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Phase shifts of the static screened Coulomb potential
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Phase shifts and their weighted sum over angular momentum are reconsidered for the static
screened Coulomb potential (SSCP). Results are given for both an attractive and a repulsive SSCP. The
numerical results are derived in the present work from two independent and simple techniques based
upon the Numerov method and the variable-phase approach, respectively, applied to the Sturm-Liouville
form of the Schrodinger equation. Special emphasis is given to the high-density low-temperature domain
(A, D & 10 a.u.). Excellent agreement is found with results obtained previously by Rogers using the
&KB approximation.

I. INTRODUCTION II. THE SSCP SCHRODINGER EQUATION

In order to evaluate the statistical properties of
dense two-component plasmas through the two-
body interaction part of the partition function of
interacting Boltzmann particles,

= g(2l+1) g e-E«'"s'

In order to easily check results of Rogers with
simple but still accurate methods, it is convenient
to start from the Sturm-Liouville form of the ra-
dial Schrodinger equation,

(4)

"p

d&, (k) h'k'
dk p

r being measured in units of the Bohr radius, with

(g =reduced mass of the considered pair) we need
to know the bound-state energies E«(attractive
case only) and also the phase shifts &, (k) of the
Schrodinger equation for the static screened Cou-
lomb potential (Debye)

V(r) =~e'e "'"o/r-

Although considerable attention' has been given
to the computation of the eigenvalues E„„equally
important phase shifts have been relatively ne-
glected. In an important recent paper, Rogers'
obtained very accurate &, (k) data through a clever
mixing of the %KB approximation with difference
techniques for the wave functions of the Schro-
dinger equation taken in the form

d'8 I dB, l(/+1) }'dr r dr

We intend to come back to this problem with two
main motivations: first, to confirm and to clarify
the reasons for Rogers's success; second, to ob-
tain phase shifts with an accuracy comparable to
Rogers's results through different but sufficiently
simple numerical techniques to be used by a non-
specialist in the art of solvirig Schrodinger equa-
tions. In view of our special interest in plasmas
with a few particles in the Debye sphere, we focus
our attention on small values of A~ (10&go).

p. being the reduced mass of the interacting pair.
The free solutions [U(r) =0] of Eq. (4) are'

P(r) =krj, (kr) =(2vkr)'~'J; „~,(kr) (5a)

p', (r) =km, (kr) =(-,'mkrP" J,-,~, (kr), (5b)

where

tan&, (k) =B,/A,

and

limp, (r) =C, sin[kr ——,'lm+~, (k)]
&00

In what follows we shall solve numerically the
Sturm-Liouville differential equation (4) with a
wave function iterated until the r value fulfilling

is reached, and then equals it at two distinct .

asymptotic points ri and r, with a free solution.

in terms of the spherical Bessel n, (x) and Neumann
functions n, (x). Therefore, the asymptotic (r ~)-
solutions of Eq. (4) may be written as

g, (kr) =A, krj, (kr)+B,km, (kr)

=C,kr[cos5, (k)j,(kr) —sin5, (k)n, (kr)],
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Therefore the standard procedure yields~

r, y, (kr, )j,(kr, ) -r,g, (kr, )j,(kr, )
r„g,(kr, )n, (kr, ) —r,g, (kr, )n, (kr, )

'

The Sturm-Liouville expression displayed in
Eq. (4) suggests strongly the use of standard dif-
ference techniques. ' For our own purposes, we
found it very convenient to apply the well-known
Numerov procedure to Eq. (4) given as

d2 g
d,—.= [&(r) —e]4(r) = f (r)4(r),

with a discrete mesh of unit step sr and g, = g(j ar},
j being an integer.

III. VARIABLE-PHASE APPROACH

A. Preliminary remarks

A completely different approach to the phase-
shift problem is afforded by the variable-phase
approach, ' which disregards the scattered wave
function. It is a complete and coherent alternative
to the Schrodinger problem based upon the simple
observation that any linear second-order differ-
ential equation may be transformed into an equiva-
lent first-order nonlinear differential equation.
This procedure will enable us to replace the
Sturm-I. iouville equation for the wave function
with a differential equation for the phase shift
alone. This approach is meaningful only for po-
tentials sufficiently regular at r =0 with

1im V(r) = Var ", m & 2,
r~o

(12)

lim(, (r) =constxsin(kr —2lv+5, ).
y~ +0

The angular ambiguity in the definition of ~, is
finally removed by the condition

lim5, (k) =0.
Q-+ m

(13)

B. Phase-shift expression

In order to derive the phase-shift differential
equation, we consider Eq. (4) in the alternative
integral expression

{in this paper we have V, = +8', m =1) such that Eq.
(4) has two independent solutions respectively
proportional to r ' and r'" when r-0. The con-
dition (12) allows us to select a regular solution
satisfying

limg, (r) =const&&r'",
r~O

the asymptotic expression of which defines a phase
shift ~„when it is compared to the asymptotic
behavior of the free solution

r Ps

g, (r) = j,(kr) —— ds[j, (kr)n, (ks) —j,(ks)n, (kr)]

x U(s)g, (s).

j,(x) and n, (x) denote the Ricatti-Bessel functions:

j,(x) = (-,'«)"Z„,(,(x), (15)
n, (x) = (-)'"(k«)"~ (r. t &(x)

(14)

with
&3+1

lirnj, (x) = --- ——,, [1+0(x')],
(2l +1)!!

limn, (x) = -x '(2l —1)!![1+0(x')].

Following Calagero, let us introduce the scattering
functions

tan&, =S,(~)/C, (~), (20)

showing that the asymptotic values of 8, and C,
give, together with the condition lim, „&,(k) = 0,
the required phase shift.

Moreover the behavior of S, and C, at r =0 gives

S, (r) Var
~ (kr)~'"'

„„,C, (r) k'(2l+3 —m) [(23+1)!!j'
while Eq. (20) shows

lim S,(r)/C, (r) = tan&, .
y~ 00

(21)

As a consequence, we are allowed to introduce the
so-called phase function t, (r) =S,/C, (r) vanishing
at the origin and equal to tan5, at r =~.

C. Differential equation for the phase-shift function

%'e differentiate the equations that define the
auxiliary functions S, and C, . We also use Eq. (14)

S, (r ) = -k ' dr' U(r') j,(kr') (, (r'),
wo

r
C, (r) =1 —k ' dr' U(r') r(kr')q, (r'),

0

such that

(,(r) =C, (r)j,(kr) -S,(r)n, (kr)

displays the asymptotic behavior

limp, (r) =C, (~) sin(kr -2!w)
r~~

+S, (~) cos(kr ——,'fm)

obtained with the aid of (x» f)

lim j,(x) =sin(x ——,'fm),
g~ OO

limn, (x) = -cos(x ——,'lw).
ge +CO

Therefore Eq. (19}may be given the form (, =const
&& sin(kr ——,'l v+ &,) with
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CI(~) = k '-U(-r)R, (kr)

x [C, (r)j, (kr) -S,(r)n, (kr)]. (23b)

Now, we multiply the first equation by C, (~) and
the second by S„(&), subtract the second equation
from the first and divide by C', (r). In this manner
we obtain

to substitute in the right-hand side. We thus secure
the following system of two coupled first-order
linear equations

SI(~) =-k-'U(~)j, (k~)

x [C,(r)j,(kr) —S, (r)n, (kr)], (23a)

5I(x) = -k 'U(x)[cos5, (r)j, (kx) —sin&, (x)n, (kr)]'

easily solvable with the aid of the Runge-Kutta
method and a variable step technique for the r
values satisfying inequalities (9).

In order to ease the computation of quantities of
physical interest, we rewrite Eq. (1) after an in-
tegration by parts in the form'

Z. =Q(2l +1)g(e s««& —1)

tI (&) C2
l

k'U-(r) [j,(kr) —t, (~)n, (kr)] ', (24) with

( k)&-& a2/2~rasr
ura o

which is the required equation. This is a general-
ized Ricatti equation, i.e., the simpler nonlinear
differential equation. As is well-known the solu-
tion of a Ri.catti equation need not be bounded, it
may have poles. This may happen in our case too,
as implied by t, (r) =S,(r)C, '(r) and the fact that
C, (&) might vanish. Therefore, we now make a
further step, introducing another function &, (r)
such that

t, (~):—tan&, (~),

y y ltl
( yk)

$2+1

Iim&, (&) = ——'
—,
-- —-- — ———

—.. . (26)(2I+ 3 —m)[(2I+1)!!]'

G (k) = Q (21+1)&,(k),

for the Boltzmann sum phase shift. The sums
(29) are evaluated under the condition that the first
neglected term is smaller than 10 ' times the
sum of the foregoing ones. ' We specialize our
calculations to two important physical systems:
electron-proton ( p, = m, ) and electron-electron
(p, = 2m, ) pairs. In b—oth cases, the quantities of
physical interest, i.e., the scattered wave func-
tion (,(r) in the Numerov method, and the phase
shift function &,(r) of the variable phase are con-
sidered for r~A with

Iim&, (&) = &, (~) = &(.
y~ 00

Inserting Eq. (25) into Eq. (24) we find for 5, (x)
the differential equation

0

(30)

which makes them Ro-independent for n» 7. Gur
G~(k) values' for the electron-proton system are
given in Table I with significant figures common

TABLE I. Boltzmann-sum phase shifts (7t rad) for the electron-proton system withe in a.u.
Each entry A n means 4 x10". The date below the doubl. e straight are obtained only through the
Numerov method.

10 4

10 '

1.5x jL0 3

4.7x10 3

10 2

1.5x10 2

4.7x10 '
10 1

1.5x 10-'

9.99642
9.964
9.9464
9.832 2
9.643 9
9.467 86
8.420 90
7.1398
6,39918

9.999373 —1
9.993 7 —1
9.996 60 —1
9.970 62
9.937 96 —1
9.908 04
9.765 9 —1
9.923 01
1.070 0

1.001 20
1.0120
1.018 00
1.055 49
1.11115
l.1534
1.2800
1.5819
2.0502

1.999 18
1.9918
1.987 76
1.96194
1.921 51
1.888 40
2.0605
3.3346
3.6652

4.999 55
4.9955
4.993 34
4.978 94
4.953 60
4.9269
4.7035
4, 6578
5.244 99

5.000 06

0.47 6.1820 —1 2.034 0

3.795 98

4.3389

8.3974

7.498 93 11.5096

14.800 23,003
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TABLE II. Boltzmann-sum phase shifts (7t rad) for the electron-electron system with k in
a.u. When bvo data are avail. able at the same place, the Numerov resul. t is the upper one while
the lower one is the variable phase approach.

10

1.5x10 ~

4.7x 10 3

10
1.5x 10

—2.167 92 —5
-2.167 927 —4
-2.167 931—4
-3.2518 —4
-1.01895 -3
-2.168 23 —3
-3.2529 —3

10 -2.197 72

1.5x10-'

4.7x10 ~

1

-3.348 26 —2
-3.3482 —2
-1.2011 —1
-2.8993 —1

4.7x 10 2 -1.022 10 —2

-6.7372 —5
-6.737 296 —4
-6.737 301 —4
-1.010 606 —3
-3.167 15 —3
-6.743 51 —3
-1.012 70 —2
-1.0127 —2
-3.229 82 —2
-3.2298 —2
-7.287 73 —2

-1.256 303 —4
-1.256 336 —3
-1.256 337 —3
-1.884 569 —3
-5.908 19 - 3
-1.259 73 —2
-1.895 993—2
-1.895 99 —2
-6.2375 —2

-1.923 02 —4
-1.923 134- 3
-1.923 135—3
-2.884 91 —3
-9.0498 —3
-1.934 16 —2
-2.921859- 2
—2.9218 —2
-1.00646 —1

-1.51743 —1 -2.6452 —1

-4.9631 —1
-1.2010

-1.1586
-2.7487

-2.1151
-4.9336

-1.17219 —1 -2.57785 —1 -4.6563

-2.653 076 —4
-2.653 348- 3
-2.053 329 —3
-3.980 54 —3
-1.2498 —2
-2.680 441 —2
-4.070 83 —2
-4.0708 —2
-1.483 80 —1
-1.4838 —1
-4.16199 —1
-4.162 00 —1
-7,4724 —1

-3.3686
-7.7557

to both methods, thus showing an excellent agree-
ment between the results of the two numerically
independent approaches. The same agreement is
also obtained for the repulsive ease (electron-
electron) shown in Tables II and III for Boltzmann
and Fermi statistics.

The Fermi-sum phase shift for particles with

spin s

G~ =(s+1}Q (21+1}5,(k)+ s Q (2f+I)5, (y)
l, odd l,eve@

Gr'-s g (N 1+)5,(Q)=2Gs 0&0.15
l &even

(22)

Gs =Q(2l+1)a, &"+'(- I+ ,'a, r, k'—) ', k&P.2,
l=o

in the case of strong screening (&a&2ao} empha-
sized in the present work, with important relative
variations eben ~~ ~ Sao. The repulsive sum phase
shifts are seen to satisfy the effective range for-
mula

fulfills the relation

TABLE III. Fermi-sum phase shifts with the caption of Table II.

10 4

] 0 3 -1.0839 —4 -3,368 74 —4

1.5x10 3

4.7x 10 3

10 2

1.5x 10 2

-1.625 96 —4
-5.0953 —4
-5.0954 —4
-1.084 72 —3
-1.622 852- 3

4.7 x 10 -5 1734 —3

-5.053 34 —4
-1.584 55 3
-1.5845 —3
-3.381 19 —3
-5 ~ 095 27 —3
-5.0953 —3
-1.709 23 —2

10
1.5x10-'

4., 7x 10
1

-1.157 54 —2
-1.862 52 —2

-9.2906 —1
-2.6548

-4.443 740 —2
-8.129 72 —2
-8,129 73 —2
-4.5729 —.1
-1.1717

-1.083 96 —5 -3.368 617 —5 --6.281 517 —5
-6.281 515 —5
-6.282 145 —4

-9.4244 —4
-2.958 90 —3

=6.34479 -3
-9.634 77 —3
-9.6347 —3
-3.5578 —2

-1.083 62 -1
-2.095 375 —1
-2.095 381—1
-1.1152
-2.7176

-9.617 092 —4
-9.617 089 —4
-1.442 935 —3
-4.5396 —3

-1.327 012 —3

-1.99141 —3
-6.2839

—.9,81178 —3
-1.508 029 —2
-1.5080 —2
-6.2863 —2

-2.122 44 —1
-4.1201

-2.0694
-4.9016

-1.373 525 —2
-2.146 03
-2.1460
-1.014 50 —1
-1.0145
-3.596 23
-6.9115

-3.3214
-7.7231

-9.615 13 = 5 -1.326 541 —4
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[(2!+I)!]' M„„+(2/2I+2Pr, „„
[(2l +1)!]' M„„2

2"(I!)'(2l + 3} M „2 (2l +1)AP„+2

(34}
TABLE IV. Bol.tzmann-sum phase shifts for the elec-

tron-proton system with 0 in reduced atomic units. Up-
per data are Numerov's while the lower are the variable
phase approach.

with

P
00

M = dr w(r)r"
0

M, g+X
M,s„

2

2) —1 3s2&+2+ 4 2l+

(35)

10" 9.974 851 8 —1
9.7485 —1

10 7.779 41 —1

7.703 05 —1

9.95610—1
9.956
9.760 89 —1
9.7607 —1

10 9.997 481 —1 9.999 55 —1
10 9.974 81 —1 9.995 58 —1

1.999 423
1.994 238
1.994 23
1.943 490
1.9435
2.925 35
2.9252

10.738 1

5 ~ 000 048
5.000 488
5.000 48
5.005 15
5.0050
5.347 84
5.3476

23.7539

00 r
N„~,=

I dr w(r)r~ d 'rw(r')r'",
~0 0 (35)

w(r) =e "~"ojr,
while the attractive potential fulfills the Levinson
relation 5, (0) =n, w, a point already discussed at
length by Rogers. ' Finally, in order to test the
absolute accuracy of our calculations, we have
compared our results with Rogers's previous re-
sults, ' for the attractive and repulsive cases
(Tables IV and V}. With the introduction of the re-
duced atomic units (Z =1) we getI', 2 pa'„8, 2a~~ g V(r)Ur)= 2

The agreement is excellent, for we get back all
of Rogers's results. ' This is an interesting result
if one recalls that we solve the radial Schrodinger
equation in the Sturm-l, iouville form (4) instead of
the expression (3) considered in Rogers's work.
Moreover, we use two independent approaches
with a different numerical treatment of the long-
range part of the scattered wave function.

V. DISCUSSION

Although the above results look very encouraging,
they do not by themselves provide any further in-

sight in the relative merits of the different phase-
shift calculations, Moreover, as far as we know
there do not exist any clear formal relationships
between the corresponding approximations. This
point merits further study far beyond the scope of
the present paper. There are certainly difficulties
in our case in view of the various second-order
differential equations used as a starting point
[Eq. (3) for the WEB method, ' Eqs. (4) and (27) in
the present work]. However, it appears useful if
not necessary to point out some possible relation-
ships. The first one is the obvious functional
similarity shown by the first-order WKB results
and the phase expression (27). Second, it is of
interest to comment on the relative ease and ac-
curacy of the different techniques. Our methods
(variable phase and Numerov) seem well-suited
for small Ao (X~ =15a,) and not too large an energy
(k ~2 a.u. ). They are both accurate, very easy to
handle, and need only a little computation. Al-
though the WKB method' works well in the whole
energy range, it seems quite tedious in the small
energy range. On the contrary, WKB works with
an increasing accuracy when 0 and l increase, and
it appears easier to handle. Moreover it allows
the use of the pseudoanalytic sum phase shift

TABLE V. Fermi-sum phase shifts for the electron-electron system with 0 in reduced
atomic units.

10-4

10
10 2

10

-1.684 308 —5

-1.684 32 —4
-1.685 88 —3

-1.835 25 —2

-4.972 22 —1

-4.807
-4.607

4.807
-4.832
-4.832
-6.897
-6.897

2 t 232

558 —5
556 —5
80 -4
28 —3
27 —3
14
15 -2
09

-1,279 43 —4

-1.279 80 —3
-1.315598 —2

-3.353 30 —1

-9.014 31

-2.212 29 —4

-2.214 02 —3
-2.382 75 —2

-8.720 71 —1
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2X'nk An ln(X~k24. 61 ')
G=+—-o + 9 ~ D

7t 2 nk' 3m'' (37)

where the top sign-"Ts for an attractive potenti. g.l
and the bottom sign for a repulsive potential.

These features show the superiority of the %'KB

approx~mat&on ~n the large-~~-large-0 range be-
cause our methods are not so effective in this do-
main. First, the Numerov method becomes in-
creasingly inaccurate as the number of nodes in
the wave function in a distance on the order of the
potential's effective range increases, i.e., for
increasing energy and screening length. More-
over, Calogero's Eq. (27) appears difficult to mani-
pulate numerically when l&15 Isee Eq. (26)]. For
small k values, only a few terms are needed in
the phase-shift sum, and the above limitation does
not play any role. However, it becomes harmful
for large 0 when the l sum has to run far beyond

E =15 in. order to secure the required accuracy.
This drawback appears to be a serious one for
&D ~ 15ao.

As a provisional and technical conclusion, we

may state that a clever mixing of the variable
phase method with the WEB approximation should
certainly provide the most valuable techniques for
the evaluation of phase-shift sums, as far as the
accuracy and the elegance of the numerical pro-
cedure are mostly concerned.
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