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A variational formalism 'for the determination of the spinless single-particle density matrix y(r, r') for
an interacting many-particle system, correct to second order, is developed. The method is based on
variational principles for determining single-particle expectation values, correct to second order, without

requiring highly accurate wave functions in order to represent the interacting system. The expectation
value of the operator X =1'+t Z, where r = (1/2) X,[W(r, ) T, (a) + W(r, ')T, ( a)j,—
Z = —(i/2) X, [W(r, ) T, (a) —W(r~) T,.(—a)], W(r,-) = 5(r„. —r), T,-(a) is a translation operator,
and a = r' —r, is the reduced single-particle density matrix. For a given choice of a Slater-deter-
minant-type trial wave function it is shown that the density matrix may be obtained from the charge

density of the system where the latter too is determined via the same formalism to second order as

the expectation value of the operator W employing the same system trial wave function. The applic-
ability of the technique is then demonstrated by showing that for the model hydrogen-atom problem

it leads to highly accurate results for the momentum density and the Compton profile in the impulse

approximation, and that the virial theorem is closely satisfied, even when the calculations of the various

properties employing an approximate trial wave function alone are substantially in error.

I. INTRODUCTION

In this paper we present a formalism for the
variational determination of the reduced single—
particle density matrix for an interacting many-
particle system without requiring the use of ac-
curate wave functions to describe the system.
Thus a fair approximation to the system wave func-
tion leads to accurate results for the single-par-
ticle density matrix since the variational method
ensures that first-order errors in the system
trial wave function produce only second-order
errors in the density matrix. It will be shown that
in order to obtain the single-particle density ma-
trix within this framework a knowledge is required
of the charge density or, equivalently, its cosine
Fourier transform for spherically symmetric
systems, the latter quantities also being deter-
mined correctly to second order via the same gen-
eral formalism with the use of the same system
trial wave function.

With a knowledge of the N-particle wave function
it is possible to determine single-particle expecta-
tion values for spatially dependent operators from
the particle density in configuration space p(r)
and expectation values of momentum-dependent
operators from the particle density in momentum
space p(k). The expectation values will then, of
course, be correct to the same order as that of the
wave function employed, and hence one would re-
quire accurate wave functions for determining
these expectation values.

A most useful and common method for obtaining
the wave function for a system is by use of the
variational principle for the energy. ' This prin-

ciple, in addition to producing only second-order
errors in the energy, . is a minimum principle and

thus highly amenable to numerical computation.
However, the results for the expectations of other
observables of interest would be accurate only to
the same order as that of the wave function itself.

Recently, variational methods based on the
Delves-Schwartz' ' variational principle have been
developed' ' by the authors for the determination
of the expectation value of single-particle operators
W = P, W(r, ) correct to second order, and the
methods were applied' ' to atomic systems. These
variational principles, rather than being minimum

principles, have stationary points which are gen-
erally saddle points. They depend upon a para-
meterized Slater-determinant-type function as the
choice for the system trial wave function g» and
an auxiliary function P, r which is obtained via a
subsidiary but minimum principle. ' ' The sub-
sidiary functional contains for, (,r, the Hamil-
tonian of the system, and the operator W whose
expectation is to be determined. Thus variational
minimization of the subsidiary functional with
respect to the auxiliary function leads to an equa-
tion for the auxiliary function. Therefore the ex-
pectation value is dependent upon the property of
interest in addition to requiring no further param-
eters other than those employed in the initial
choice of the system trial wave function. With a
reasonable approximation to the trial wave func-
tion it is possible to use these methods to deter-
mine the particle density p(r), which is the ex-
pectation value of the operator W= Q,. &(r,. —r),
or equivalently, for spherically symmetric sys-
tems, the cosine Fourier transform of the charge
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density or form factor which is simply the expec-
tation value of U = Q, cos(k r, ).

Another quantity from which both the particle
density and momentum density may be obtained is
the generalized reduced single-particle density
matrix y&(rf, r' f') defined" as

where f is the spin coordinate, and whose spinless
form y(r, r') is

The density is now the diagonal matrix element of
y(r, r'), i.e.,

and the momentum density is given by the rela-
tionship

p(k) = (2w)-' J e'"' y(FP)e '"'
, 'drd-r', (4)

where p=h'k (5=1).
The primary advantage of the single-particle

density matrix is that for an N-particle system it
enables one to obtain all single-particle expecta-
tion values including the charge density p(r) and
momentum density p(k). However, implicit in its
very definition is the requirement of an accurate
wave function for the N-body system if accurate
expectations are to be obtained. This is precisely
the quantity that one does not know. Here again,
as in the determination of single-particle expecta-
tion values, what is required are variational meth-
ods whereby the single-particle density matrix
may be obtained correct to second order if wave
functions that are correct to first order are em-
ployed. Such a method is described in Secs. II-IV.
This approach is thus quite different from the usual
orbital approximation methods discussed exten-
sively in the McWeeny'~ review article or the oper-
ator formulation" of the single-particle density
matrix based on its interpretation as the kernel of
an integral operator, or the methods whereby the
ground-state properties of an N-interacting-par-
ticle system are obtained by making a variational
calculation using the density matrices themselves
as variational functions. " The latter methods re-
quire guaranteeing that the density matrices used
in the variational calculations are derivable from
some physically sensible N-particle wave func-
tion or, equivalently, that they represent a real
N-particle system together with necessary and

sufficient conditions for such representability. "'"
What is required within the present formalism is
simply an initial choice of an appropriately anti-
symmetrized product of single-particle states as
the trial wave function for the system in addition
to a correct choice of a complex sum of Hermitian
operators whose expectation value is the reduced
single -particle density matrix.

After a brief description of the variational method
in Sec. II, the formalism in a Hartree-type ap-
proximation in which the trial wave function is
assumed to be a Hartree product of single-particle
states is discussed in Sec. III. In Sec. IV the
formalism is extended to exchange-dependent sys-
tems in a Hartree-Fock-type approximation. A

discussion of the relationship of the present work
to the N-representability problem is then given.
Finally the technique is illustrated in Sec. V by
applying it to the model hydrogen-atom problem
and demonstrating that it leads to highly accurate
results for various properties involving the par-
ticle density and momentum density even when the
calculation employing the trial wave function g, r
alone is substantially in error.

II. VARIATIONAL METHOD

The variational methods for the determination of
single-particle expectation values referred to in
the Introduction may be used to determine the re-
duced single-particle density matrix for a system
composed of N identical particles if we consider
the operator

Y= Y= 5'r, T,. a,

where

and where T, (a) is a translation operator such that

T, (a))))(r„.. . , r, , , r„)=)))(r„.. . , r& +a, . . . , r„).

The expectation value of Y is then

l'=y(r, r+a).
If we now let a=r' —r, then

F=y(r, r'),

which is the reduced single-particle density ma-
trix. In exactly the same manner the general
single-particle density matrix y& (r, f; r', g'), where
& is the spin coordinate, may be obtained from the
normalized many-particle wave function
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g(r, g„.. . , r„g„)as the expectation value of the
operator

1 =Rey(r, r').
F= g r) Y'; a P], (10) Similarly the expectation value of the Hermitian

operator Z defined as
where P~(f, r„') is a projection operator which pro-
jects out the appropriate spin component.

Now according to the Delves-Schwartz" varia-
tional principle, the expectation value of an arbi-
trary Hermitian operator X, correct to second
order, is given by the functional

ls

Z= ——[y(r, r') —y(r', r)]
2

=rmy(r, r').

(18)

(19)

where

(12) y(r, r') = 1'+ iZ, (20)

and g,r and g, r are the system trial wave function and
an auxiliary function, respectively. The trial wave
function go„ is an approximation to the exact wave
function g, which satisfies the Schrodinger equation

H(0 =Z(o,

with E being the associated eigenenergy and H the
Hamiltonian of the system.

Having assumed a parameterized g, r with the
parameters being determined by various criteria
such as energy minimization or orthogonality
constraints it is possible to derive' ' a systematic
procedure for the determination of the auxiliary
function P, r, involving the same set of param-
eters, by employing a subsidiary minimum princi-
ple. This involves variational minimization of
the functional

so we require the calculation of expectation values
of two Hermitian operators to obtain the single-
particle density matrix.

III. HARTREE APPROXIMATION

In the Hartree approximation we assume the
trial wave function to be a product of orthonormal
single-particle states, i.e. , P r =g, Q, (r, ), and

g, r to be of the form (,r = +~ f&(r&)for, the choice
of the form being governed by perturbational con-
slderatlons. Then varlatlonal minimization of the
functional M' with respect to the auxiliary func-
tion, subject to the orthogonality constraint of
Eq. (15), leads to a set of coupled integral-differ-
ential equations for the components f,(ri) of the.
auxiliary function. This set of coupled equations'
for the operator F is

subject to the orthogonality constraint

and where h is defined as 8 = &gor~H~(, r&.
However, the operator 1'given by Eq. (5) is not

Hermitian. Moreover, since y(r, r') is in general
complex, there exists no Hermitian operator whose
expectation value yields y(r, r'). Consider, how-
ever, the Hermitian operator

1'=Q & = —Q [W(r, )T, (a) +W(r,')T, (-a)],

where

(21)

(22)

with 8'and a defined as before.
Then

1'=-,'[y(r, r')+y(r', r)],
and since

and where the symbol ( ~ ~ ~ ) ~
means integrationover

all variables except the variable r&. The compo-
nents of the auxiliary function f&(r~) are then ob-
tained by decoupling the equation in two different
approximations. Similar equations obtain for the
determination of the function g» associated with

the expectation value of the operator Z.
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A. First decoupling approximation

In this approximation the coupling term is re-
placed by its value averaged over Q, (r, ). In this
case Eq. (21) reduces to

V, f,„(r.,)+2V,y, r(r,.) ~2 - " - . ~&4~(r~)

I I'(r ) —&)0;(r;)

(r a) }
—(, ~ ~ (r' . —a.)

with respect to the trial wave function g, r. Thus
all that is required in order to obtain a well-
defined component f&r(r&) for the operator F is to
derive the appropriate component fj~(r, , r) for
the operator W.

With the definition of the auxiliary function given
above and employing Eqs. (24) and (25) we can
now calculate the correction terms to ~ and Z by
substituting into Eq. (11) to obtain

= Q PJ"(r)y, (r'.)

x ll(r, —r') —Y!"), (23)

with Y&" and Y& the expectation value of each of
the terms in Y(r, ) and where the additional sub-
script I' in the f, 's is used to indicate that solu-
tion of the above equation leads to components of
the auxiliary function for the operator F. The solu-
tion of Eq. (23} to within a constant is

where

I,.(r) = ( f,,(r, , r)g»lII- Slg,r),
and where we have used a=r'- r,

ReX+i Reix =g

Rey —i Reiy = y.

(2I)

(28)

(24)

and similarly the solution to the differential equa-
tion for the operator Z is

i P, (r+ a.)
fjz(rg) = 2.&;w(r; r—)

-, 4~(r'-a) t
—fyg(r;rr ) (25)

where f&~(r~, r) is a solution to the equation

VJ f&~(rj, r)+2V&f&~(r&, r) ~ ~ ~ =W(r&, r) —
W&

(26)

with W(r&, r) defined as in Eq. (6). However Eq.
(26) is precisely the equation that would have to be
solved if one were calculating the components of
the auxiliary function for the correction term to
a first-order calculation of the charge density via
this formalism. ' Furthermore, as pointed out in
Ref. 7, the first constant of integration in the solu-
tion of an equation such as Eq. (26) for any arbi-
trary operator 8', is governed by the perturbative
consideration that the auxiliary function vanish at
infinity. The second constant of integration is
chosen so as to orthogonalize the auxiliary func-
tion to the trial wave function thus eliminating the
requirement of the energy E of the system. This
latter process, however, is equivalent to replacing
E with the average value of the Hamiltonian taken

Note, however, that the integral given by Eq. (28)
is the integral required in order to obtain the
char, ge density correct to second order. Thus, in

order to obtain the single-particle density matrix
correct to second order within this formalism it
is only necessary to calculate the charge density
correct to second order.

For spherically symmetric atomic systems it
has been observed' that it is easier to obtain the
cosine Fourier transform of the charge density
rather than the density itself by this method. In
other words it is easier to calculate the correc-
tion term with an auxiliary function obtained for
the operator

U(r„. . . , r„,k) = g U(r&, k) = g cos(k r, )

(29)

rather than that obtained for the operator
W= P, 6(r, —r). From the previous discussion it
follows that the components f~~(r, , k) of the auxil-
iary function for the operator U in the first de-
coupling approximation must satisfy the equation

V~~f,.(r„k).2V,.f,.(;, , k) ~

= cosk r& —U&. (30}

From Eq. (30) it can easily be shown that f&~(r&,r)
is the inverse cosine Fourier transform of the

f»(r~, k). This implies that in the general expres-
sion (27) for y(r, r') we replace I&(r) by the cosine
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Fourier transform J,(r) of the contribution of the
jth particle to the correction term for the form
factor F~(k) of the system, i.e. , by

~,.(r) =(I/8n') F,(k)cosk rdk, (31)
V(r-, ) —I;—, y, (r, ), (»)

where

F;(k)=(f,( r, , k)P„IH-&lg„&. (32)

Thus we see that in order to obtain the reduced
single-particle density matrix in those cases where
it is less convenient to obtain the charge density
we first need to calculate the form factor for the
system correct to second order via the variational
method.

B. Second decoupling approximation

For one- and two-particle systems in this second
approximation' we decouple Eq. (21) by treating
the coupling term as a perturbation and initially
neglecting it. We then have to solve the equation

whose solution is

f;y(r, ) =f;r(r, ) —
2

f', (r, ),
(y& - I

(34)

where the f~»(r~) and f~(r, ) satisfy, respectively,
the differential equations

V'J f', „(r,) +2V„.f', „(r,).
i&

[I'( r, ) —I;]y, (r, ) . (35)
r,

and

(35)

Similar equations arise for the operator Z. The
functional y(r, r') in this approximation is then
given as

2Re&k, r&r, IH hl to—r&+i2Re&Ãr&i&IH &I&o—r&

I+He(g' IH-hip )

where the auxiliary functions g', r and $Ir for the
operators ~ and Z are defined as

4gr( Y,z) Q fgr, z(rg)O. T and 41T Z fJ( j)~or.

(3S)

Equation (35) for the components for(rj) of the
auxiliary function Jr& r& is the same as that of
Eq. (23) of the first decoupling approximation.
Hence the arguments in Sec. IIIA for the deter-
mination of y(r, r') from either the charge density
or the form factor are thus equally applicable in
this approximation for the calculation of the nu-
merator in the correction term to (I'+ iZ) of the
functional y(r, r') of Eq. (3'|). The denominator in
the correction term however remains the same for
all operators since the auxiliary function (,'r is
independent of the operator whose expectation is
being determined. '

For many-particle systems in this second de-
coupling approximation one cannot neglect the cou-
pling term since its contribution to the integral-
differential equation increases with the number of
particles. Various methods for approximating the
coupling term are discussed in Ref. 6, the net
result of these approximations being to replace
the denominator in the correction term for y(r, r')
by 1+(2/ ) Ne(Rf', lrHBlg, r& for an N-particle
system.

IV. HARTREE-POCK APPROXIMATION

[A, H] =0, [A, I'] =0, and [A, Z] =0, (39)

variational minimization of the functional I' leads,
as in the Hartree case, to a coupled integral-
differential equation for the components f&(r&)
of the auxiliary function. ' The difference between
this equation and that derived in the Hartree ap-
proximation is the presence of an exchange term
involving the specific operator whose expectation
is to be determined. The expression for the ex-
change term for the operator & is

sr(rj) = g &A&(r~)II'(r;)Ik, (r;)&4&(r;).
spin/ = spin j

As in the Hartree case we begin our discussion
of the variational method in the Hartree-Fock ap-
proximation by considering the expectation value
of the operator I'of Eq. (5). In the Hartree-Fock
approximation for the determination of y(r, r')
we use a Slater determinant of single-particle
states as the system trial wave function, i.e.,

=v'N'AI g„&; g„=Q; Q, (x;); x = r, g, and A is
the antisymmetrizer. '6 The auxiliary function too
is appropriately antisymmetrized in this approxi-
mation: P, r ——vNIAIQ& f, (r, )gs&. Using the. proper-
ty of commutivity of the antisymmetrizer with
both the Hamiltonian, and the operators &, and Z
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The coupled equation is again decoupled in the two
different approximations discussed earlier. Typi-
cally in the first decoupling approximation one has
to solve the differential equation

V', f,„(r,)+. 2V, .f,„(r,). .

S,(r„r)= g & 0;(r&)16(r; - r)l A&(r~)& 4&(r, ).
SP18$ —SPllljf

(48)

The solution to Eq. (41) and the appropriate differ-
ential equation for the operator Z to within a con-
stant are

1 Pq(r+a)f;r(r, ) =
2 f~w(rg, r) (-;Qy( r)

P (r'- a)+ f,w(r, , r')
and

P, (r +a)
f;z(r, )=-2 few(r~ r} (-,I r 'I

=, 0;(r'-a)
few(rg &

r }
y (rt)

where f,w(r, , r) is a. . solution of the equation

2 ~
q 242(rJ)

V,f, (r, )+2V,f, (r, }.~

Q2( rg)

(44)

(46)

=o(r, -r) -W, —Sw(r, ).

(46)

This is the equation that must be solved if one
wishes to obtain the charge density of an exchange-
dependent system via the variational method. The
functional form of y(r, r'} in the Hartree-Fock
approximation is thus the same as that of the Har-
tree ease given by Eq. (27) except that in this in-
stance the integral I&(r) is given as

I;(r) = P(-I)'&f, (r, , r)(„~(II &)P~4„), (47)-
where P is the parity of the permutation and I' the
permutation operator. Therefore, in this Hartree-

(- )
I'(r, ) —I; — "(-') 0;(r;) (41)

for the components f,. r(r&) of the auxiliary func-
tion. However the exchange term S„(r,.) for the
operator & is related to the exchange term Sw(r, )
for the operator W=6(r,. —r) by

P;(r +a), P;(r' a)-
S„(r,)=Sw(r, , r) ' (, +Sw(r, , r') -', ,

)&(r) ,(r'

(42)

I,(r) dr =0. (48)

Using this result and Eq. (27) we obtain Jy(r, r) dr
=N exactly. However, y(r, r') is not exactly N
representable as can be seen from the fact that
Eq. (48) implies that P,. is an eigenfunction of y
with eigenvalue ~; =1. Since there are N different
Q, this leads to Q, X, =N, which saturates the sum
rule for an N-particle system. " Thus the sum of
all other eigenvalues of y must be zero which im-
plies at least one negative eigenvalue (they all
cannot be zero since otherwise y =go where yo
= Y+ iZ) which is impossible for a y that is N rep-
resentable. " However, the derived y is N rep-
resentable through 0(6) as can be seen from the
fact that to 0(6}our result is equivalent to

y(r, r') = Q [4,(r) +P(r)]*[4,(r') +P, (r')],

where P, (r) =- I, (r)/Q,*(r), which corresponds to
a wave function that is a Slater determinant with

elements [P&(r;)+P;(r,)]. Our results in the first
decoupling approximation therefore reduce to those
of Hall et al." for their choice of the set I P, ),
i.e., all P& are eigenfunetions of the same single-
particle Hamiltonian. How'ever, our results are
more general than theirs because all we require
of the set (P,.], are that they be orthonormal which

enables us, for example, to employ wave functions
with different screening parameters for core and

valence states which can significantly improve
the accuracy of calculations of the density matrix

Pock approximation we again use the variational
method to initially calculate either the charge den-
sity or its cosine Fourier transform for spherically
symmetric systems; from it we obtain the single-
particle density matrix. All that is required is an
initial choice of a parameterized trial wave func-
tion P» which need not be a highly accurate rep-
resentation of the exact wave function. Nor does it
need to be correlated. The systematic calculation
of the appropriate correction terms to the first-
order expectations leads to results which are cor-
rect to second order.

Finally, when any approximate method of cal-
culating a density matrix is proposed it is rea-
sonable to inquire whether the result corresponds
to exactly N particles, i.e. , does J y(r, r) dr =N,
and, more generally, is the derived y N repre-
sentable, that is to say, is it derivable from some
N-particle wave function~ The answers to these
questions are easily determined in the following
way.

It follows from Eq. (26) in the Hartree approxi-
mation and from Eq. (46) in the Hartree-Fock ap-
proximation that ff,w(r, , r) dr =0 which implies
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as it does when employing the variational principle
for the energy.

V. APPLICATIGN TO THE MOBKL HYBRQGEN-ATOM

PROBLEM

In order to illustrate the application of this tech-
nique and demonstrate its utility we now apply it to
the model hydrogen-atom problem for the deter-
mination of (a) the Fourier transform of the elec-
tron density, (b) the electron density, (c) the
single-particle density matrix, (d) the momentum
density, and (e) the Compton profile in the impulse
approximation. " Following these calculations we
also discuss how well the virial theorem is satis-
fied within this formalism for this model problem.

%e assume our trial wave function to be of hydro-
genic form with a variable parameter Z, „ i.e. ,

(,r = (Z,'i'/Vzz)e ez".

The results below are in the second decoupling
approximation where the factor D is the denomi-
nator term of Ezl. (37):

D =1+(q,',~e- h~q„&=-', —3/2Z, .

If in these equations D is set equal to unity we ob-
tain the results in the first decoupling approxi-
mation. The expressions for the various proper-
ties are written as a sum of the first-order ex-
pectation value plus the correction term, the form
factor„charge density, and the density matrix
being obtained as the expectations of the operators
U, 8'and X, respectively. The expressions are
as follows.

(a). Eourier transform of electron densily:

E(k) =E(k)+E,(k),

E,(k) =16Z', /(k'+4Z', ),

4(Z, —Z) 16Z,'k'
D (k'+4Z', )' '

(h). Elec(ron density:

p(r) = p (r)+p (r),

p (r) =(Z'/~)e "z",

(z, -z) z', e 'ez"
p, (r) = — ' ' —(3 —2Z, r).

(c). Single-particle density matrix:

y(r, r') =y, (r, r')+y, (r, r'),

y, (r, r') =(Z,'/zz)e "'"'" ',

(z, -z) z'e ~z""' '
l3-Z, (..")1.

(d). Momentzzm density:

p(k) = p. (k)+ p, (k),

32Z~k'
p. ( )- (k, z,.). 1

(z, —z) 32k'z', . 6z';
0 ~(k'+z,')' (k'+z'), '

(e). ComPtozz Profile in imPulse aPPro iima. tion
(Ref. 19):

J(q) == -- —dk = J (q) + 4 (q),
1

"
p(k)

BZ',".(q)- 3„(,. 'z, ):,

{z,-z) 16z,' 5 z;J, (q) -- —'
D ~(q'+z', )' 6 (q'+z', )' '

(q is tlie prolectlon of tile electron moQlentum on
the scattering vector. )

A plot of the variation of the form factors in the
two decoupling approximations as compared to that
of the first-order term for a 10% error in the
variatlonal pal Rmeter ls given 1n Ref. 6. It was
observed. in Ref. 6 that addition of the correction
term to U drastically improved the results. Typi-
cally errors of over 40% in U for large momentum
transfer were reduced to errors of less than a
percent. Over the low and medium momentum
transfer ranges the results of the two decoupling
approximations consistently reduced large errors
in the first-order term to errors which were al-
ways less than 22%. It is expected therefore that
these improvements will be reflected in the re-
sults for the single-particle density matrix and
hence the momentum density since these are ob-
tained from the form factor.

In Fig. 1 we plot the vari. ation of the momentum
densities in the different approximations again
for Z, =1.j. normalized with respect to the exact
result. Here p,~(k)„po„(k) and p„(k) are the re-
sults of the first-order, first and second decou-
pling approximations, respectively. At k =0, a
25% error in p»(k) is reduced to errors of 7%
and 4.4% in p„(k) and po (k), respecti«ly. At k =2,
the error in the first-order term p» is 37% where-
as the errors in p„and p', are 2% and 2.5/o. With
increasing momentum the error in po„continues
to increase rapidly. For & =-3, p~~ is in error by
48% whereas p,» is in error by only 0.16% and the
error in po~, has increased to 6.4%. We therefore
observe that even with the use of a. rather poor
trial wave function the results obtained within this
formalism are a significant improvement over the
first-order calculation.

In Fig. 2 we plot the results for the normalized
Compton profiles in the impulse approximation.
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FIG. 1. Momentum distribution functions for hydrogen
normalized with respect to the exact result assuming
gp~= (Z& jW~)e ~&" with Z& =1.1. Here pp~(k) are the
first-order results and p~(k) and p~(k) the results in the
first and second decoupling approximations, respectively.

FIG. 2. Impulse-approximation Compton profiles for
hydrogen normalized with respect to the exact result
assuming /pe = (Z( /~&)e &" with Z& =1.1. Here Jpz(q),
J&(q), and Jz(q) are the first-order, first and second
decoupling approximation results.

Here +ppf is the first-order term, and ~ and J~
the results in the first and second decoupling ap-
proximations. At q =0, &» is in error by 9%%uo

whereas J~ is in error by 1'%%uo and J„ is correct
to seven significant figures. A 19%%uo error in &,„
at q =1 is reduced to errors of 1.3'%%uo and 1.1'%%,

respectively, for ~„and . The results of the
second decoupling approximation J„may be ob-
served to be accurate over the entire range of q
considered and are more accurate for larger val-
ues of q than the results of J~, but in each case the
addition of the correction term improves the first-
order results rather significantly.

Finally with the expressions for the charge den-

sity and momentum density derived above we ob-
tain the expectation values of the kinetic and po-
tential energies in order to determine to what

degree of accuracy the virial theorem is satisfied.
The analytic expressions for the expectations of
the operators (T) and (r VV) in atomic units are

(T)=(k')=Z, —D '2Z, (Z, —Z),

where, as before, the results (0) are quoted in

the second decoupling approximation, and where
the first term corresponds to the first-order ex-
pectation value 0, and the second to the correc-
tion term. Setting D to unity gives the results in

the first decoupling approximation (0), .
For Z, =1.1 the ratio of the first-order expecta-

tion values of T and 2r, ~ VV is 1.1, whereas the

ratios in the first and second decoupling approxima-
tions are (T),/ —,'(r VV), =0.9900 and (T)/&(r VV)
=1.0043, respectively. Thus even for substantial
errors in the variational parameter the fact that
the expectation values have been obtained correct
to second order leads to the virial theorem being
closely satisf ied.

We are currently employing these techniques to
accurately analytically calculate the single-particle
density matrix for systems containing many inter-
acting electrons.
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