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Necessary and sufficient conditions of separability for fermion wave functions: Theoretical
basis of a group-density-analysis method
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A theorem is proved which gives the necessary and sufficient conditions on the p-particle
reduced-density operator restricted to a functional subspace that ensures the separability of the wave
function of a fermion system. This theorem is the theoretical basis of a general method of analyzing
atomic and molecular wave functions, a method which is able to reveal the existence of somehow chemi-
cally discernible subsystems of electrons.

INTRODUCTION

Quantum-mechanical methods working with group
wave functions' ' have been efficiently used to ac-
count for the ground-state properties of atomic or
molecular many-electron systems, ' ' which can
be considered, from both experimental and theo-
retical viewpoints, as being formed by the union of
cores and bonds localized in some disjoint volumes
of the physical space. All these calculations show
that good agreement with the experiment requires
a careful choice of the mutually orthogonal sub-
spaces in which the group functions are defined.
In particular, the basis functions of these sub-
spaces must be rather well localized in the vol-
umes of the physical space associated with each
bond or core."

On the other hand, the ground-state properties
of a vast class of molecular compounds are still
correctly reproduced by using a group wave func-
tion, although no suitable partition of the physical
space into disjoint volumes can be found either by
theoretical methods or by invoking chemical intui-
tion. This is the case of the planar conjugated
molecules, for which the criterion leading to the
choice of the 0 and 7t functional subspaces is not a
localization criterion but a space-symmetry
one. ~'"

Thus it appears that an atomic or molecular
electronic system, although it is an assembly of
identical strongly interacting particles, can be
considered in many cases as the union of interact-
ing discernible subsystems. That these subsys-
tems are discernible follows from the localization
or space-symmetry features of the whole system:
As the theoretical counterpart, an antisymmetrized
(because of the identity of the particles) product of
proper functions describing each subsystem is a
good approximation of the wave function.

On the other hand, from the analytical viewpoint,

we may reasonably postulate that a.discernible
subsystem can be theoretically revealed in a many-
electron system by investigating the ability of the
wave function to be fairly well approximated by a
separable group function, that is, by an antisym-
metrized product of functions defined in a partition
of the Hilbert space into two mutually orthogonal
subspaces, one associated with the subsystem of
interest, the other with the rest of the system. We
will deduce afterwards that the subsystem is a
localized one if it appears that the basis functions
of the associated subspaee are well localized in a
volume of the physical space.

A general method of analysis of the wave func-
tions can be founded along these lines provided
that answers to the following questions can be
clearly shown theoretically. First, what are the
necessary and sufficient conditions of separability
available for any kind of many-particle wave func-
tion'P Second, how does one characterize quantita-
tively the extent that the wave function to be ana-
lyzed differs from a separable approximation'P

The aim of this work is to solve the first of these
two problems by having recourse to the properties
of the reduc ed-densi ty ope rato rs. Indeed, sine e
we know that a system can be described by a wave
function (pure state) if and only if its density op-
erator is a projection operator, '~ it is tempting to
admit that a subsystem can be described by a
proper function if and only if the density operator
of the whole system, reduced to the number of
particles of the subsystem and restricted to the
associated functional subspace, is a projection op-
erator.

The paper is divided into three sections. In See.
I, some useful concepts are defined and the theo-
rem is precisely stated. In Sec. II, we give the
properties of the reduced density operators of a
special kind of function, the event-type functions.
A proof of the theorem is given in Sec. III.
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I. STATEMENT OF THE SEPARABILITY THEOREM

In what follows we shall use the notion of P-par-
ticle reduced-density operator restricted to a
given subspace S spanned by a set of orthonormal
P functions P . Let P,~ be the projection operator
defined by

p(~) (~) (~) .

then the density operator we are defining is given
by

I
&() )~ p() )p() )p(v) (2)

where p„~ is the P-particle reduced-density opera-
tor deduced from the total n-particle wave function
according to the usual definition and the normaliza-
tion convention proposed by Lowdin. "

Remembering a definition first proposed by Pri-
mas, "we will call a primitive function of the wave
function 4' ")any function 4 " that equals 4' " after
projection into the subspaces of functions totally
antisymmetric or totally symmetric under any per-
mutation of the space-spin coordinates. Thus we
may write

where 6 " is the antisymmetrization operator
Q(tl) (g( ) 1/2 Q ( )ll~

or the symmetrization operator

I(n)
(22 ( )

1/2 /P
according to whether the system is formed by
fermions or bosons. Obviously the primitive func-
tion is not defined uniquely.

We will consider that the one-particle Hilbert
space" can be considered as a direct sum of two
orthogonal sub spa ces,

~(i) ~(x)~ ~(~) p(x). ~(z)
0 ~ Ct

It follows that the P-particle Hilbert space K
defined as a P-fold tensorial product of K ',

(p) ~(x) g, . . .{3~(x) (6)

can be considered also as a direct sum of /+ 1

subspaces,

K(v) $ IK(r)3K(2-l)~

When an element of the partition is particularized
(let us say (t), it is useful to write

K~) = K',"()) K(.-", (6)

where K(2' is defined by Eq. (7) and the orthogonal
subspace K2~ can be derived from Eq. (6).

Putting P = n in Eq. (6), we conclude that any wave
function 4 "ESC " can be developed exactly in terms
of products of functions (t)„" HK2"'and $3(", "'+Ke~" "':

4'"'(1 . . ) = g 8'"'(E c', , l/" (l . .r)
r=O ir jr

x4; '(r+l, . . . n)) (9)

(10)

with

Ie„'"'(1.. . )2)I'dl. . . dn=o, „=pI c", , I',
irjr

The function 4'„'" H K~" K" " is an event-type
function analogous to that recently introduced in the
so-called "loge theory. ""

We will say that 4'"' is P-separable with respect
to the partition X~~ (3K~", ~ of K" if it reduces to
an event-type function (with the well defined P val-
ue of r), the primitive of which can be written as
a simple product of functions g„~)HK~~~) and
, ( -p)~~(n-O)

'VB 8
The aim of this work is to analyze the properties

of the 3'-particle reduced-density operator re-
stricted to a given subspace in connection with the
separa. bility of the wave function. The main re-
sult can be expressed as follows.

Theorem. For any n-fermion wave function
4'"'+ X'"', having a P-particle density operator
p„~), the two relations

and

which means that Ip(„' ]~ is a projector on a func-
tion P„")~K,"',

where

+(r) ~(l) g. . . (3~(»
g 8

and

(7)

are necessary and sufficient conditions of P-sep-
arability with respect to the partition K~ K~" ~'

of $C ", a possible form of the primitive function
Cl(") being the simple product of (()~(' with a function
,],(n -P )~ ~(n -it) )
WB
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II. PROPERTIES OF THE REDUCED-DENSITY OPERATORS

DERIVED FROM EVENT-TYPE FUNCTIONS

defined by 5~"~' ' '"" = 1, for any permutation

Before giving a proof of the theorem, we will
emphasi ze some proper ties characte ris tie of the
operators [p'„~)] representable by wave functions
like those of Eqs. (9) or (10).

The primitive functions used in this work are
always some products of antisymmetrized func-
tions; it is useful to derive an expression of the
operator 6'" in terms of tensorial products of op-
erators working in the subspace BC'" 3C" " . It
can be easily verified that, for this special case,
the kernel of 6 " in the coordinate representation
can be reduced to

if " is the symmetrizer, or by

( 1, for an even permutation

) —1, for an odd permutation,

if 8 " is the antisymmetrizer.
In a first step we consider the following simple

product form of the primitive function

4~" ()1. . . n) = g~„"'(1.. . r)$3~" ")(r+1, . . .n) . (13)

Using Eq. (12), we can write the n-particle wave
function

6" (I. . .n)=(C") '' g g "i" "" I) "(u. . .u) L)~~$'''~II)y~~)(u u )] ~ ~ ~ r

(12)

In this formula, the set (u, . . . u„) is deduced from
the set (1.. .n) by applying the permutation

(. .)

xtl)~" "'(u„„.. . u„) . (14)

Now we use Lowdin's definition" of the kernel of
the P-particle reduced-density operator p „

and

'g~&Q2&''' &Qr

The subsets (u, . . . u„) and (u„, , . . . u„) are submitted
to the conditions = C„[4" (l. . .n)4'* " (1'. . . n'))&)„,) =),„

~ ~ ~

n'=n

x d(/+ 1) ~ dn,

u„y&u„2«' '' u„.
The sum is extended to the Q"„possible ordered
subsets (u, . . .u„). Finally, the factor t) "~' ' '"~ is

together with the expression of 4''" considered
above [Eq. (13)], and we obtain

*)()')(q ~. g r *i) n ~ g g(ui. . .un)g(v~ .. vn)

" (u~. ..u„) (&y &r)

x [q„'"'(u, . . u„)i(tI)". " (u„, ,. . .u„)gg'" (v,'. . .v„')Pg'" "'(v„', ,. . .v„')]()„) q, , d(P +I). . . dn.
~ ~ ~

n'=n

In this double sum, only the terms for which the

subset (1. . .P ) is included in the subsets (u, . . .u„)
and (v, . . .v„) will give a contribution to the kernel

p„~(l. . . f); 1'. . .p') of the operator [p~~)] . These
particular subsets are necessarily of the form

(12. . .p, u„,. . .u„), r & p,

where (u),„«u„)can be chosen among the

(n P) remaining elements (P+ 1, . . .n). There are
exactly C„" ~~ such different subsets (u, . . .u„), the
same being true for (v, . . .v„). If we remark that

for each (u, . . . u„) there is associated one and only
one (u„„.. . u„), we can deduce that all the cross
terms arising between the particular subsets
(u, . . . u„) and (v, . . .v„) just defined will vanish ow-
ing to the strong orthogonality properties" [Eq.
(4)]. There remain the C„" ~~diagonal terms which
contribute equally, so that
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where

p~„(1.. .P; 1'. . .P')

= C„Px" (1. . .P, u~+, . . .u„)

x
icing

" (1'. . .p ') upq, . . .u„) dupq, ~

P.",'(1 p; 1' p')

C

" r~P ir&r cr'~r'

r-p
J„J~PAtgf„'(1 Pi 1 ~ p )

Now we examine the general case [see Eqs. (9)
and (10)]

n

g "(l.. .n) = g g c" g" [tI"I'(1.. . r)
r=o

=2 E(Z" ~ "i )a '', i 0 t''' "p'),
r~ p irir'

(22)

where

Pat; (1.. .p; 1'. . . p')

n

= Q@„'"'(1.. .n),
r=o

where 4'„" is not a normalized function.
We have, by definition,

P."'(1 "p;1'".p')

r, s=o

xd(p+ 1) ~ dn

~ ~ ~

n'=n

(19)

= C„' Q [e„'"'(1.. . n)4',*'"'(1'.. .n')]~, ,), „,

(r)= C, g„; (1.. .p, u~, ,. . .u„)r

x 4I„"'(1'.. .p', u„,. . . u„)du„, . . . du„(23)

is the kernel of a transition P-particle reduced-
density operator. " This formula can be compared
to that of Eq. (18).

On the other hand, if we define

P."„'(1 P;1'. . p')

= Ct [4 „'"'(1.. .n)4 "'„"'(1'.. .n')]&„,~, „,
0 ~ ~

n'=n

x d(P+ 1) ~ dn, (24)

On the other hand, as was shown above, an expres-
sion like

e'"'[q'„",.' (1. . . r)q,'";"'(r+1, . . .n)]

can be replaced by the sum

(20)

(C") ' g g~"x. ~ "n~y&",& (u u )yi" "~(u u )
{Qg'' ' Qr)

(21)

restricted to the C„" ~& subsets (u, . . . u„) conta. ining
(1. . .P). The terms of the double sum in Eq. (19)
which give a contribution to the expression of the
operator [pi~i] are those for which the subset
(1. . .P) is included in the subsets (u, . . . u„) and

(u, . . .u, ). Thus the double sum can be reduced to
the terms for which

Moreover, the cross terms (re s) vanish identically
owing to the strong orthogonality properties [Eq.
(4)), because there always exists at least one point
the coordinates of which appear at the same time
as arguments of functions i(I„" and gs" ' or P„' and
i(is" "', which are strongly orthogonal.

Thus we may write

as the kernel of the P-particle reduced density
operator derived from the n function 4'„", we can
rewrite Eq. (22) in the form

p."n'(1 P 1' P') = Q p.",,', (1 P; 1' P'), (25)
r —p

Trp~i; =C„6"(p) (26)

then we can derive from Eq. (22) an expression of
the trace of the operator j„P~

where the kernel p„~„~(l. . .P; 1'. . .P') can be derived
from the one just defined in Eq. (24) by restriction
to the subspace X~P'.

It can easily be verified that the matrix repre-
senting the operator p„„ in the subspace X is
block diagonal with respect to the partition X~P

SX~p = X ', so that a diagonalization of each block
separately yields the eigenvalues. The same is not
true, however, for the operator p„P~, because the
interaction of different events (re s) causes the ap-
pearance of nonvanishing cross terms.

We know [Eq. (23)] that, within Lowdin's normali-
zation convention,
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Vr[[l„"'), = P( QIC', , I') C,'
r —p i»J»

=g u„c„',
p

where, according to Eq. (11),

()(„=Q l
c",„,„l'-o,

(27)

(28)

vanish, excepting the one corresponding to the
identity permutation. We conclude that

([)!,,); - 1 , (34)

whereas the upper bound for (p„'); is —,'n."
The upper bounds can easily be obtained in any

case by considering that they are realized for
event-type functions of extreme type, according to
the definition given by Coleman. " Thus we find

that, for X'2)eK")

(35)

n„& 1.

If we compare Eq. (27) with Eq. (25), we conclude
that

Tr[p„"„'1,= a„c'„. (28)

We will conclude this chapter with a few remarks
on the bound conditions for the natural occupation
numbers of a P-particle reduced-density operator
represented by an event-type function.

For fermion systems, we use the approach pro-
posed by Coleman. We start from the inequality

(p!,,);-c;. (38)

III. PROOF OF THE SEPARABILITY THEOREM

where the symbol f'x] represents the greatest in-
teger less than or equal to the real number x, and
we deduce immediately the inequality of Eq. (34).

For boson systems, we know that a full conden-
sation of particles is allowed; the upper bounds
are also realized for event-type functions of ex-
treme type, and, in the conditions of the preceding
example, we obtain

(p() ( c[ (x(2)x (n ()
l

~(n)
l

x-(P) (n-2)} (30)

where y;p is the natural p function associated with
the eigenvalue (pt);, X;" ' is the conjugated natural
n —P function and 4 " is the antisymmetrizing pro-
jector (n! ) '~26("); equality is obtained if and only

&f?

@ ")(I.. . n) = 8(")[X;)'(I. . ~ p)X;~ ~ (p+ 1 n)]

We suppose that the n-particle wave function is
p-separable with respect to a partition R~p SK~~" p

of K

~'"'(I. . ) = f)'"'[[!"'(I p)[!'" "(&+I )1

where

,I,( p)~~( p), /, (?? p) ~ ~(?? p)
WA -- n ~ Y'B (pi

With the aid of Sasaki's formula ' we obtain

(p.'), - g (-I)"c"c." &(x';"x';" "l v. l
x';"x';" "), (32)

?A =0

where m„ is a permutation operator which inter-
changes u of the p variables in y;p with u of the
n —P variables in X&" P. Dropping the negative
terms, one obtains the rough upper bound"

y„")(.. .2. . . )g("-"(.. . f. . . ) d2=O.

Putting r =P in Eq. (18), we obtain immediately
the expression of the kernel of [p(' 1;

p; I' . p') = p",'(I. . .p; I'. . . p')

p/2
(p[l) (g C2!IC2u ( ()l) . (rl-2)

l
v

l

(2) (n -2))
Q =0

(33)
We deduce that

q([) (I p)g( )( (i Ipl)

Let us now consider the even-type function 4'„",
with )'~ p. From Eq. (31) we know that the upper
bound can be attained only if y,.P y;" P E X" X" "

However, in this ease, a certain number of terms
in Eq. (33) vanish identically because of the strong
orthogonality properties. Therefore, in general,
the upper bounds will be smaller than usual for
event-type functions.

As an example, it is easy to verify that, for
2" = 3, P = 2, and X(,

"~ X~2), ail the terms in Eq. (33)

which shows that [p(~)] is just the projector on the
P function [!~~'E R2". This establishes the direct
proposition of the theorem.

Qn the other hand, let us suppose that the follow-
ing relations

T [p!"1,=1, (37)

([p.'"1.)' = [p.'"1., (38)
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hold for the P-particle reduced-density operator
[p„'"],restricted to the subspace 3C,~'.

The general expression of p„ in terms of natural

P functions X; is'

p = p '
p ~0 + 39

where (p~), ~ 1 in order to agree with the normali-
zation condition (44).

Then, the more general orthogonal transforma-
tion which connects the basis of natural P functions

and the basis formed by the union of the func-
tions a„~ E K~~ and a, RKz~, is represented by the
square matrix T,

Using this and Eq. (2), defining [pi' ], we obtain

N

I p."'],= g (p.');(p'."I x';"&(x';"
I
&',") (40)

p(0) g(P) g(g )

P

It is always possible to expand P~ in terms of a
set of orthonormalized P functions a„" forming an

N, -dimensional basis for the subspace K,",

(p0) 1/2 0

C2l C2 g ~ ~ ~

CNl CN2o ~ ~

0 0. . .

CBNa

I

I

Cl,N +l
I

I

C2,N +l
I

I

NN, N, N +1
+

I CN+l, N + l
I

a
I

~ }
~

I

(48)

especially chosen in order to diagonalize [p„'~i],
in this basis

fP'" I„=g PA)~I +~I') Io',")(~"'~I,
fl =l f=1

(42)

where

cl, = (a',"
I xl")

and

(43)

0&pic& I' I, vf

whereas for any other values of p, (p, 41) we have

g(p.'); I
c';„I'=0

4= l

The normalization condition accounts for the fact
that every natural P function y';~) does not necessar-
ily have a projection into X~~~); we suppose there
are only N such functions.

Considering Eqs. (37) and (38), we deduce that
there exists a given value of p (let us say p, = 1)
for which

c,.„=Q, 'tt'v & N„. (49)

Then the vectors c; (1 &i &N, ), which form with

the vectors c,. an orthonormal basis set, must have
components such that

c]~=0, g p. &N~ (50)

Thus, in this case, the transformation matrix T
is block diagonal; as it is a unitary matrix, we
deduce that for i = 1

lg lP

and for p, =1

where N, is the dimension of K~~ and N is the num-
ber of natural P functions y;~ which have a nonvan-
ishing projection into X&~ .

%e deduce immediately that N~N, ; in the op-
posite case, the number of X;~' functions having a
vanishing projection into 3C~~ would be greater than
the dimension of K(e~ and thus nonlinearly indepen-
dent. At this stage, the more general relation
connecting the matrices R(x) and R(a), which rep-
resent p„' in the two basis sets (X, X] and (a, a),
respectively, is represented in Fig. 1.

Let us examine, first, the case N=N, . The com-
ponents of the vectors c, (j &N, ) are such that

Moreover, if we take into account the bound condi-
tions (39) and (44), we deduce that the more gener-
al solution is

It follows from Eq. (45) that

(52)

(p.'), '
I c„l' I c&, l' (p.'),

I c I'
I
c ,I'

I0

and from Eq. (43) that

g(0) y(P &

l ~l

This last relation means that, in the case of inter-
est, the natural P functions X, , corresponding to
the eigenvalue (pt)„belong to Re~i. Finally, we
remark that the matr.'x R(a) is block diagonal, too.
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11

0
P1

0
i0
I

I

FIG. 1. General relation connecting the matrices R(g) and B(a).

Let us now examine the case N )N, . In order to
realize the more general situation symbolized in
Fig. l, we must consider the wave function to be
a sum of event-type functions, so that nonvanish-
ing cross terms with respect to the partition
R~~i $3C-' =X ~ can arise in the matrix R(a). At
the same time, we must impose that [see Eq. (37)]

(55)

then, using Eqs. (27) and (29),

Tr[p„'"]„=g Tr[p„"„']„=g n„C,'=1.

Such relations can be satisfied only if

which implies that in the development of the wave
function both classes of terms, those having r&P
and those having r(P, must be introduced simul-
taneously in addition to the term r= p.

I.et us work in the basis [a} which diagonalizes
the operator [pi~i] [Eq. (42)]. In order to agree
with the general situation of Fig. 1 again, the diag-
onal elements must be given by [see Eq. (38) and
Eqs. (45) and (46)]

ppg puu I ppu I (62)

holds for the elements of any reduced-density ma-
trix,"we conclude that the matrices representing
the operators [p„' ] and [p!'„'], must be simultane-
ously diagonalized in order to realize the general
situation of Fig. 1. If we remember now that a
diagonalization of [p!')] yields the eigenvalues of
p„, we see, from the Eqs. (53) and (29), that there
necessarily exists an eigenvalue

(p„' „),= o.„C'„, vr p. (63)

This condition is compatible with the bound condi-
tions for the eigenvalues of a boson system, but
not at all with that of a fermion system, as shown
by Eqs. (35) and (36).

Thus, for a fermion system, we have only to
consider the case N=N, studied above. As the val-
ue of (pt), obtained in Eq. (53) is the greatest pos-
sible, we conclude, taking account of Eq. (31), that

4'"'(I . n) =X',"(I P)X',
" "(i +1 n), (64)

where )(,"E,Ke', according to Eq. (54), and y," ~

HK p, since C " ~X~ (NSC p . This achieves
the proof of the theorem.

For boson systems, however, no conclusion can
be given.

(pn)p=6pg ~ (58) DISCUSSION AND CONCLUSION

(59)

Comparing Eq. (59) with (56), we are led to the
conclusion that

and consequently that

(pn, r)p=o~ &p ~1 ~

Since we know that the inequality

(6o)

(61)

In such a basis the matrices representing the oper-
ators [p!~i]„are not diagonal a gvriori. However,
from Eqs. (25) and (58), we obtain a relation satis-
fied by their diagonal elements (p„' „)~,

It seems to us particularly interesting to empha-
size the following points.

First, we have shown that the bound conditions
on the eigenvalues of a P-particle reduced-density
matrix representable by an event-type function
alone are more restrictive than the classical bound
conditions" derived for any sort of totally antisym-
metrized wave function. The upper bounds are
found to be the same only if we consider the limit-
ing-case event-type functions 4,'"' or 4„'"'defined
in the trivial partitions X ' BC" or 3C" (3K~ of
(~)

Now, as we have pointed out from the beginning,
a great number of calculations on atomic or molec-
ular systems show that their ground-state wave
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functions are correctly approximated by a separa-
ble function which is a kind of event-type function.
This implies necessarily that the occupation numbers
of the natural P functions usually encountered in the

study of this class of systems never reach the clas-
sical upper bounds foreseen by the theory. Indeed,
the study of the two-particle reduced-density ma-
trices representable by an atomic or molecular
wave function reveals that the order of magnitude
of the greatest eigenvalues is about unity. "

On the other hand, some considerations of these
bound conditions can lead, in some special cases,
to the selection of the only convenient event-type
function. For instance, in the theory of supercon-
ductivity some wave functions of extreme type are
used so that the classical upper bounds for the
two-particle density matrix are reached"; clearly,
only a limiting-case event-type function defined in

the trivial partition of the Hilbert space is suitable
for such a wave function. The impossibility of
finding any proper partitions of the number of par-
ticles and of the Hilbert space other than the trivial
ones can be considered as further evidence of the
well-known collective and delocalization features
of the superconductivity phenomenon.

When the wave function 4'"~ is P-separable with

respect to the partition X~'8C{ ~ of R", we have
shown that the P-particle function it~, which enters
in the expression of the primitive function 4 ", is
also a natural P function. This suggests that, when

there is no degeneracy of the occupation numbers,

the p-natural analysis will yield the best group of
P functions, P ', for the system of interest

The main point is, however, the valid ity of the
theorem for any fermion system regardless of the
kind of wave function used. Henceforth we are
able to decide if the system can be represented by
a separable function and consequently to bring to
light the existence of a subsystem.

Naturally, a fermion wave function is in general
a linear combination of event-type functions. As we
have pointed out in the Introduction, the problem
is now to define a procedure which allows us to
determine quantitatively to what extent a separable
function alone can give a good approximation of the
wave function; this will be investigated in a later
paper. Nevertheless, the method of analysis
founded on the above theorem is simple to handle";
the idempotency is immediately revealed after
diagonalizing the matrix representing the P-parti-
cle reduced-density operator restricted to a given
subspace. Moreover, the dimension of this matrix,
characteristic of the subspace, does not depend on
the size of the whole system.
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