kP are continuum
orbitals with /=6 and l=1, respectively. This
effect corresponds to configuration mixing of the
final state (ls)'(2P)'ks 'S with the states
(Is)'(2s)(2p)' kp 'S. Diagram 1(b) contributed
-0.004537 a.u. and diagram 1(c) contributed
—0.001508 a.u. , the sum of these diagrams slightly
exceeding the contributions from the configuration
mixing of Ne" (1s)'(2P)' 'S and Ne" Is' 2s' 2P' 'S.
Diagram 1(d) with x =2P and its exchange contri-
buted +0.001725 a.u. The sum of diagrams 1(e),
(f), and (g) (with exchange) with P=2s, q=2s',
and x =2P is -0.001478 a.u. There are also con-
tributions from diagrams (b), (d), (f), and (g)
with x =1s which totaled 0.600767 a.u. The ladder
diagrams of Fig. 1(h) contributed -0.000948 a.u. ,
the largest contribution coming from k's, k"s
intermediate states.

These results are summarized in Table II. Us-
ing the total in Table II, the KI.,J, Auger rate be-
comes 0.488& 10 a.u. , which is considerably
improved over the HF value but is still outside of
the limits reported by Mehlhorn gt g ). The
overlap correction factor was calculated to be
0.99678, and the normalization factor, which ac-
counts for the fact that the correlated many-body
state I4',) is not normalized, ' was calculated to
be 0.99095. These factors change the KL,,I.,
Auger rate to 0.479&& 16 ' a.u. When the remain-
ing Auger rates were calculated the effects of

igher-order terms on the KL,,I., matrix element
were roughly estimated using geometrical approxi-
mation to be 6.000348 a.u. This leads to a final
KL,L,, Auger rate of 6.4902 x 10 a.u. , which is
in a little worse agreement with experiment than
if we had not estimated the higher-order terms
beyond those of Fig. 1. It should be noted that
although the final-state mixing between (Is)'(2P)' 'S
and (ls)'(2s)'(2P) 'S is important, the remaining
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diagrams of Fig. 1 are equally important, although
more difficult to calculate. Contributions involv-
ing imaginary parts of the matrix elements were
very small and are not listed.

C, 1s-Zs2p P Auger rate
I

In calculating the KI,I,('P) or ls-2s 2p 'P Auger
rate in LS coupling, we evaluate the matrix ele-
ment &4'&lZv, &l4,&, where l4q} is the final state
(Is)'(2s)(2P)' 'P kP '8 and l4,} is the initial state
(Is)(2s)' (2P)' 'S, and v„=e'/r„In .the HF ap-
proximation, the matrix element &4&('P) l Zv,

&
l%',}

for the 'P transition is

&~ ('P)l», I»
=v'-', (&IskP lv l2s2P&+&IskP l

v l 2P2s&), (5)

where there is an angular factor of 3 associated
with the matrix element &IskP l

v
l 2P2s). The final-

state kP orbital was calculated in the HF potential
of the final state l4'&('P)}. The matrix elements
&IskPlv l2s2P} and &Iskjl v l2P2s} were calculated
to be 0.035350 and 0.015166 a.u. respectively. The
resulting HF Auger rate is 2.0334&10 a, .u. as
compared with the experimental result (0.96+0.19)
~10 ' a.u. of Mehlhorn et a/. " Again, the HF re-
sult is considerably higher than experiment and
correlation effects must be examined.

In Table III are listed contributions to the various
diagrams of Fig. 1. Using the total of Table I in
place of (&lskPlv l 2s2P) +&IskPl v l2P2s}), the total
calculated Auger rate is 1.396~ 10 ' a.u. , which
is in much better agreement with the experimental
value than the Hartree-Fock value. However, the
calculated value is still considerably higher than
the experimenta, l value although the calculated
ratio of the 'P and 1s-2s2s 'S rate is 2.861 as com-
pared with the experimental ratio' of 2.743. Es-
timates of higher-order terms were quite small.
The overlap factor was calculated to be 0.992541
and the normalization eorreetion was calculated
to be 0.986708, giving a final 'P rate equal to
1.373&&10 ' a.u. From Table III, it is seen that
the largest correlation contributions come from
diagram 1(c) with P=2s, q=2P, r =2P, and k'=kd
and from diagram 1(b) with P =2P, q=2s, r =2P,
and k' =Ad. These diagrams are calculated by
principal value integration, and represent con-
figuration mixing between the configurations
(Is)'(2s)(2p)"P kp'8 and (Is)'(2s)2(2p)4 'D kd 'S. It
is not surprising that mixing with this configura-
tion is important since the Auger rate to the final-
state (1s)'(2s)'(2P)4 'D is considerably larger than
any other. As shown in Table III, there is much
cancellation among the remaining correlation con-
tributions. Those few contributions not explicitly

listed in Table III are either identically zero or
were estimated to be very small.

&e,('P)
I g v„le,&

= (3/~2) (& 1skP l
v

l 2 82P) —
&IskP l

v l 2P2 s}) „(6)
where the matrix element &IskP lv l2P2s} has an
angular factor of —,'. lt is noted from Eq. (6) that
the diagram of Fig. 1(a) with P=2P, q=2s is posi-
tive when projected onto 4&('P) but diagram l(a)
with P =2P is negative when projected onto 4'f('P).

From Table III, (1skPlvl 2s2P) is 0.034765 a.u.
and —&1skPl v

l 2P2s) is -0.016538 a.u. The lowest-
order value for the KLyL3 P or 1s-2s2p 'P Auger
rate is then 0.7888&& 10 ' a.u. as compared with
the measured value" of (0.35+ 0.07)&&10 s a.u.
When the correlations of Table III are included,
the 1s-2s2P 'P Auger rate becomes 0.5015&10 '
a.u. , which is in better agreement with experiment
although still too large to be within the quoted ex-
perimental accuracy. It is interesting to note that
many of the diagrams contributing strongly in the
'P case cancel exactly in the 'P case. For exam-
ple, diagram (c) with P=2P, q=2s, r=2P, and
k' = kd and diagrams (b) with P =2P, q 2s, r =2p,
and k' =Ad provided the largest correlation effects
in the 'P case. For the 'P intensity, these same
diagrams are individually large numerically but

TABI,E II. Contributions to the 1s-2s2s ~S Auger ma-
trix element.

Diagram of Fig. 1~ Value in a.u.

(a) k =As

(b) r=2p
(c) r=2p
(d) r=2p
(e) r=2p
(f) r= 2p

(g) r=-2p
(b) r= 1.s
(d) r=1s
(f) r=1s
(g) r=ls
(h)

(i) r=2p
Total

s =2p

0.041967
—0.004 537
—0.001 508

0.001 725
-0.000 714
-0.000 114
—0.000 650

0.002 350
-0.001 966

0.000 360
0.000 024

-0.000 948
—0.005 927

0.030 062

'In all diagrams p = 2s and q = 2s+. All integrations
over singularities were by principal-value integration.

"Exchange diagram with bottom matrix element equal
to Q 1s lv l P r) included.

D. Is-2s2p P Auger rate

For the Auge r transition to the final state,
(1s)'(2s)(2P)"P kP 'S, the lowest-order Auger ma-
trix element is
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cancel. For the 'P case, since diagrams (a) with
P=2s, q=2P, and P=2P, q=2s are of opposite
sign the 'P matrix element as given in Table III
is much smaller than the 'P matrix element. [It
should be noted that the entries in Table III do not
contain the angular factors P and 3/P2 given in
Eqs. (5) and (6).] For the 'P case, the ladder
diagrams of Fig. 1(h) are of greater importance
than for 'P. Also, the diagrams with a 1s hole
line [i.e., diagrams (b) and (d) with r =1s] are
not important for 'P transitions but are significant
in the 'P case. For 'P relative to 'P, note that
diagram (b) with P =2P, q =2s, r = 1s is consider-
ably reduced. This is because in the 'P case only
3 of the Coulomb matrix elements have q=2s' but
J' = 1s always ~

E. 1s-Zp2p 5 Auger rate

The next rate to be calculated is KI,,L, 'S or
Is-2P2P 'S, where the final state is 4'z('S)

=(1s)'(2s)'(2P)4 'S ks 'S. The Auger matrix ele-
ment in LS coupling is

&e~('S)l g v&;I+&& =(2) '~'&Is ks lvl 2P2P&z,

where (1s ks
l
v l 2P2P&s is the radial part of (1s

ks lv l 2p2p& or 8'(Is ks, 2p2p) in the notation of
Condon and Shortley. " The calculated value for
R'(1s ks, 2P2P) is -0.051214 which leads to an
Auger rate 0.45596X10 ' a.u. as compared to the
measured rate of (0.55+0.11)&&10 ' a.u. of Mehl-
horn et al. '0

As discussed already in connection with the
1s-2s2s 'S rate, there is considerable configura-
tion mixing between the final states of Ne+'
(ls)'(2P)' 'S and (Is)'(2s)'(2P)' 'S. The lowest-
order diagram contributing to this rate is Fig. 1(i)

TABLE III. Contributions to the 1s-2s2p P and 1s-2s2p 3P Auger matrix elements {in a.u. ).

Diagram of Fig. 1 1s-2s2p 'P 1s-2s2p ~P

, q.=2

k' =kd
k' =ks
k' =-ks
k' =-kp
k' =kg
k''-=ksk g
k' =kp

k' =k's

k' =ks
k' =ks

P=2P~ q=
k' =kd
k'=ks

k' =ks
k' =kd
k' =ks
k' =kd
k' =ks
k' =kp
k' =kp
k' =kd
k' =kp

k' =kp
k' =kp

p (a)
{b) r=2s
(c) r=2p,
(c) r=2p,
(d) r=2s,
(e) r=2p,
(f) r=2s,
(f) r=2p,
(g) r=2p,
(g) r=2s,
(h)
(b) r =1s,
(d) r =1s,

2s (a)
(b) r=2P,
(b) r=2p,
(c) r=2s,
(d) r=2p,
(d) r=2p,
(e) r=2k,
(e} r =2P,
{e)r=2s,
(f) r=2p,
(g) r=2P,
(g) r =2s,
(h)

(b) r=ls,
(d) r=ls,

0 ~ 035 350
0.001 589

-0.004 461
-0.000 234

0.000 006
—0.000 431
-0.000 005

0.000 019
—0.000 533
-0.000 096
-0.001 503
—0.000 067
-0.001 366

0.015 166
-0.004 461
—0.000 234

0.001 589
0.000 845
0.000 049
0.000 057

-0.000 007
—0.000 005
-0.000 141
-0.000 319
-0.000 026
—0.000 382

0.002 090
-0.000 639

0.041 850

0.034 765
0.000 529

-0.002 875
0.000 ooob
0.000 009
0.000 000

-0.000 000
0.000018

-0.000 544
-0.000 095
-0.001 503
—0.000 076
—0.001 349
-0.016 538"

0.002 875
0.000 000

-0.000 529
-0.000 702
—0.000 049
-0.000 056

0.000 007
0.000 000 '

0.000 000
0.000 312
0.000 017
0.000 382

-0.000 702
0.000 638
0.014 534

The angul. ar factors ~~ and 3/W2 for the P and P cases, respectively, are not included in
the numbers listed.

Not calcul. ated since (c) withp =2s, q = 2p cancel. s (b) withp=2p, q = 2s.
Note minus sign in this and all following matrix elements of this column when projection of

diagram is made onto (1s) (2s)(2p) P kp 8 final state.
Not calculated since (e) withp=2s, q =2p cancels (f) withp =2p, q =. 2s.

'Not calculated since (f) withp =2s, q =2p cancels (e) withp =2p, q=2s.
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mith P=2P, q=2P', r=2s, s=2s . The results
are very nearly the same whether me calculate
Fig. 1(i) or diagonalize the configuration interac-
tion (CI) matrix. The CI result adds -0.012545 a.u.
to R' (ls ks, 2P2P) and leads to the Auger rate
0.7067& 10 ' a.u. Although this result is higher
than experiment, the ratio to the correlated
1s2s2s '8 rate is 1.45 which is in resonable agree-
ment with the experimental' ratio of 1.57.

There is no justification, however, for not in-
cluding all the correlation diagrams of Fig. 1.
These are listed in Table IV. Diagrams (b) and
(c) with r=2P and k'=kd are large. This, again,
is expected since these diagrams account for con-
figuration mixing of (Is)'(2s)'(2P)' 'S ks 'S with
(»)'(»)'(2P)4 'D kd 'S, and the 'D Auger rate is
the largest rate by far. Diagrams (b) and (c) with
r =2s, k' =kP are also significant and represent
configuration mixing of (ls)'(2s)'(2P) 'S ks 'S with
(ls)'(2s)(2P)' ' 'I' kP 'S. The effects of correlation
in the initial-state 1s(2s)'(2P)' 'S are represented
by diagram (h) and these are seen to be also im-
portant. The largest effect is contributed by dia-
gram (i) which accounts for configuration mixing
of (Is)'(2s)'(2P)' 'S ks 'S and (ls)'(2P)' 'S ks 'S as
already discussed. Using the total of. Table IV and
the fact that k =7.6699 a.u. , the resulting Auger
rate is 0.8618~10 ' a.u. For this case, the effect
of a spin polarization correction has also been in-
ves.igated; that is, 2P orbitals were calculated
with no exchange with the ls orbital (2P ) and full
exchange with the 1s orbital (2P'). The change in
the basic matrix element (lsks jv I'2P 2P') is
-0,000102. The Auger rate then becomes 0.8643
&10 a.u. , which is considerably higher than the
experimental value" of (0.55*0.11)x 10 ' a.u. The
ratio to the corresponding KI,I,('S) rate is, how-
ever, 1.77, which is in reasonable agreement with
the experimental' ratio of 1.57. An estimate has
been made of higher-order terms for this Auger
rate. Since diagram (i) (or the corresponding con-
figuration mixing effect) gives the largest correla-
tion contribution for this rate it seems desirable
desirable to examine corrections to this term.
These are easily included by replacing & I» s

I v12s2s)
of diagram (i) by the correlated matrix element
obtained from Table II excluding the correlations
due to mixing with (1s)'(2s)'(2p)' 'S ks 'S. Dia-
gram (i) is then reduced by the ratio 0.03599!
0.04197. The higher-order modifications of dia-
gram (I) then contribute 0.001787 a.u.

In a similar way, the modifications of the re-
maining diagrams mhich involve configuration
mixing with (Is)'(2s)(2P)' ' 'I' kP 'S were estimated
to contribut. 0.061049 a.u. Modifications of dia-
grams involving configuration mixing mith
(Is)'(2s)'(2P)' 'D kd 'S were estimated in this same

&4, ('D)j Q v„je,) =-v-, &ls kd Ivj 2P2P)„, (8)

where (1s kd I v I 2P2P)„ is the radial part of the
matrix element, or 8' (1s kd, 2P2P). The calculated
value for &ls kd I v I 2P2P&, is 0.»8021 a.u. and
the value for k is 7.687871 a.u. , resulting in an
Auger rate of 5.685&10 ' a.u. as co~pared with
the experimental value'o of (3.28+ 0.066)x 10 ' a.u.
Contributions to the diagrams of Fig. 1 are listed
in Table V. Certain diagrams are cancelled, oi
course, by the HF potential. The largest contri-
butions are from diagram (c) with r = 2s and k' = kP

TABLE IV. Contributions to the XL„„L2(~S)Auger ma-
trix elements (in a.u.).

Oiagrarn of Fig. 1 ~

(a)
(b) + (c)

(b)
(c)
(d)

(d)

(e) + (f)
(e)
(f)

(g)

(g)
(b)
(d)

(g)
(h)

(h)

(h)
(i)

Total

x=2P, k' =-kd

x=-2s, k' =kp
y'=-2s, k' =-kp

x=2p, k' =kd
x = 2s, k'.=kp
r=-2p, k' =-kd

x=2s, k' =kp
~=-2s, k' =kp
x.=2p, k' =kg
r =2s, k' =kp
x= 1s, k' =-kp

x=1s, k' =kp
x=1s, k' =kp
k' =k's k" =-k "s
k' =-k'p, k" =k"p
k' =k'd, k" =k "d
0 =2s, s=2s

—0.051 214
—0.006 147
-0,001 515
-0.003 938

0.000 268
-0.000 183
-0.000 233
—0.000 097
—0.000418

0,000 258
0,000 038

—0.002 397
0,002 201
0,000 688

-0.002175
0.005 980
0,001 021

—0.012 545
-0.070 408

p =-2p, q —-2p in all. diagrams; k =-ks for 1s-2p2p~g
case. Bound and continuum states are included in the
sum over excited states. Results for (d) and (g) include
exchange in bottom matrix element,

"The angul. ar factor of 3 from the diagram of I'ig. 1(a)
has been factored out of all contributions.

way as only 0.000243 a.u. due to the small effects
of correlations on the 'D rate, m hich mill be dis-
cussed. Including these effects, the AI.,I., ('S)
Auger rate becomes 0.7904~10 ' a.u. Including
the overlap factor of 0.9937 and the normalization
factor oi 0.98128, the KI.,L, ('S) Auger rate be-
comes 0.7707 x 10 a.u. Although this result is
larger than experiment, "the ratio to the KI,L, ('S)
rate is 1.572, which is in good agreement with the
ratio of experimental values.

F. 1s-2p2p D Auger rate

The final Auger rate io be calculated is the
transition to the final state, 4'q('D) =(Is)'(2s)'(2P)4
'D kd 'S. The Auger matrix element
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TABLE V. Contributions to the 1s-2p2p ~D Auger ma-
trix elements (in a.u.).

Diagram of Fig, 1' Value

(a)
(b) r=-2p, k' =ks
(b) r=2s, k' =kp

(c) r =2p, k' =ks
(c) r = 2s, k' =kp

{d) r=2p, k' =ks
(d) r=2s, k'=kp
(e) r = 2p, k' =kd
(e) r =. 2s, k' =kp
(f) r=2p, k' =kd
(f) r = 2s, k' =kp

(g) r=2p, k' =kd

(g) r =2p, k' =ks
(g) r=2s, k' =kp

(h)

(b) r=ls, k =k'p

(d) r=ls, k =k'p

{g) r = 1s, k =k'p
Total

0.128 021
-0.000 860

0.002 227
-0.000 860

0.006 256
0.000 362
0.000 374
0.000 354
0,000 186
0,000 126

—0.000 706
-0.001400
-0.000 000
-0.000 230
—0.010 343

0.004 233
-0.004 570
—0.000 579

0.122 591

p = 2p, q = 2p, and k =kd in all diagrams. Results for
(d) and (g) include exchange in bottom matrix element.
Bound and continuum states are included in the sum over
excited states.

"The angular factor for diagram {a) has been factored
out of all contributions.

and from diagram (h). The contribution from dia-
gram (c) with x=2s represents final-state configu-
ration mixing with (Is)'(2s)(2P)' "'P kP 'S. Dia-
gram (h) represents correlations in the initial
state, and excited states k', k" with l = 0, 1, 2,
and 3 were included. Of these, the largest con-
tribution by far is from k'=k'P, k" =k"P, giving
-0.008786 a.u. Using the correlated matrix ele-
ment of Table V, the 'D rate is 5.213x10 ' a.u.
The change due to spin polarization corrections
was calculated to be -0.000172 a.u. , leading to a
'D rate 5.198~ 10 ' a.u. Contributions from the
imaginary parts of diagrams (b)-(d) were calcu-
lated and found to be very small.

Effects of higher-order diagrams were also
estimated by multiplying the diagram ot Fig. 1(c)
by the ratio of the correlated to lowest-order 'I'
matrix elements as given in Table III. The result
is -0.001073 a.u. Contributions from higher-order
diagrams but with three Coulomb interactions and
both denominators giving imaginary parts were
-0.000568 a.u. Including these effects, the 'D

rate becomes 5.060&& 10 ' a.u. Including a factor
0.9753 due to overlap and normalization effects,
the final 'D Auger rate is 4.935&& 10 ' a.u. , which
is still appreciably higher than the experimental
value. "

The results of all calculated rates are summar-

TABLE VI. Auger rates for Ne (1s )

Trans itionb HF~ CORR Id CORR II~ Exptf

1s-2s 2s (~S)

1s-2s2p (P)
1s-2s2p (P)
1s-2P 2P ('S)

1s-2p 2p (~D)

Total.

0.9508

2, 0335
0.7888
0.4560

5.6849
9.9140

0.4879
0.70123"

1.3956
0.5015
0.8643
0.7067~
5.1983
8.4476

0.4902 0.35+ 0.07

1.3670 0.96+ 0.19
0.4922 0.35+ 0.07
0.7707 0.55~ 0.11

4.9349 3.28+ 0.066
8.0550 5.49+ 0.51

All results given in units of 10 3 a.u.
"See text for notation.

Hartree-Fock or lowest-order result.
Including correlation diagrams of Fig. 1.
Including correlation diagrams in Fig. 1, any esti-

mates of higher-order diagrams as described in text,
and small contributions from overlap and normalization
factors as described in text.

Experimental values from Ref. 10.
g Correlation effects only from mixing of (1s) {2s) (2p)

S and (ls) (2P) S.

ized in Table VI and compared with experiment.
The best calculated value for the total rate is
8.055~ 10 ' a.u. as compared with the experimental
value (5.49+0.51)&&10 ' a.u. This may be compared
with the values 10.0&10 ' a.u. calculated by %'alters
and Bhalla" in a Hartree-Fock-Slater calculation
and 9.48&& 10 ' a.u. calculated by Mcouire" in an
approximate Hartree-Fock-Slater calculation. It
is interesting to note that the Hartree-Fock-Slater
results are in close agreement with the Hartree-
Fock result 9.914&10 ' a.u. of Table VI. Includ-
ing correlations affects many of the individual
rates much more than it does the total Auger rate.
This is because the largest single rate is the
1s-2P2P 'D rate, which is least affected by inclu-
sion of correlation terms. Many of the important
correlation terms affecting the other rates come
from configuration mixing with the (Is)'(2s)'(2P)
'D kd 'S states.

The results listed under CORR I and CORR II
in Table VI are generally in much better agree-
ment with the experiment than the Hartree-Fock
values. Although the correlated results are out-
side experimental error, they are consistently
high. The ratios of the CORR II rates to experi-
ment range from 1.40 for the KL,L,('S) rate to
1.51 for the 'D rate. The ratios of the rates rela-
tive to the KL,L,('S) rate have been measured in
several experiments'" "'"and have also been
calculated by Bhalla. ' Ratios of intensities rela-
tive to K,LL(' )Sare listed in Table VII. The best
calculated values are those labeled CORR II, and
these ratios are in good agreement with experi-
ment.
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TABLE VII. Ratios of Auger rates to the 1s-2s2s(S) rate.

Method 1s-2s2P (~P) 1s-2s2P (P) 1s -2p 2p (~S) 1s-2p 2p (iD)

HF
CORR II
Bhal. la
Expt r~

Expt II
Expt III
Expt IVg

2.139
2.789
2.98

3,06+ 0.07
2,73+ 0.04
2.87~ 0.05
2.92+ 0.06

0.830
1.004
0.99

0.98+ 0.05
1.00+ 0.02
1.06+ 0.05
1.06+ 0.05

0.480
1.572
0.99

1.67 ~ 0.08
1.55+ 0.03
1.5+ 0.1
1.5+ 0.1

5.979
10.067
8.3

13.1+0.6
9.31+0.15

10.00+ 0.18
10.13+ 0.24

'Hartree-Fock calcul. ation, this paper.
"Including correlation effects, this paper.

Calculations by Bhal. la, Ref. 9, including configuration mixing between Ne++ states (1s)
(2s) (2p)4 S and (I.s)2(2p)6 ~S.

~Ratios measured by korber and Mehlhorn Ref. 17.
~Ratios measured by Stalherm, Ref. 29.
Ratios measured by Krause et al . , Ref. 11, with ini-

tial. vacancy created by electron impact of 3 to 10 keV.
gRatios measured by Krause et al . Ref. 11, with ini-

tia1. vacancy created by 1.5-keV x rays.

IV. CONCLUSIONS

In this work it has been shown that the Hartree-
Fock results for Auger transition rates are con-
siderably improved when correlation effects are
included. Although the configuration mixing of
Ne" (1s)'(2s)'(2P)4 'S and (ls)'(2P)' 'S is impor-
tant, good results can only be obtained by also
considering the other correlation effects. The
present calculations give intensity ratios in good
agreement with experiment. However, the calcu-
lated absolute Auger rates are larger than experi-
ment by factors ranging from 1.4 to 1.5, which is
outside experimental error. It is not clear where
the source of error lies, since estimates of higher-
order diagrams involving correlation interactions
of the types shown in Figs. 1(b)-(i) did not produce
close agreement with experiment. One possible
improvement would be to include the correlation
effects on single-particle orbitals either by calcu-

lating the appropriate higher-order diagrams or
by calculating the orbitals with an optical poten-
tial." A practical approach might be to use the
polarized orbitals method of Temkin. " These
effects will be investigated in future work.

Note added in P~oof. Professor W. Mehlhorn
and Dr. M. Krause have kindly brought to my at-
tention the recent paper by U. Gelius, S. Svens-
son, H. Siegbahn, E. Basilier, A. Faxalv, and
K. Siegbahn [Chem. Phys. Lett. 28, 1 (1974)] in
which the width of the Ne 1s line is measured to
be 0.23+0.02 eV or (8.45+0.07)&&10 ' a.u. , which
is in good agreement with the results in Table VI.
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