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Some time ago, an accurate upper limit on a possible permanent electric dipole moment of the

thallium atom in the 6 'P„, ground state was obtained by Gould. The result was DTl
= [(1.3 ~ 2.4) X 10 " cm]e. In connection with this value, we have carried out a calculation of
the electric dipole enhancement factor R Tl, which is defined as the ratio D Tl /D „where D, is

the corresponding upper limit on a possible electric dipole moment of the (valence) electron. A
value RTl ——700 was obtained, which leads to an upper limit D, = [(1.9 ~ 3.4) &( 10 "cm]e.
This result is, comparable with the value D, & (3 )& 10 cm)e previously obtained by Weisskopf
et al. from measurements on the cesium atom, and with the result of Player and Sandars of
[(0.7 ~ 2.2) ~ 10-"cm]e obtained from the search for an electric dipole moment in the 'P,
metastable state of xenon. All three results set a stringent upper limit on the amount of a pos-
sible violation of T and P invariance in electromagnetic interactions.

I. INTRODUCTION

A few years ago, an accurate upper limit on the
electric dipole moment (EDM) of the neutral thal-
lium atom was obtained by Gould. ' This quantity is
of interest, because as has been shown by one of
us' (P.G.H.S.), the EDM of the thallium atom D, ,

reflects a possible electric dipole moment of the
electron D„and therefore an upper limit on D, is
implicitly determined by the experiment of Gould
on DT, . The enhancement factor which relates
DT, to D, has been introduced (Ref. 2), and is de-
noted by R. Thus DT, =RD, . The factor R arises
from the electric dipole moment in the thallium
core induced by the presumed intrinsic EDM of
the valence (6P) electron. This enhancement effect
is considerable (R is of the order of 100-1000 for
heavy atoms), and it is analogous to the antishield-
ing of nuclear quadrupole moments by the electron
core, which has been extensively discussed and
evaluated elsewhere (ionic antishielding factor

) 3I4

Calculations of R for the EDM of the alkali atoms
were first carried out in Ref. 2. These results
were subsequently verified. " For the case of the
alkali-metal atoms, the values of R of Ref. 2 in-
crease from 0.32 for Na to 24 for Rb and 119 for
Cs. For the case of francium (Z =87), an approxi-
mate value of R =1150 was also calculated. ' These
calculations of Ref. 2 all pertain to the alkali-
metal atoms with a valence ns electron.

The case of Tl is obviously different because
the valence electron is in a P state (6P), the ex-
ternal part of the configuration being 6s'6P. In

D, =[(1.9 +3.4)&&10 "cm]e. (2)

This value is comparable to the upper limit on

D, obtained by Weisskopf et al.' from an accurate

fact, it was precisely this circumstance which
prompted the investigation of thallium since, as
explained in Gould's paper, ' a violation of invari-
ance under T and P (which is necessary for the
existence of an EDM) will be maximized by having
a ground state with L 4 0. Thus, according to
Sachs, ' the violation of T and I' invariance in the
electromagnetic interactions involves a J E in-
teraction, where E is the electric field and J=L

1+ 20'.

A preliminary estimate of R for Tl, RT, , was
made by one of us (P. G. H. S.), namely RT, =200,
and this value was used in Gould's paper. How-
ever, it was clear to Gould and co-workers that an
accurate calculation of RTi was called for, es-
pecially in view of the accuracy of the experi-
mental upper limit for D.„, namely

DT, =[(1.3 +2.4)X10 "cm] e.

It may be noted that an earlier experiment' for
thallium, which did not include a correction for
the motional magnetic field effect, had given a
value more than two orders of magnitude larger,
namely (5&&10 "cm)e.

In the present paper, we give the results of an
actual calculation of RT, . The result is appre-
ciably larger than the preliminary estimate, name-
ly we find that ~Ti =700 +100. Upon using RT,
=700, the upper limit on the EDM of the electron
becomes, in view of (1),
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experim. ent on the cesium atom, namely

~D, ~~(3&&10 "cm)e,

and to the upper limit on D, obtained by Player
and Sandars, "namely

(3)

~D, ~=[(0.7 62.2)x 10 "cm]e. (3a)

Thus with the revised value of R&~ obtained here,
the experiment of Gould' can be regarded as a
major confirmation of the slightly earlier experi-
ment of %'eisskopf et al. ' on the cesium atom, and
of the experiment of Player and Sandars" on the
'P, metastable state of the xenon atom.

In Sec. II, we describe the calculation of R+&,
starting from the basic unperturbed and perturbed
wave functions of the 6P electron of thallium. Fi-
nally, in Sec. III, we give a brief discussion and
summary of the results obtained for the upper
limit on the electric dipole moment of the electron
D~.

II. CALCULATION OF THE ELECTRK DIPOLE
ENHANCEMENT FACTOR A

The dipole perturbations involving the outermost
68 and 6P electrons of the Tl atom are 6~-P,
6P-+, and 6P-d. Since the atoms in the experi-
ment are in the O'P, /, ground state, with J=—„
an excitation of the 6P electrons to nd states (for
which &= —,

' or J =-'„but not Z=-,') is impossible,
by virtue of the conservation of the angular mo-
mentum &. In a similar manner, it can also be
shown that the 6s -P term makes no net contribu-
tion to the dipole enhancement factor R. This
leaves 6P - & as the only contribution to R for the
thallium atom.

For the unperturbed and the perturbed wave
functions, we use the same notation as in Bef. 5.
By analogy with the n&-P excitation of the ns elec-
trons in the alkali-metal atoms, it ean be shown
that for 6P-s in the thallium atom, we obtain

R ~, = —', &'E„u'(6p)u, '(6p - &)
~ Vo~

' dr,

where o.' =e'/Se, F„ is a relativistic correction
factor defined below, and the integral over & is
completely similar to the integral of Eq. (2) of
Ref. 2. The function ut(6p) is r times the unper-
turbed 6P radial function, normalized to 1:

J [ut(6p)] ' « = 1;
0

(5)

uo(6P) was taken from the tabulation of Herman and
Skillman, "who employed the Hartree-Fock-Slater
method" to obtain the wave functions.

The potential V, in Eq. (4) was also obtained from
the tables of Herman and Skillman, " and the de-
rivative dVO/dr was obtained by numerical differ-

where u„' =ut(6P) in the present case. The shielding
function f (r) has been previously introduced in
Bef. 2: " [ ./(z-1)l".[~/g -I)] . (8)

to take into account the fact that the effect of an
external electric field is decreased by a factor I/Z
at the nucleus of the atom (r =0), due to the shield-
ing effect of the core." For e„ the polarizability
of the Tl' core, we used the value 5.2A'=35. 1a~3

obtained by Tessman, Kahn, and Shockley. " %e
note that the factor r on the right-hand side of Eq.
(6) corresponds to the radial part of the potential
gp'cos0 due to an external field 8o.

Returning to Eq. (4), the relativistic factor E„
was introduced in Ref. 2 to describe the effect of
the relativistic corrections to the otherwise non-
relativistic approximation of Eq. (4). The factor
I'„, which was first tabulated by Kopfermann, '6 is
defined as

~ = 3/[p(4p'- l)l, (9)

where p =(1 —o."Z')'' —-0.8066 for Tl (Z =81), giving
E„=-2.321 .

In the solution of Eq. (6) for u,'(6P - s), we em-
ployed the computer program described in Bef. 17.
Near the nucleus (r-0), the inhomogeneous term
becomes negligible, and M,'(6P - s) becomes ap-
proximately proportional to the unperturbed 6+
wave function, u,'(6s). In fact, we find that in this
region, and actually up to r-1a„, we have
u,'(6p —s) =11.5uo(6s), where u,'(6&) is normalized
to 1, in the same manner as u,'(6P) [see Eq. (5)].
At large r, namely r =3.7a„, u,'(6p-s) has an
additional node, so that it has the same number of
nodes as a 7@ wave function.

entiation of Vo over most of the range. Near the
nucleus, where V, is rapidly varying (V,--2&/r),
dV, /dr was obtained analytically as described in
Ref. 5 [see Eqs. (14)-(17)]. In this connection, we
note that the quantity R calculated here is the
equivalent of S~ of Ref. 5, where the subscript 5
pertains to the "shielded ease" of Ref. 2. Thus
the perturbation u,'(6P-&) is obtained as the solu-
tion of the following differential equation:

[-(d'/«') + V, —&,]M,'(6P —&) =~,'(6P)rf (r), (6)

whe re Vp and E, are the unperturbed potential and
eigenvalue, respectively, of the Hamiltonian for
the 6P electron.

The effective values of Vo(r) —E, are actually
obtained from the equation previously introduced
by one of us (R.M.S.)":

1 d2u,' 2
o o= u' dy2

0
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= 308 4E = 716 0 (10)

The functions u,'(6p-s) and u,'(6p) for the Tl
atom are shown in Fig. 1. Concerning f(r), we
note that it has the same general shape as the func-
tions f(r) shown in Fig. 1 of Ref. 5, e~c~pt that it
lies somewhat below the function f(r) for Cs, and
attains the value & at &g, =—&', '=35.1''=3.27a„.

The major contribution to the integral for RT,
[Eq. (4)] arises from the region very near the
nucleus. As a matter of fact, the integral from
0 to r in Eq. (4), to be denoted by I(r), already
attains its maximum value 9.314&&108 at ~ =0.025a„,
at the location of the first node of u,'(6P- s), and
decreases for larger r to its asymptotic value
I(~) =8.686 x10' [which is the integral in Eq. (4)].
The reason for the importance of the region near
r =0 is that the integrand of Eq. (4), to be denoted
by P(r), approaches a constant value at r =0. This
can be easily seen from the radial dependences of
the four factors of P(r), namely

u'(6p) ~ r', u,'(6p - s) ~ r, Vo —-2Z/r,

dVO/dr-+2Z/r', for r-0.
Thus

P(r) ~ r' r r 'r ' =const.

The actual value of P at r =0, P(0), has to be ob-
tained by extrapolation from the results for ~
=0.0025, 0.005, and 0.0075a„, which are the points
in the radial integration of Eq. (4). The values
of P(r) =u,u, ~ Vo~(dV, /dr), in units 10', are as fol-
lows: P(r =0) =1.304; P(0.0025) =1.0065; P(0.0050)
=0.7393; P(0.0075) =0.5153; P(0.0100) =0.342'7.
P(0.0125) =0.2245; and P(0.0150) =0.1416. The
extrapolation to r =0 is quite smooth, as can be
seen by comparing first and second differences.

The result for R is given by

'a'F I( ) =-', o.-'(2. 321)(8.686x10')

We note that even the smallest ~ values which
contribute appreciably to R, namely ~=—0.001a„
correspond to a radius of -5.3&10 "cm, which
lies well outside the radius of the Tl nucleus, &~,

which is approximately given by r~ =1.RA~' F =1.2
&&204'~'~10 "=7.07&&10 "cm. Hence the effects
of nuclear structure on R are expected to be small,
i.e. , we can use the full nuclear potential -2Z/r
Byd at the radii ~ for which the calculations are
carried out.

We also note that an independent calculation
carried out using also the Herman-Skillman poten-
tial, but a slightly different treatment near r =0,
gave I(~) =9.28x10', from which one obtains

ft = fo.'F„I(~) = 329F„=764.0,

which differs by only -7~/p from the result of Eq.
(10).

Finally, we wish to point out that an additional
independent relativistic calculation, using equa-
tions derived by one of us (P.G.H. S.),"gives
R =640.

Thus we may conclude from these three results
that the actual value of R for thallium is =700,
with an estimated maximum uncertainty of +100.
Such a result is also reasonable in terms of the
result for francium (Z =87) previously obtained, '
namely R =1150 for the unshielded case, which
corresponds to R = 800 for the shielded case con-
sidered in the present paper.

In the following, we will use the result RTl =700,
and apply this enhancement factor to the results of
Gould in Ref. 1. As mentioned in the Introduction,
this procedure gives D =[(1.9+3.4)x10 "cm]e
for the upper limit on the electric dipole moment
of the electron [see Eq. (2)). This result repre-
sents a considerable improvement over the upper
limit deduced by Gould on the basis of the pre-
liminary value, R =200.
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FIG. 1. Perturbed @rave function u&(6p s) and the
unperturbed 6P function uo{6P) for the thallium atom.

In the Introduction, we have compared the pres-
ent result for D, , namely [(1.9 +3.4)x10 "cm]8
with the upper limit given by Weisskopf et al. in
Ref. 9, namely [3x10 "cm]e, as obtained from
measurements on cesium, and with the value ob-
tained by Player and Sandars in Ref. 10, namely
[(0.7+2.2)x10 "cm]e. We have thus concluded
that the present limit provides a major confirma-
tion of the independent measurements for cesium
and xenon. Actually, if one considers the detailed
result for cesium, ' that is ~D,-, ~

=[(0.8 +1.8)x10 "
cm]e, and divides by the electric dipole enhance-
ment factor' R(,=120, one obtains



P. G. H. SANDARS AND R. M. STERNHE IMER

D, =[(0. 1 +1.5)&&10 "cm]e, (12) ACKNOW LEDGMENTS

which is a factor of -2 smaller than the present
result obtained from Gould's measurements for
thallium. However, the three results for D, (from
Tl, Xe, and Cs) lie clearly in the same range of
values, and they set a stringent upper limit on the
amount of a possible violation of T and I' invari-
ance in the electromagnetic interactions.
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