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Rotational resonances in molecular scattering of ultra-low-energy electrons~
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A detailed study is made of the nature of rotational Feshbach resonances in the elastic scattering of
extremely-low-energy electrons by diatomic polar molecules. The bound-state properties of an electron
in the field of a dipole rotator, determined previously, are used in establishing the resonance behavior
of elastic-scattering phase shifts in the energy region below the first rotational excitation threshold.
Feshbach resonances of very narrow widths are found in partial-wave scattering channels with total
angular momenta greater than zero when the strength of the interaction potentials is somewhat less

than that necessary to yield bound states of the same symmetry type, and very much less than those
necessary to yield a "bound state" of the projected Hamiltonian QHQ. The latter implies a non-neg-

ligible value of the resonance energy shift for polar molecules.

I. INTRODUCTION

The existence of rotational resonances in low-
energy electron collisions with simple molecules
has been proposed' to explain anomalies in elec-
tron swarm experiments at very high pre ssure s' '
and in electron-beam transmission experiments
with time-of-flight techniques. ' In these experi-
ments the energy regime is well below thresholds
for electronic or vibrational excitation of the tar-
get system. The existence of temporary negative
ions, or resonances, associated with electronical-
ly and vibrationally excited states of molecular
systems is well known, but no theoretical demon-
stration has yet been made of such states associat-
ed with rotational excitation. Close-coupling re-
sults for e-H, scattering failed to show any theo-
retical evidence for such phenomena, ' though ex-
periments' seem to indicate their presence.

In order to explore the nature of possible rota-
tional resonances in molecular scattering phenom-
ena, particularly for polar molecules, we have
considered the problem of electron scattering by
a simple dipolar system in the energy region be-
low the first rotational excitation threshold. Any
resonances in this energy region must of necessity
be either Feshbach-type" rotational resonances
associated with virtual excitation of the target sys-
tem to a rotationally excited state, or simple shape
resonances associated with the penetration of a
potential barrier in one or more angular-momen-
tum components of the elastic-scattering channels.

The existence of Feshbach-type rotational reso-
nances in electron scattering by a simple dipole
rotator is essentially guaranteed for proper choic-
es of moment of inertia, dipole strength, and elec-
tron energy. The relevant binding properties of
such target systems in various rotational states
have already been well established. " Thus this
provides an ideal system for the present study.

This point has been demonstrated recently by
Bottcher in a model study of electron scattering
by a rotating dipole in which he analyzed a simple
two-state approximation to scattering by a dipolar
system with a hard-sphere repulsive core.

II. METHOD

It has been well established that thermal energy
momentum transfer and elastic cross sections for
electrons on polar molecules cannot be determined
to any reasonable degree of approximation by con-
sidering only the dipole contribution to the elec-
tron-molecule interaction potential. " However,
rotational excitation cross sections show a very
strong correlation with the square of the dipole
moment of the target system and are reasonably
well represented by the result obtained from the
Born approximation. (For highly polar molecules,
where the Born approximation becomes inadequate,
this correlation is destroyed and the rotational ex-
citation cross section is inadequately determined
by the dipole field alone, as is true in general for
the other cases mentioned above. ") Thus for the
purpose of investigating resonances associated
with rotational excitation of polar molecules, the
dipole field is of primary importance in determin-
ing the nature of such phenomena, though for the
case of a real molecule the other contributions to
the interaction potential would strongly shift the
position of any such resonances on a scale of di-
pole strengths and/or incident energy.

We consider a simple dipolar molecular system
which is composed of point charges of opposite
sign, +q, separated by distance R with moment of
inertia I and rotational energy levels Z, =j(j + l)/2I.
(The separation distance has been chosen as R =2s
=0.667ao.") The system has dipole moment D =@A
and is capable of binding an electron to form a
negative ion in a state of total angular momentum
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Here T is the kinetic-energy operator for the pro-
jectile, H„„ is the rotational Hamiltonian of the
target system, and Vis the projectile-target inter-
action potential.

The total wave function %&~ for the electron-tar-
get system having total angular momentum J can
be written as'4

U+JN(r ) g I IM(g s) i'l'(
r (2)

where Vi", (r", s) is the usual coupled spherical har-
monic which is an eigenfunction of the rotational
Hamiltonian and of J'. The vector r designates
the electron coordinate and s is the orientation
vector of the molecular axis. The use of (2) in
Eq. (1) leads to the set of radial equations"

(
(f' P(l'+ 1)

2+ 2
—k)~ V)) r

dr r

J only if the dipole moment exceeds a critical val-
ue D~ as described in an earlier paper. "

We write the total time-independent Schrodinger
equation for the problem as

HC(r, s) =-[7+H,„,+ V(r, s)]C((r, s) =EC((r, s).

fy the familiar relations P+Q =1; P' =P; Q'= Q;
PQ =0. If Eq. (4b) is solved formally for QC( and
the result substituted into (4a) the equation be-
comes

P H„,+7+ V-PH HP —E PC =0.1

H —E
(5)

The term PHQ[Q(H —E)Q] 'QHP is the optical-
potential operator of Feshbach and the remaining
terms make up the close-coupling operator, which
is obtained by retaining only the oPen channels in
the expansion of Eq. (2). Since we are interested
in scattering phenomena below the first excitation
threshold, the optical-potential terms contain all
contributions from rotationally excited states of
the target system. For polar molecules these
contributions are very large. Resonance proper-
ties of Eq. (5) are most easily described by follow-
ing the usual practice of expanding the optical-
potential term through use of the eigenfunctions
of QHQ. Thus we define the eigenfunction C „by

QHQC„(r, s) =c„C„(r,s) .

By using the representation 4„ for the optical po-
tential, Eq. (5) becomes

+ g g p f&(j "I",j'I'; J)V„(r)U( ( (r) =0-.
j" l" p

PH C„C„HP
e —En

(7)

Ui, (r) is the reduced radial function of the scat-
tered electron whose orbital angular momentum
at large distance is l'. The momentum l' couples
to the rotational angular momentum j' of the tar-
get to give total angular momentum J. The coef-
ficients f„(j",I";j'I', J) result from angular inte-
gration over the functions F&~~™and over the angu-
lar part of the multipole component V„(r) of the
interaction potential. "" We use rydberg atomic
units where the unit of length is a„ the Bohr ra-
dius, and the unit of energy is the rydberg, 13.6
eV. Thus kii. =[Ei —j'(j'+ I)/2I]"', where Ei is
the total energy of the system when the target is
in rotational state j. Ei =E,„,,~„„,+j(j+ I)/2I.

In order to discuss resonance structure in the
scattering cross sections which result from solu-
tions of Eq. (3) it is convenient, following Fesh-
bach, " to write the coupled equations (3) formally
as

In the neighborhood of an eigenvalue, say, c„of
QHQ, i.e. , 8= e„ the ith term in (7) becomes
large. If this term is explicitly separated out of
Eq. (7) we have

PHqi C. ,) (C. , i QHPC
E —e.

$

where

~ PHq ~C„)(C„~qHP
F

Equation (8) can be solved formally to give

PC =PC o+ GPHC. () (C (QHP4'),
1

F', —e,
(9)

where G is the Green's function of the operator
H' —E. If Eq. (9) is multiplied through by (C, QHP
and the resulting expression for (C. (QHP) is sub-
stituted back into (9) these manipulations yield

P(H, „,+ T + V -E)E% = -PH Q4,

Q(H... +T+ V- E)QC =-QHPC,

(4a)

(4b)

GPHQC () (C (QHP4'o)P4 =P@o+
F. —e) —~]

where

(10)

where the projection operator P projects onto the
open-channel subspace and Q projects onto the
closed-channel subspace of the total space spanned
by the eigenfunctions of H. These operators satis-

6( =(C (QHPGPHQ4()

is the shift in the resonance energy caused by the
interaction of the closed with the open channels.
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The resonance position is at an energy F. =g, +a,
The "width" can be shown to be

I, =2'~(e, PHQC, ) ~' (12)

and the resonance part of the phase shift is given

by

tang„= —(21';)(E—e, —S,) '. (13)

One may determine approximate resonance ener-
gies by solving Eq. (6), which corresponds to the
elimination of the open channel in the coupled set
(3). However, to obtain more complete informa-
tion about any such resonances, including the en-
ergy shifts b, , and widths I'; of Eqs. (11) and (12),
additional effort is required. For polar systems
the Green's function is not easily obtained and this
approach is consequently very difficult. In addi-
tion, we wish to obtain the range of values of the
dipole moment of a target system which will lead
to resonant structure in a given channel. This in-
formation is important for its implications in elec-
tron scattering by molecular systems and is not
readily available from the results represented by
Eq. (10). Thus, in the present study the coupled
equations (3) were solved directly to obtain de-
tailed information on scattering resonances. In
order to eliminate any ambiguities in the inter-
pretation of these results, the eigenvalue equation
(6) for QHQ was also solved for the special cases
of zero-energy eigenvalues and zero binding ener-
gy in Q space (i.e. , e =Z„where E, is the inelas-
tic threshold energy). The relevance of this in-
formation will be discussed below.

If we consider solutions to (3) in the energy re-
gime below the first excitation threshold, that is,
where E & 1!IRy, then all rotational excitation
channels are closed and only elastic scattering is
possible. The appropriate boundary conditions on
the coupled set (3) for scattering from ground-
state molecules become

V~., (r) ~ n„r'"
pj~, , (y) ~ 0

V,', (r) sin(u, ,~+ f, )

for all j'l',
for j'&0,
for j'=0.

(14a)

(14b)

(14c)

Eigenvaiues of QHQ are obtained by eliminating
the j =0 component in set (3). The appropriate
boundary conditions for this problem are (14a)
and (14b)."

The coupled equations (3) were solved numerical-
ly by starting solutions at the origin through a
Froebenius expansion and integrating outward by
a Numerov integration procedure. Conside ration
was given only to scattering below the first inelas-
tic threshold. In this case all but one of the con-
stants cy» were chosen to give exponentially decay-
ing solutions for the closed channels; that is, to

satisfy (14b). The final constant and the elastic
phase shift 5, were then determined from condi-
tion (14c). Eigenvalues of QHQ were obtained in
a manner analogous to that used in determining
critical dipole moments for electron binding. "
Only the special cases of zero-energy eigenvalues
and zero-energy electron binding were solved,
where the energy was held fixed and the magnitude
of D varied to satisfy (14a) and (14b). The detailed
numerical procedures were identical to those de-
scribed earlier (see Appendix I of Ref. 11).

III, RESULTS
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FIG. 1. 8- and P-wave phase shifts as a function of
dipol. e moment for a fixed energy, E =1x10 Ry. The
target system has moment of inertia I = 1x 104ea 0,
charge separation R =0.667ao, and charges +q such
that D=qR.

In order to get a detailed picture of the behavior
of elastic-scattering phase shifts in the vicinity of
a resonance, we first determine the nature of the
nonresonant phase shifts as a function of dipole
strength. This is the contribution from the II'
term in Eq. (8). Thus we show in Fig. 1 the J =0
and J =1 nonresonant partial-wave phase shifts for
a fixed energy of 1x 10 ' Ry as a function of dipole
moment. The phase shifts increase by 7t rad as
the dipole moment goes through a critical value
for the particular choice of J and I. The lowest
critical moments for J=0-3 are given in Table I
and are indicated in Fig. 1 as D,', D'„etc.

If resonant structure is indeed found in scatter-
ing phase shifts, it is sometimes necessary to look
further to determine the nature of the phenomenon;
for example, whether the observation is that of a
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TABLE I. Critical moments for a rigid dipole rotator
of charge separation 8 = 0.667a 0 and moment of inertia
I =5x10 meao. D is ineao units.

J DC=st(J)Dc DgHg( J)

0.796
0.870
0.907
0.935

3.23
1.06
0.914
0.935

3.22
0.933
0.902
0.928

shape resonance or a Feshbach-type resonance as-
sociated with a real or virtual transition of the tar-
get to an excited state. Since the latter are, by
definition, associated with eigenvalues of QHQ, it
is useful to know something about this spectrum.
It was not feasible to obtain the eigenvalues of
@JIBas a function of D. However, it is quite use-
ful to know the minimum dipole moment of the
present target system which will give a "bound
state" in Q space. Thus the critical dipole mo-
ment necessary to yield an eigenvalue e =0 in Eq.
(6) was obtained for J=0-3. These are tabulated
in column 3 of Table I as Do„'z(J). More useful in
the present context would be information on the
range of dipole moments which yield a lowest ei-
genvalue c, which is below the first inelastic
threshold. This information was obtained by set-
ting 6':Ey where E, is the threshold excitation
energy, in Eq. (6) and solving for the dipole mo-
ment which yields this particular eigenvalue.
These are tabulated a.s Do=„~@'(8) in column 4 of Ta-
ble I. For lower values of 0 the eigenvalues of
QHQ cross over into the energy region above the
first inelastic threshold.

Note that the J dependence of D&„o(J) is rather
different from that of D~. The lowest dipole mo-
ment necessary to bind an electron in the J =0
state in Q space is much larger than the corre-
sponding critical moment D,' for binding to the
ground-state dipole rotator. For j =1 the critical
moment Dz=s'(1) is only slightly larger than D',

and for J=2 the two are almost equal. Note also
the interesting fact that the decreasing trend in

Dos(J) reverses with J =3 with the result that the
critical value for J =2 is a minimum. This behav-
ior can be understood from an examination of two
competing effects in electron binding in Q space.
First, there is the effective decrease in the dipole
field experienced by the electron as a result of ro-
tation. A rotating field source tends to decrease
the average field experienced by a weakly bound
electron, causing a tendency for D,.„-„,„ to increase
with higher J. This tendency is true for DJ and
Do„o(J). Second, in the ca,se of critical binding in
Q space there is an important effect due to the de-
letion of the elastic channel. In the limit of zero
energy all channels are closed, and it is well
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FIG. 2. S-wave phase shift (J= 0) as a function of
energy for target systems of dipole moments D= 0.75,
0.78, 0.85, 1.20, and 1.30eao. The critical. moment
for J=-0 is D', =0.796e, (Hef. 11).

known that each closed channel included in the tar-
get eigenstate expansion (2) makes an added con-
tribution to the electron-target interaction poten-
tial. In the formation of the eigenvalue equation
for QHQ the j=0, l =J orbital is absent from the
coupled equations and as a result the effective
binding is decreased. Thus in the present context
the deletion of the ground-state component of (2)
automatically implies that the dipole moment nec-
essary to yield a zero-energy eigenvalue of QHQ
will be greater than that necessary to yield the
same eigenvalue for the full Hamiltonian. Note
however that as J increases the deleted orbital,
which has l =J, plays a decreasing role in its con-
tribution to the interaction potential. " Thus the
zero-energy critical moments of QHQ and of H
should become indistinguishable for large J. This
means that D„&(Z) must eventually increase with
J for large J, as exhibited by the results of Ta-
ble I.

In Fig. 2 sample results are shown. for the 8-
wave phase shift (f =-0) where the electron is scat-
tered from a ground-state target system. Results
are plotted for several different dipole moments,
both subcritical and supercritical in magnitude.
The energy range is from 10 ' By to the threshold
for rotational excitation of the target system (F.
= 2.0 x 10 ' Ry with the present choice of moment
of inertia). The J =0 partial-wave component
shows no unusual behavior, as is evident from the
figure. For targets whose dipole moments are
less than the lowest critical value for the J=0
state the phase shift goes to zero at zero energy.
For moments greater than D,' the phase converges
to m rad at zero energy, as predicted by Levinson's
theorem. " The results of Fig. 1 indicate that the
critical moment for the existence of a second J = 0
bound state occurs near D =1.30, where the phase
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shift tends toward 2m rad at F =0.
The S-wave results shown in Fig. 2 exhibit no

resonance behavior and would hardly be worthy of
discussion but for a recent study by Bottcher" of
electron scattering by a rotating dipole. In his
analysis Bottcher solved a simple approximate
model for dipolar scattering in which the sum over
angular-momentum states in Eq. (3) wa, s truncated
to include only two terms, and the dipolar field
was simulated through the use of a hard-sphere
repulsive core to remove the point dipole singular-
ity at the origin. In contrast to the present results
for S-wave scattering, his approximate two-state
model gave pronounced resonant structure under
conditions which are exactly analogous to those of
the present study. These were referred to as
"shape" resonances, as opposed to normal Fesh-
bach resonances, which are associated with virtual
excitation to a closed channel. We should note that
there is no centrifugal barrier to be penetrated in
the J=0 partial-wave channel. Thus there is no

possibility of a shape resonance in the usual def-
inition of the term. We also note that no Feshbach
resonance associated with virtual excitation to the

j =1 rotational state of the target is possible for
dipole moments in the range studied here or in
Ref. 12, since the lowest critical moment for such
a resonance is of the order of 3.2ea„as shown in
Table I.

Finally, there is the possibility of a resonance
(or false resonance) in the elastic S-wave channel
when the dipole moment of the target system is
somewhat less than that necessary to yield a real
bound state for the electron-dipole system. " "
The results of Ref. 12 seem inconsistent with this

p roce ss, howeve r, since re sonant structure was
found for both supercritical and subcritical di-
polar systems. We infer that the structure in the
S-wave phase shifts in Bottcher's study is depen-
dent on the approximate model which he solved.

Now consider the higher™angular-momentum
partial-wave components of the wave function for
the electron-dipole system. For each of the J&0
states of the system, an eigenvalue of QHQ exists
for dipole moments which are near the critical
moment for that rotational state of the system (Ta-
ble 1). These lead to ordinary Feshbach resonanc-
es in the energy region below the first rotational
excitation threshold.

Sample results for the J =1 elastic channel (j =0,
/=1 asymptotically) are shown in Fig. 2 for sever-
al different values of D. First consider the re-
sults for a dipole rotator having D =0.85eap This
is just below the lowest critical value for the J=1
state of the full Hamiltonian but some 20%%u~ below
the corresponding critical moment of QHQ. A nar-
row resonance is clearly observed at an energy of
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FIG. 3. I'-wave phase shift (J'=1) as a function of
energy for target systems of dipole moments D= 0.60,
0.78, 0.85, 1,0, and 1,30eao. The critical moment for
J = 1 is D1 = 0.870ea o (B,ef. 11).

1.1x10 ' By with a width of -0.4x10 ' By. In the
case of a somewhat smaller dipole moment, D
=0.78ea„ the lowest eigenvalue e, of QHQ is in-
creased and the resonance occurs at a higher en-
ergy, as shown in Fig. 3. For even smaller D the
position of the resonance moves further up in ener-
gy and finally crosses the lowest inelastic thresh-
old (at E =2x10 ' in our example). Under this
condition the elastic and inelastic cross sections
will be expected to exhibit broader resonances in
the energy region between the first and second in-
elastic thresholds. " In the present example this
occurs for D-0.75ea, .

Now if the dipole moment is increased in mag-
nitude the eigenvalue c, decreases, causing the
resonance to move to lower energies. At the crit-
ical value D =0.870 the resonance moves to E =0
and the phase shift moves up to m rad. This be-
havior is shown in Fig. 3 for a supercritical case,
D =1.0ea, . Finally, at D-1.30, a second eigenval-
ue of QHQ appears and another resonance is ob-
served in the cross section, as shown in the final
curve in Fig. 3.

One characteristic of the resonant P-wave phase
shifts shown in Fig. 3 should be further noted.
Resonant structure occurs for a dipole field which
is considerably weaker than that necessary to sus-
tain an eigenvalue of QHQ in the elastic energy re-
gion. Mathematical difficulties did not allow de-
termination of the lowest eigenvalue, e, of QHQ
for a given interaction potential, which precluded
an exact determination of the resonance energy
shift h. However, it is obvious from Table I that
for D =0.85 the J=1 eigenvalue is greater than E,.
Since the actual resonance energy in this instance
is about 0.9x 10 ~ Ry below the threshold energy
E„ the resonance energy shift b in Eq. (10) is in
excess of 0.9 x 10 ' Ry. This shift is small in ab-
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IV. COMMENTS AND INCI.USIONS

From results of the present model study of rota-
tional Feshbach resonances one can reach some

FIG. 4. S- and P-wave contributions to the elastic-
scattering cross section in the region below the first
rotational excitation threshoM. D = 0.85ea0 and the
lowest inelastic threshold occurs at E = 2 && 10 4 Ry.

solute value but it represents a very large per-
centage change in the resonance energy from that
which would be inferred by taking the eigenvalue
e, as a zeroth-order approximation to the actual
value.

An example of structure in the elastic section in
the region below the first inelastic threshold is
shown in Fig. 4. The J=0 and 1 contributions are
shown separately. The resonance in the J =1 phase
shift leads to a very pronounced peak in the elastic
cross section near E„,„,,„„„.

We thus have the result that, associated with a
given critical moment, a rotational Feshbach res-
onance can occur in a system whose dipole mo-
ment lies within a certain range AD of the critical
value. This range extends from D =0.75 to 0.87 in
the J=1 partial wave for the system just described.
The Feshbach formalism outlined earlier leads
immediately to the conclusion that similar reso-
nances will occur in higher-angular-momentum
states of the electron-dipole system. In the pres-
ent instance one would expect the first resonance
for the J=2 partial-wave component to appear
somewhat below D =0.907ea„ the first for the J=3
component to appear near D =0.935, and so on for
higher angular momenta. Sample results for the
J=2 partial wave confirmed this conclusion.

general conclusions concerning very-low-energy
electron scattering by molecular gases. Rotation-
al resonances associated with real or virtual exci-
tation of the target system from one rotational
state to another are obviously possible and for po-
lar molecules are quite probable. The latter point
is based on the present observation that such reso-
nances are possible over a reasonable "width" of
dipole moments below a critical value and the addi-
tional fact that the conditions for which a reso-
nance occurs are a function of the rotational state
of the target system. Thus the likelihood of reso-
nances in low-energy molecular scattering is in-
creased by the fact that a large number of rota-
tional states of the target gas are usually populat-
ed at room temperature or even lower, and the
conditions for a resonance, which may not occur
in the ground state, may nevertheless be satisfied
in one or more of the other rotational states of the
system. We hasten to add that the appearance of
rotational resonances for our model system having
dipole moments near a critical value does not im-
ply that polar molecules possessing a dipole mo-
ment of comparable magnitude would show a sim-
ilar resonance at the same energy. The dipole
contribution in the total electron-polar molecule
interaction potential has been shown to given only
minimal information on the electron binding prop-
erty or electron-scattering cross sections for
such systems, since other contributions to the in-
teraction potential play a far from negligible role
in these processes. "

An important question which still remains un-
answered is whether similar rotational resonances
exist in low-energy electron scattering by simple
molecules such as H, and N, .' It seems quite rea-
sonable that such phenomena may play a role in
explaining the pressure dependence of electron
drift velocities in some high-pressure drift exper-
iments. The present study clearly indicates that
rotational resonances may exist in electron scat-
tering by a molecular field which is insufficient
in strength to form either a stable negative ion or
an eigenstate of the projected Feshbach Hamilto-
nian. However, it does not answer whether the
nonpolar H, and N, molecules support similar res-
onances. ' One can only infer that the likelihood of
such a phenomenon for these molecules is greater
for angular momenta which are larger than 8 wave.
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