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Phase shifts and their weighted sum over angular momentum are reconsidered for the static

screened Coulomb potential (SSCP). Results are given for both an attractive and a repulsive SSCP. The
numerical results are derived in the present work from two independent and simple techniques based
upon the Numerov method and the variable-phase approach, respectively, applied to the Sturm-Liouville
form of the Schrédinger equation. Special emphasis is given to the high-density low-temperature domain
(Ap < 10 a.u.). Excellent agreement is found with results obtained previously by Rogers using the

WKB approximation.

I. INTRODUCTION

In order to evaluate the statistical properties of
dense two-component plasmas through the two-
body interaction part of the partition function of
interacting Boltzmann particles,

Zint = ZI: (21 +1)|:§; o~ Ent/epT

= db,(k) 2R
-1 ] _
+m ,[,dk dr exp( ZukBTﬂ’
(1)

{1 =reduced mass of the considered pair) we need
to know the bound-state energies E,; (attractive
case only) and also the phase shifts (k) of the
Schrodinger equation for the static screened Cou-
lomb potential (Debye)

V(r) = xe2e~"Mo/r. (2)

Although considerable attention? has been given
to the computation of the eigenvalues E,;, equally
important phase shifts have been relatively ne-
glected. In an important recent paper, Rogers®
obtained very accurate §,(k) data through a clever
mixing of the WKB approximation with difference
techniques for the wave functions of the Schré-
dinger equation taken in the form

d’R 1 dR I(1+1
Gy g (- T - ve) e =o.

®3)

We intend to come back to this problem with two
main motivations: first, to confirm and to clarify
the reasons for Rogers’s success; second, to ob-
tain phase shifts with an accuracy comparable to
Rogers’s results through different but sufficiently
simple numerical techniques to be used by a non-
specialist in the art of solving Schrddinger equa-
tions. In view of our special interest in plasmas
with a few particles in the Debye sphere, we focus
our attention on small values of A, (10<aq,).

11

1I. THE SSCP SCHRODINGER EQUATION

In order to easily check results of Rogers with
simple but still accurate methods, it is convenient
to start from the Sturm-Liouville form of the ra-
dial Schrddinger equation,

2
G+ (- v - Lty o, @

¥ being measured in units of the Bohr radius, with
€=Qu/MAE=F, UW)=Qu/m?)V(r),
t being the reduced mass of the interacting pair.
The free solutions [U(r)=0] of Eq. (4) are*
W9(r) =krg (k) = Grkr) /2, /() (52)
and
$3) =krn, (kr) = (Grkr /2, _, 1, (k7), (5b)

in terms of the spherical Bessel #,(x) and Neumann
functions #,(x). Therefore, the asymptotic (¥ — )
solutions of Eq. (4) may be written as

U, (kr) =A, kvj, (V) + B, kvn,(kv)
=C,kv[cosb, (k)] (k7) — sinb, (k)n, (kv)],

(6)
where
tand,(k) =B, /A, (7
and
limy, (*) =C, sin[kr - 317 + 6, (k)]. (8)

0
In what follows we shall solve numerically the
Sturm-Liouville differential equation (4) with a
wave function iterated until the 7 value fulfilling

, >R+ D2, (9)

) << e - K1)

is reached, and then equals it at two distinct
asymptotic points 7, and 7, with a free solution.
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Therefore the standard procedure yields*

7y (Rrp) g, (kyy) = 7o, (R, )7, (k)
yllpl (k'rz)nt (k')"l) - Tad)t (k/}’l)nl (k/rg) ‘

The Sturm-Liouville expression displayed in
Eq. (4) suggests strongly the use of standard dif-
ference techniques.’ For our own purposes, we
found it very convenient to apply the well-known
Numerov procedure to Eq. (4) given as

dzy
S =140 - o) = F ), (1)

tand, (k) = (10)

with a discrete mesh of unit step A7 and ¥,=9(jar),
j being an integer.

III. VARIABLE-PHASE APPROACH
A. Preliminary remarks

A completely different approach to the phase-
shift problem is afforded by the variable-phase
approach,® which disregards the scattered wave
function. It is a complete and coherent alternative
to the Schrodinger problem based upon the simple
observation that any linear second-order differ-
ential equation may be transformed into an equiva-
lent first-order nonlinear differential equation.
This procedure will enable us to replace the
Sturm-Liouville equation for the wave function
with a differential equation for the phase shift
alone. This approach is meaningful only for po-
tentials sufficiently regular at » =0 with

HmV(r)=Vr~™, m<2, (12)

=0
(in this paper we have V,=zxe?, m =1) such that Eq.
(4) has two independent solutions respectively
proportional to #~! and #'*' when 7~ 0. The con-
dition (12) allows us to select a regular solution
satisfying

limy, () =const X 7’ *1,

=0
the asymptotic expression of which defines a phase
shift 8,, when it is compared to the asymptotic
behavior of the free solution

limy, () =const X sin (k7 — 317 +6,). (13)

oo
The angular ambiguity in the definition of §, is
finally removed by the condition

lim6, () =0.

B>

B. Phase-shift expression

In order to derive the phase-shift differential
equation, we consider Eq. (4) in the alternative
integral expression

bir) =T = & [ d Ui s) = s i)

XU(s)py(s). (14)

jA, () and 7, (x) denote the Ricatti-Bessel functions:

7100) = Grx) 2 0 1o ), (15)
'ﬁz(x):(")l+1(%77x)1/2¢];(1+1/2)(x),

with
lim 7, (x):(—li:——) [t +0(x?)]
wo ! @I+1)11)" ’ (16)
limii, (x) = =x~" (21 = 1)1 1[1 +O(x?)].

Following Calagero, let us introduce the scattering
functions

S,(r) = k" f " ar U e, (), (17a)

C,(r)=1-k" f Car U (o), (1Tb)

such that

$,() =C ()7, (k7) = S, (1), () (18)
displays the asymptotic behavior

limy, (*) = C, (=) sin (k7 - 317)

>

+S, (=) cos (k¥ — 31m) (19)
obtained with the aid of (x>1)

1im]¢, (x) =sin(x — 3im),

x—> %o

lim#, (x) = ~cos (x — 31m).

x>0
Therefore Eq. (19) may be given the form ¥, =const
x sin(kr - 3lm +6,) with

tand, =S,()/C,(»), (20)

showing that the asymptotic values of S; and C,
give, together with the condition lim,_,.0,(k) =0,
the required phase shift.

Moreover the behavior of S; and C, at =0 gives

S,(r) Vr—™ (kr)2i*s

Um = oy = BRizs—m RLonE: @Y
while Eq. (20) shows
1im$,(#)/C, () = tans,. (22)

y—>0

As a consequence, we are allowed to introduce the
so-called phase function £,(r) =S,/C,(r) vanishing
at the origin and equal to tand,; at ¥ =<,

C. Differential equation for the phase-shift function

We differentiate the equations that define the
auxiliary functions S, and C,. We also use Eq. (14)
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to substitute in the right-hand side. We thus secure
the following system of two coupled first-order
linear equations

S;(r) = =k"'U )], (k)

x[C,(r)7,(kr) =S, )i, (k)] (232)
Cl(r) =~k U ()i, (k7)
x[C,()7,(k7) =S, ()i, (k7)]. (23b)

Now, we multiply the first equation by C,(») and
the second by S,(7), subtract the second equation
from the first and divide by C%(»). In this manner
we obtain

4= s;c,c-?slc;
= kU@ ], (k7) - t, (), (k7)) 2, (24)

which is the required equation. This is a general-
ized Ricatti equation, i.e., the simpler nonlinear
differential equation. As is well-known the solu-
tion of a Ricatti equation need not be bounded, it
may have poles. This may happen in our case too,
as implied by ¢,(r) =S,(»)C;*() and the fact that
C,(?’) might vanish. Therefore, we now make a
further step, introducing another function 8,(7)
such that

t(r) =tand,(r), (25)
with

. v (kr)2t+!

Hm, ()= -~ Girsomleine @)
and

1im8, () =8,(=) =5,.

r—> 00
Inserting Eq. (25) into Eq. (24) we find for 0,(r)
the differential equation

8;(r) = ~k"'U()[cosd, ()], (kr) - sind, (), (k7)]?,

(27

easily solvable with the aid of the Runge-Kutta
method and a variable step technique for the 7
values satisfying inequalities (9).

IV. NUMERICAL RESULTS

In order to ease the computation of quantities of
physical interest, we rewrite Eq. (1) after an in-
tegration by parts in the form!

Z,, =2, (@1+1)) (e En/enT _1)
1 n

i’ ” =-12k2 fo1ik g T
T fo kG (k)e 87, (28)
with
Gylk) =2 (21+1)5,(8), (29)
1

for the Boltzmann sum phase shift. The sums
(29) are evaluated under the condition that the first
neglected term is smaller than 1078 times the
sum of the foregoing ones.” We specialize our
calculations to two important physical systems:
electron-proton (u =m,) and electron-electron
(it =3m,) pairs. In both cases, the quantities of
physical interest, i.e., the scattered wave func-
tion ¥,(*) in the Numerov method, and the phase
shift function 0,(7) of the variable phase are con-
sidered for >R, with

1
10"

(1+1)

k2 -
RS

[UR)| <

R,>k[I(I+1)]'?,
(30)

which makes them R,-independent for #=17. Our
G3(k) values® for the electron-proton system are
given in Table I with significant figures common

b

TABLE I. Boltzmann-sum phase shifts (7 rad) for the electron-proton system with% in a.u.
Each entry A # means A x10". The date below the double straight are obtained only through the

Numerov method.

ND 1 2

3 4 5 6
10~ 9.99642 ~1 9.999373 ~1 1.00120 1.99918 4.999 55 5.000 06
1073 9.964 ~1 9.9937 -1 1.0120 1.9918 4.9955
1.5x1073 9.9464 -~1 9.99660 -1 1.018 00 1.98776 4.993 34
4.7x 1073 9.8322 ~—-1 9.97062 -1 1.05549 1.96194 4.978 94
1072 9.6439 ~1 9.93796 -1 1.11115 1.92151 4.953 60
1.5x 1072 9.46786 —~1 9.90804 -1 1.1534 1.88840 4.9269
4.7x 1072 8.42090 —~1 9.7659 -1 1.2800 2.0605 4.7035
107 7.1398 -1 9.92301 -1 1.5819 3.3346 4.6578
1.5x 1071 6.39918 —1 1.0700 2.0502 3.6652 5.244 99
0.47 6.1820 ~1 2.0340 .3389 7.498 93 11.5096
1 9.9769 ~1 3.79598 8.3974 14.800 23.003
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TABLE II. Boltzmann-sum phase shifts (1 rad) for the electron-electron system with 2 in
a.u. When two data are available at the same place, the Numerov result is the upper one while

the lower one is the variable phase approach.
Ap

k 1 2 3 4 5
1074 -~2.16792 -5 —-6.7372 =5 -1.256303 -4 -1.92302 -4 ~2.653076~4
1078 -2.167927-4 —-6.737296 ~4 -1.256336~-3 -1.923134-3 —2.653348~3
—~2.167931 -4 —6.737301 -4 -1.256337 -3 -1.923135-3 —2.053329-3
1.5x107% —3.2518 -4 —-1.010606—-3 -1.884569 -3 -2.88491 -3 -3.98054 -3
4.7x107% ~1,01895 -3 -3.16715 -3 -5.90819 -3 -9.0498 -3 -1.2498 -2
1072 -~2.16823 -3 —-6.74351 -3 -1.25973 -2 ~1.93416 -2 —2.680441 -2
1.5x10™% -3.2529 -3 -1.01270 -2 -~1.895993 -2 -2.921859-2 -4.07083 -2
-1.0127 -2 -1.89599 -2 -2.9218 -2 —-4.0708 -2
4.7x107%2 -1.02210 —2 -3.22982 -2 -6.2375 -2 -1.00646 -1 -1.48380 -1
-3.2298 -2 -1.4838 -1
10-! —-2.19772 -2 -7.28773 -2 -1.51743 -1 ~2.6452 -1 -4,16199 -1
-4.16200 -1
1.5x10™1 —3.34826 -2 -1.17219 -1 -2.57785 —1 —4.6563 -1 —-7.4724 -1

~3.3482 -2
4.7x1070 —1.2011 -1 —-4.9631 -1 —-1.1586 -2.1151 -3.3686
1 -2.8993 -1 -1.2010 —2.7487 ~4.9336 —-7.7557
to both methods, thus showing an excellent agree- G; ~s 2 (21+1)5,(k) =%G;, £<0.15, (32)

ment between the results of the two numerically
independent approaches. The same agreement is
also obtained for the repulsive case (electron-
electron) shown in Tables II and III for Boltzmann

and Fermi statistics.

The Fermi-sum phase shift for particles with

spin s

Gi=(s+1) 2, @L+1)5,(k)+s
1,0dd 1

fulfills the relation

TABLE III. Fermi-sum phase

2 @L+1)5,(k)

seven

(31)

1,even

in the case of strong screening (A, <2q,) empha-
sized in the present work, with important relative
variations when A, >3q,. The repulsive sum phase
shifts are seen to satisfy the effective range for-

mula

G} =,E(21 +1)a, B2V (=1 + 3,7, R?)), R<0.2,
=0

where®

shifts with the caption of Table II.

Ap
k

1 2 3 4 5
10~ -1.08396 —5 -~3.368617—-5 —6.281517-5 —9.61513 -5 ~—1.326541-4
—6.281515~5
1073 -1.0839 -4 -3.36874 -4 -6.282145~4 -9.617092-4 -1.327012-3
-9.617089 -4
1.5x10™ —-1.62596 —4 —5.05334 —4 —9.4244 -4 -1.442935-3 —1.99141 -3
4.7%x10"% -5.0953 -4 -1.58455 -3 -—-2.95890 -3 -—-4.5396 -3 —6.2839 -3
-5.0954 -4 -1.5845 -3
1072 -1.08472 -3 -3.38119 -3 -6.34479 -3 -9.81178 -3 -1.373525-2
1.5x107% -1.622852-3 —5.09527 —3 —9.63477 -3 -1.508029-2 —2.14603 -2
-5.0953 -3 -—9.6347 -3 -1.5080 -2 —2.1460 -2
4.7%10"2 -5.1734 -3 -1.70923 —2 —3.5578 -2 -—6.2863 -2 —1.01450 -1
-1.0145 -1
107t —1.15754 —2  —4.443740-2 -1.08362 ~1 -2.12244 -1 -=3.59623 -1
1.5x10°1 -1.86252 —2 —8.12972 —2 -2.095375-1 —4.1201 -1 -6.9115 -1
-8.12973 -2 ~-2.095381~1
4.7x10"!  -9.2006 -1 —-4.5729 -1 -1.1152 —2.0694 -3.3214
1 -2.6548 -1 ~1.1717 -2.7176 —-4.9016 ~7.7231

(33)
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221y M1+s

TABLE IV. Boltzmann-sum phase shifts for the elec-

a; = e 3791 + 2)N. (34) tron-proton system with & in reduced atomic units. Up-
[+ 1)1} Myprp + (/20 +2)N, 514 per data are Numerov’s while the lower are the variable
and phase approach.
Ly [(22+1)1]? |:M21+4+ 2 A
2 = 1 -
FAPRI<3) L M,,, T @I, N . \ ) s
% (-2N Moy —
~Niare 3 107¢ 9.997481 —1 9.99955—1 1.999423 5.000 048
2t+2 1073 9.97481 —1 9.99558—1 1.994238 5.000488
2 N N 1.99423  5.00048
~ 971 VaerratNa2rea) |5 1072 9.9748518-1 9.95610—1 1.943490 5.00515
9.7485 -1 9.956 -1 1.9435 5.0050
. (35) 107! 777941 -1 9.76089—1 2.92535 5.34784
with 9.7607 —1 2.9252  5.3476
° 1 7.70305 —1 10.7381  23.7539
Mu=f ar wr)r*,
0
© r
N, ,= arw@yt | ar’' w@'w'?
R (36)

and
wr)=e"""* /7,

while the attractive potential fulfills the Levinson
relation 6,(0) =#,m, a point already discussed at
length by Rogers.® Finally, in order to test the
absolute accuracy of our calculations, we have
compared our results with Rogers’s previous re-
sults,® for the attractive and repulsive cases
(Tables IV and V). With the introduction of the re-
duced atomic units (Z =1) we get

sight in the relative merits of the different phase-
shift calculations, Moreover, as far as we know
there do not exist any clear formal relationships
between the corresponding approximations. This
point merits further study far beyond the scope of
the present paper. There are certainly difficulties
in our case in view of the various second-order
differential equations used as a starting point

[Eq. (3) for the WKB method,® Egs. (4) and (27) in
the present work]. However, it appears useful if
not necessary to point out some possible relation-

A 2uaE 2a% uv(r) ships. The first one is the obvious functional
ay = e’ €=k = 72 ur)= ne similarity shown by the first-order WKB results

The agreement is excellent, for we get back all
of Rogers’s results.® This is an interesting result
if one recalls that we solve the radial Schrddinger
equation in the Sturm-Liouville form (4) instead of
the expression (3) considered in Rogers’s work.
Moreover, we use two independent approaches
with a different numerical treatment of the long-
range part of the scattered wave function.

V. DISCUSSION

Although the above results look very encouraging,

they do not by themselves provide any further in-

and the phase expression (27). Second, it is of
interest to comment on the relative ease and ac-
curacy of the different techniques. Our methods
(variable phase and Numerov) seem well -suited
for small A, (A, ~15q,) and not too large an energy
(<2 a.u.). They are both accurate, very easy to
handle, and need only a little computation. Al-
though the WKB method® works well in the whole
energy range, it seems quite tedious in the small
energy range. On the contrary, WKB works with
an increasing accuracy when % and ! increase, and
it appears easier to handle. Moreover it allows
the use of the pseudoanalytic sum phase shift

TABLE V. Fermi-sum phase shifts for the electron-electron system with 2 in reduced

atomic units.

Ap

k 1 2 4 6

10-¢ —-1.684308 -5 —4.807558 —5 -1.27943 -4 -2.21229 -4
—4.607 556 —5

1073 —-1.68432 -4 4.80780 -4 -1.27980- -3 —~2.21402 -3

1072 —-1.68588 -3 —-4.83228 -3 -1.315598 -2 —-2.38275 =2
—-4.83227 -3

107! —-1.83525 -2 —-6.89714 -2 -3.356330 -1 —-8.72071 -1
-6.89715 -2

1 -4.97222 -1 -~2.232 09 —-9.014 31
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C 22k A, In(A,F%4.617)
Gt =+ o ¥ 37k ’ (37)

where the top sign*is for an attractive potential
and the bottom sign for a repulsive potential.
These features show the superiority of the WKB
approximation in the large-A,-large-k range be-
cause our methods are not so effective in this do-
main. First, the Numerov method becomes in-
creasingly inaccurate as the number of nodes in
the wave function in a distance on the order of the
potential’s effective range increases, i.e., for
increasing energy and screening length. More-
over, Calogero’s Eq.(27) appears difficult to mani-
pulate numerically when 1>15 [see Eq. (26)]. For
small % values, only a few terms are needed in
the phase-shift sum, and the above limitation does
not play any role. However, it becomes harmful
for large k when the ! sum has to run far beyond

1=15 in order to secure the required accuracy.
This drawback appears to be a serious one for
Ap=15a,.

As a provisional and technical conclusion, we
may state that a clever mixing of the variable
phase method with the WKB approximation should
certainly provide the most valuable techniques for
the evaluation of phase-shift sums, as far as the
accuracy and the elegance of the numerical pro-
cedure are mostly concerned.
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