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The atomic-beam magnetic-resonance method has been used to study atoms of the isotopes '"Es and
Es. The parameters of the Hamiltonian which fit the experimental data for "'Es are I = 7/2,

J = 15/2, A = 817.153 (7) MHz, 3 = —4316.254(76) MHz, p,l ——4.10(7)p,z, and g J ——1.1851 38(5).
The spectroscopic nuclear electric quadrupole moment calculated from the g factor is Qs = 6.9(8) b.
For ' " Es the parameters I = 2, A = 1020(12) MHz, and 8 = —2387(160) MHz fit the data. The
magnetic dipole moment and electric quadrupole moment inferred from these values are pl=2. 90(7)p~
and Q, =3.8(5) b. The high precision of the Lande g-value determination was used to calculate an

253atomic ground-state eigenvector. For Es the ratio of the measured A factor to the nuclear
magnetic moment agrees well with the calculations of Lewis et al.

INTRODUCTION

Along with the nuclear spin I and the electronic
angular momentum J, the atomic-beam magnetic-
resonance technique can provide high-precision
determinations of electron g factors and hyperfine
interaction constants, and the direct determination
of nuclear magnetic dipole moments, Such infor-
mation can be very useful in guiding theoretical in-
vestigations of atomic states and their interactions,
and especially in checking the adequacy of numeri-
cal ab initio calculations of atomic parameters.

The extension of this technique to the study of
einsteinium yields the values of atomic parameters
near the extreme limits of nuclear mass and

charge available in the laboratory, and challenges
atomic theory in a region where relativisitic ef-
fects should be very important; it also provides
data that is of potential value to the further de-
velopment of nuclear theory for this region.

I. EXPERIMENTAL DETAILS

The method used in the present study was the
classic atomic-beam magnetic- resonance tech-
nique of Babi et at. and Zacharias' as adapted for
experiments with radioactive isotopes. '

The source oven was made of tantalum metal
and was equipped with an inner, sharp-lipped,
tantalum crucible in which the experimental charge
was loaded. Each loading required a few micro-
grams of einsteinium and about 3 mg of samarium
carrier coprecipitated as hydroxide and heated in
air to the sesquioxide. A few pieces of lanthanum
alloy (10 wt% aluminum to retard oxidation in air )
in stochiometric excess were added to reduce the
oxide and produce neutral einsteinium atoms in
the beam. A small amount of potassium chloride
was placed below the inner crucible, out of con-
tact w'ith the rare-earth mixture, to form a beam

of atoms which could be detected with a surface-
ionization detector and which could be used to
align and position the oven slit for optimum trans-
mission of an undeflected beam through the ap-
paratus.

The collector planchets were made of 0,5 x 1
x 0.03-in. soft steel, They were cleaned and
given a rough surface by tumbling them in a
slurry of sand in methyl alcohol. This treatment
provided collectors of uniform efficiency as can
be observed from the uniformity of background
counts in the resonance shown in Fig. 1.

It was found empirically that if an exposure of
a collector to the open or undeflected beam for
1 min yielded a counting rate of 100 counts/min,
the counting rate at resonance would be sufficient
to attain an adequate signal-to-noise ratio. It
was easy to obtain such a counting rate, but the
beam intensity declined rather rapidly with time,
however, and after an hour or so was only a few
counts per minute. It could be increased by ap-
plying more heat to the oven but could not be made
steady enough to take data in the usual fashion. '
A new collector system was designed so that inter-
pretable data could be collected in the face of this
difficulty.

Twenty collectors were mounted on a spindle
(Fig. 2) so that they could be rotated sequentially
once per second behind the collector slit. The
applied radio frequency was changed stepwise
repeatedly in synchronism with the collectors.
This rapid, repetitive, sequential sampling tech-
nique allows each collector to be exposed to the
same average beam source and obviates the need
for steady oven conditions. That this beam-source
averaging technique is effective is apparent from
the uniformity of the background counts off the
resonance shown in Fig. 1.

Although it was impossible to predict the exact
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counting rate that would be attained, an exposure
of 1 to 2 h, during which period the power for
heating the oven was increased a few times, would
usually yield a counting rate at the center of the
resonance of 0.5-3 counts/min with a signal-to-
background ratio between 1.3 and 3. The 2n +-
particle proportional counters all had background
counting rates of less than 0.1 count/min which
could be subtracted reliably. An overnight count
yielded data of which Fig. 1 is a sample. A single
oven loading was sufficient for as many as a dozen
resonance searches.

The required uniform magnetic field was set
and held by means of a resonance (for which the
radio-frequency power was applied throughout
the run with the same rf loop as for the search
frequency) of either potassium or cesium atoms
in a beam from an auxiliary oven. An electronic
circuit which processed the signal produced by
the alkali beam automatically held the C field
close to its assigned value. The quality of the
data was greatly enhanced by the use of this de-
vice.

II. Es EXPERIMENT

A few resonances at low magnetic field estab-
lished the values of the atomic angular momentum
of the ground state J=-", and the nuclear spin
I =-' which confirm the values obtained by optical
spectroscopy' and decay schemes. ' The reson-
ance frequencies found are listed in Table I along
with their associated magnetic fields. The four
fundamental parameters of the Hamiltonian'

X =AI ~ J +BQ,~ +g~p, ~ J H+gz p, ~I H,

A, B, gJ, and gl, were varied to obtain a least-
squares (l.s.) fit to these data. The difference

~ooo

LECTORS

FIG. 2. Arrangement for exposing 20 collectors se-
quentially and repetitively. The radio frequency used to
induce transitions is synchronously stepped in coordin-
ation vrith the collectors.

TABLE L Observed transitions for 53Es.

E,mp~I' m~ (G)

Frequency
(MHz)

& = 1'obs —~ i.s.

11) 3~
11,-3

4
4, 4

11,-3
4~

4
7, 1

11,—4
11,-4
4, 3
4, 3
4, 3
11,-4
4, 3
4, 3
7, 0

4o.ooo(5)
so.ooo(5)
3o.ooo(5)
4o.ooo(5)
6o.ooo(5)

2oo.ooo(5)
loo.ooo(5)
200.000 (5)
4oo.ooo(5)

45.276(2O)
90.621 (20)
85.00e(2o)

113.500 (20)
170.799(10)
227.200 (20)
28 6.432 (15)
5sl.sse(2o)
616.140(10)

5
-5

3
-14

3
-8

2
-24

15

between the frequency derived by the fitting pro-
gram' and the observed frequency (A= vobis PJ, )
is listed in column 4 of Table I. The parameters
which fit the data best are listed in Table II along
with the calculated goodness-of-fit parameter y'.

Interpretation of the data

The value of g~ =1.185138(5) is much smaller
than 1.198464, which would be expected from a
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FIG. l. Experimental resonance curve for the Zs(F'
=4, m+=4 I =4, m&=3} transition at 60 G.
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4, 4~4, 3
4, 4 4, 3
5, 3~5, 2
4, 4~4, 3
4, 4~4, 3
4, 4~4, 3

5, 3 5, 2

6, 2~6, 1
5, 3-4, 3
5, 3 4, 3
6, 2~5, 2

7, 1 6, 1
8, 0~7, 0

4oo.ooo(2)
400.000 (2)
4oo.ooo(2)
4oo.ooo(2)
600.000 (2)
765.431(3)

1osl.sle(3)
looo. o4o(3)
1140.000 (2)
13oo.ooo(2)

174o.ooo(2)
2000.000 (4)
1500.000(5)

lo.ooo(2)
15.ooo(2)
15.ooo(2)
15.ooo(2)

456.620 (5)
512.160(10)

12oo.5eo(2o)
s56.e7o(2o)

1851.165(15)
2399.976 (30)
24oo.oeo(ls)
3154.734(12)
3572.le 6(2o)
4O12.11S(2O)

4016.72 7 (30)
3790.116(60)
4814.910(30)
4858.660 (10)
5649.18s(2o)
6333.125(2O)
6889.558 (5)

0
-5

-].9
7

-50
-32
-30

23
50

-20
—1
94
16

—10
40

0
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pure I» /2 state with Schwinger, relativistic, and
diamagnetic corrections included. This difference
must be ascribed to mixing from other states of
the same Z. In the f"s' configuration the only
state that would be expected to contribute substan-
tially to the ground state is the 'K»/, state which
is 23 000 cm ' higher. ' The next J»/, state, the
'L,»/„ is not only considerably higher in energy
at 43 000 cm ' above the ground state (GS), ' but
also differs in the total orbital angular momentum
J by 2k, It can thus influence the ground state only
indirectly. The present accuracy of theoretical
and empirical eigenvectors is not high enough to
warrant anything beyond the use of a two-state
model:

This leads to the equation

g J = (1 —rP)(1.200 464)+ q'(1.066 821) —0.002, (3)

where the numbers in parentheses are the L-S
values of g~ with Schwinger correction for 'Iy5/2
and 'K»/„respectively, and the number 0.002 is
a relativistic and diamagnetic correction, the
estimate of which seems reasonable from mea-
surements and calculations on the g~ of fermium. '
The solution of Eq. (3) with gJ assigned the ex-
perimental value is I q I

= 0.3158. That g = -0.3158
follows from elementary perturbation theory and
the fact that the spin-orbit matrix element between
the two states is positive.

Once the value of ri and thus the eigenvector (2)
is known, we can calculate the necessary matrix
elements" for the nuclear magnetic dipole and
electric quadrupole hyperfine interactions. The
hyperfine-interaction constants A and B can there-
by be expressed in terms of the Sandars and Beck
parameters, which have in turn been expressed"' "
in terms of relativistic radial integrals and the
static moments of the nucleus. These radial inte-
grals for einsteinium have been calculated num-
erically with relativistic, self-consistent, Dirac-
Slater wave functions by Lewis et al." The details
of the treatment which uses these integrals is
presented in the Appendix. "

For the present suffice it to say that with this
treatment the nuclear magnetic dipole moment
can be calculated from the A factor in Table II.
The value thus derived is p(A) =-4.08'~. This
should be compared to the direct value obtained
by fitting the parameters of the Hamiltonian to
the resonance data, p, „,=4.10(7)p.„.

The excellence of this agreement is admittedly
fortuitous. The two-component eigenvector is an
approximation that should allow only modest
claims of accuracy. Lewis et al. , though they
should be rightfully pleased with the agreement,

make no claims for such high precision.
These caveats aside, the agreement is encourag-

ing enough so that we are inclined to trust the
eigenvector and the calculations of Lewis et al.
to the extent of using them to estimate the nuclear
electronic quadrupole moment from the B factor
in Table II. The details of this calculation are in
the Appendix.

We find that the j9 factor in Table II corresponds
to a nuclear electric quadrupole moment Q„=6.01
b. This value is still uncorrected for Sternheimer
shielding, ' which has not been calculated. Stern-
heimer has been willing to venture an educated
guess" based on his knowledge of the shielding
for the 4f shell. Because the 5f shell is so large-
ly filled for einsteinium, the sign of 8 is almost
undoubtedly positive. Its value is probably within
the range 8 =0.1+0.1, where the value of the
quadrupole moment with Sternheimer shielding
taken into account, Q„ is related to the urcor-
rected value Q„by the relation

(4)

The best estimate of the spectroscopic quadrupole
moment of Es is then

Q, = 6.7(8) b.

III. Es EXPERIMENT

The details of the '" Es experiment were in the
main the same as those for '"Es. There were,
however, a few important differences. The 39-h
25~ Es decays by P emission to 3.2-h 2"Fm; the
fermium in turn decays by n emission. Because
the 0, counters have intrinsic backgrounds which
are 50-100 times lower than those of our. P coun-
ters, we decided to count the fermium-n decays
as a measure of the '" Es which condensed on the
collec tors.

The '" Es was produced by neutron capture on
"'Es in the HFIR rabbit at the Oak Ridge National
Laboratory. Each sample was irradiated for ap-
proximately 1.7 days in a flux of (3-5) x 10" neu-
trons/cm' sec.

The resultant einsteinium samples were thus not

TABLE H. Hamiltonian parameters that provide the
best fit to the data of TabI.e I. The quoted errors are
standard deviations given by the least-squares fitting
program. {See Ref. 7.)

817.1495(12) —4316.254(76) 1.185 138(5) 4.10{7)p 33

'26 data and four parameters.
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isotopically pure, and the signal-to-background
ratio was reduced from that of the "'Es experi-
ment to values of 1.06-1.5. Figure 3 shows one
of the better resonances found in the" Es ex-
periment. Table III lists the resonance frequen-
cies and associated magnetic fields.

The only valUe of nuclear spin which allows a
fit to the data is I =-2. The value inferred from
nuclear and P-decay systematics is in agreement
with this determination. "

In order to find the parameters of the Hamil-
tonian that give the best prediction of these data,
only the A and B factors were allowed to vary in
the fitting program; g was held equal to the value
1.185 138 obtained in the "'Es experiment, and
the nuclear gyromagnetic ratio was constrained
to be gi(254&&&}=g~(253) A(254m)/A(253).

The best values of the Hamiltonian parameters
and the static moments inferred from theA. »d &

factors for both '"Es and '" Es can be found in
Table IV. Errors are stated in standard devia-
tions.

IV. NUCLEAR MOMENTS

253E

The magnetic moment of odd-A. deformed nuclei
can be calculated from the wave functions of Nils-
son. " I.amm, "using an improved Nilsson-model
Hamiltonian has calculated the '"Es magnetic mo-
ment to be 4.24@.~ if g, for the proton is taken to
be the free proton value 5.59, or 3.65', ~ if g, is
taken to be 0.6 that of the free proton value. "
These calculated values can be compared to our
experimental value 4.10(V)p. ~ shown in Table 11.
Gther measurements of the magnetic moment of

TABLE III. Transitions observed for .Ks.

Frequency'
(MHz)

+ = &ObS-&l.s.

11 5 ii 3
2 &2 2&2
ii 5 ii
2& 2 2&2
11 5 11 3
2& 2 2 &2

ii 5 ii 3
2&2 2 &2

13 3 13 12&29&2
13 3- -'3 1
2& 2 2&2
15

2&2 2& 2

15 1 15 1
2& 2 2& 2

18 3 18 5

2& 2 2& 2

13 3 13
2&2 2&2

50.000 (3) 108.566 (8)

100.000 (3) 217.354 (8)

15O.OOO(3) 326.338{12)

2OO. OOO(3) 435.438(1O)

50.000 (3) 9O.583(3O)

6oo.ooo(3) 1oev. vov (3o)

600.000 (3) 949.784 {20)

4oo.ooo(3) 632.69& (v)

150.000 (3) 196.683 (6)

4oo.ooo(3) 724.790 (25)

"'Es give (3.6+0.4) p, „from optical spectra, '
(3.6 + 0.5)p~ from electron-spin- resonance mea-
surements, ' and (2.7+1 3)g„.from anisotropic
emission by aligned nuclei. "

The measured spectroscopic quadrupole moment

Q, is related to the intrinsic quadrupole moment

q, by [ref. 16, Eq. (17)]

3' -1(1+1)' (I+1)(2I +3}

Both the spin (I) and its projection on the sym-
metry axis (K) are —', for the '"Es ground state.
The intrinsic quadrupole moment of '"Es obtained
from our measurements is 14.3(17) b.

Gptical spectroscopic measurements of '"Es
have provided a measure of the quadrupole-inter-

I
I

45oo—
$ / & W~T l

TABLE IV. The values of the Hamiltonian parameters
that best fit the observed resonance frequencies for
25 Es and 5 ~ Es along with the static moments inferred
from the respective A. and B factors and the calculations
of Lewis et al.

V)l- ~OOO-X

O

lU
l- ~5OO-

APPLIED R F

l

O
O
g)

gl

PIG. 3. Experimental resonance curve for the 254~Es(E
18 .~ 18m&- —-~ ~I —— m& ———& transxtl. on at 400 G.

2 0 2 )

253@s

2.90(V)p~
3.32 (23)
3.v {5)
12.9(16)
2

A (MHz) 81v.153(v) 1O2O(12)
8 (MHz) -4316.254(V6) -238V (16O)

p direct 4.10(7)p &

p inferred 4.08 p~
0, ' {b) 6.01

(b) 6.v(8)
Q, ' (b) 14.3 (17)
I 3.5
J 7.5

1.185138(5)

Spectroscopic quadrupole moment uncorrected for
Sternheimer shielding.

Spectroscopic quadrupole moment.
"Intrinsic quadrupol. e moment.
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action constant B that is much less precise but in
agreement (within 30%%uo) with the value in Table II.
The intrinsic quadrupole moment of neighboring
odd-A and even-even deformed nuclei may be
expected to be similar; the Q, for '"Cf has been
measured at 12.9 b by Coulomb excitation. "

An approximate intrinsic quadrupole moment
may be calculated from

Q, = —,
' eZ//'(I +e/2 + ~ e' -0.302'' ~ ~ ),

where the nuclear radius 8 is 1.2 A' ' fm, Z is
file nuclear charge (99), and e ls the deformation
parameter taken (from Lamm") to be 0.231 for
"'Es. This gives a calculated value for Q, of
12.0 b.

254m FS

The uncorrected spectroscopic quadrupole mo-
ment of " Es obtained from the B value in Table
IV is Q„=3.32(23) b; applying the Sternheimer cor-
rection of Eq. (4), the spectroscopic quadrupole
moment is Q, =3.7(5) b; from Eq. (5) the intrin-
sic quadrupole moment is Qo=12.9(16) b. This too
is in good agreement with the calculated quadru-
pole moment, and measured intrinsic quadrupole
moments of neighboring nuclei. The ratio of
intrinsic quadrupole moments of '" Es and 2"Es
can be obtained with precision since both isotopes
encounter the same electronic structure and both
have the same Sternheimer correction:

formation of P =0.22 (equivalent to e =0.21), are
0.3446, -0.2139, and 3.155.

The resultant calculated magnetic moment for
the "'"Es ground state" Jn[622] —,'; P[633] —,

' }2' is
3.46 p, „. This rises to 4.19p, ~ if g,„and g,& are
taken to be those of the free neutron and proton.
The experimental value in Table IV is 2.87(6)p.„.
Chen' has compared calculated and experimental
magnetic moments for deformed odd-odd nuclei,
and finds that a difference greater than 0.5 p.„is
not unusual.
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APPENDIX

The Hamiltonian for the magnetic dipole contri-
bution to the hyperfine interaction can be written
for a single unfilled shell (nl )" in terms of San-
dars-Beck" effective operators as

IIhf,.&I)=h +[a"1;—(10)' 'a"[s C ']", +a'~s, ] I.

Q'," -(2387 d: 160) 7/2
Q"' -4316.25 15/7

From this we can extract an estimate of the defor-
mation parameter for '""Es (it is & =0.21), and
use it to calculate the magnetic moment of the
odd-odd nuclide '"~Es.

Hooke" has shown that the magnetic moment of
an odd-odd nucleus is calculable from a model in
which the odd neutron and odd proton are each
coupled to the core, but do not interact appreci-
ably with each other:

a" =-,'D(2l+1) '[-4/(/+1)(2l —1)F„
+4/(l+1)(2l+3)F

-(2 l+ 3)(2/-1)F, ], (A2b)

a"= —,'Dl(l+1)(2l+1) '[(l+1)F„lF F, ], --

The values of the parameters a'~ have been de-
rived by Sandars and Beck in terms of integrals of
relativistic radial wave functions:

a"=D(2l +1) '[2l(l+1)F++ +2l(l+1)F +F, ],

(A2a)

I
i odd-odd I ~I [gdP(Sp3) gdn(Sn3) 8l (/p3) +g~] p

(6)

where D = (2

ps'�„/h)(p

z /I)a, ' and

F,,'=-2[ma, (A,. +Z;. , +2)J -'

where g~, g,&, g,„, and g„ the gyromagnetic ratios
for the core, proton, and neutron spins (allowing
a factor of 0.6 for spin polarization), and the pro-
ton orbital angular momentum were taken to be
0.39, 3.35, -2.30, and 1, respectively. The ex-
pectation values for the spin and angular momen-
tum operators (S~g, (S„g, and (/~g, obtained
from the tables of Browne and Femenia" at a de-

(P,Q,'+Q,.P, ,)r ' dr.
0

are the required radial integrals.
For the integrals, I'& and Q, refer to the large

and small components of the Dirac wave function,
respectively, A and Qp are the fine-structure con-
stant and the Bohr radius, respectively, and
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+$2[14 gol 4 @12 + 1 glo]
15 225 15

+ 2q (1-q') '~'(-,', a ") . (A5)

K, =+(j +2) for 1=j+2.
The radial integrals, and thus the a", are the same
for all atomic states within any given configura-
tion. Because of the particular way in which San-
dars and Beck formulated the expression (AS) in
the nonrelativistic limit E„-(r ')„„a"-a„„
&"-a„,, and a"-0, where

s. 1
= (2)2 &u &/I2)(v & /f)&2 '&.

1

The matrix element

&1"SLJfFi(fIX„,,(i+1) I
f "S'L'Jf F'llf)

=hI JA(l "SLJ, l "S'L'J),

where the A(g, P') is given by Eq. (70) of Childs. "
This is the same A. factor that appears in the Harn-
iltonian (1). For

0-If"41
-(1 q2)'l'2I f" I ) 4.2)I f112' i )

direct substitution into the expression for

& (0, 0') =(1 2)')& ('I-l.i2 '~ 12i2) +7)'&('If 12)2 'IC12&2)

+2q(l —q')'"A(4I „g„'K„g,) (A4)

yields

A(4f ) (1 ~2)[4 +01 ~ +1 + 1 +10]

Lewis very kindly supplied calculations of the
I"„'.based on his self-consistent relativistic Dirac-
Slater wave functions. " The values are (essential-
ly the same for point- and finite-nucleus models)
F,+ =9.690, I' =10.698, and I'"+ =10.021.

When these values and the previously determined
value 2) = -0.3158 are substituted into the Eqs. (A2),
and Eq. (A5) is then evaluated in terms of the a",
the result for "'Es is A('I,', y2) =200.6&1 MHz,
where p.» is measured in nuclear magnetons.

An analogous Sandars-Beck effective operator
equation for the contribution of the electric quad-
rupole interaction to the hyperfine-structure Ham-
iltonian is given by Childs. " The radial integrals
fl" (analogous to the a" above) which are used to
parametrize the Hamiltonian are given in terms of
radial integrals over relativistic wave functions
which are appropriate for the quadrupole interac-
tion,

[P, P, ~ + Q, Q,'.]2" ' dr .

The R,.&
i a.pproach (2 ')„, in the nonrelativistic

limit. Lewis has also supplied values of the A&& I."
There is again negligible difference between cor-
responding values calculated for point-nucleus and
finite-nucleus models. The average values are
8,+ =9.8105, 8 =11.10, A+ =10.19. The fac-
tor inferred from these values is 8= -718@MHz

where Q is the nuclear electric quadrupole mo-
ment in barns.
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