Higher-order relativistic contributions to the Zeeman effect in helium and heliumlike ions*

M. L. Lewis and V. W. Hughes

Gibbs Laboratory, Physics Department, Yale University, New Haven, Connecticut 06520 (Received 12 August 1974)

The higher-order relativistic contributions to the Zeeman effect in triplet states in helium and heliumlike ions have been calculated to order $\alpha^3 \mu_B H$.

We have recently given a calculation of higher-order relativistic contributions to the Zeeman effect, to order $\alpha^2\mu_BH$, in the $2\,^3P$, $2\,^3S$, $3\,^3P$, $4\,^3P$, and $5\,^3P$ states of helium and the $2\,^3P_1$, $3\,^3P_1$, $4\,^3P_1$, and $5\,^3P_1$ states of the helium isoelectronic series from Li II through Ne IX. In this addendum we calculate the contributions to the Zeeman effect of order $\alpha^3\mu_BH$.

The higher-order corrections to the g factor are contained in g'_s . To order α^2 , we find $\alpha^{1/2}$

$$g_S' = g_S - 2\alpha^2 \left(\frac{1}{3} \langle T \rangle + \frac{1}{6} \langle 1/r_{12} \rangle\right), \tag{1.1}$$

where g_s is the gyromagnetic ratio of the free

electron, T is the total kinetic energy of both electrons, and r_{12} is the interelectron distance. Equation (1.1) agrees to order α^2 with a new result, including terms to order α^3 :

$$g_S' = g_S \left[1 - \alpha^2 \left(\frac{1}{3} \langle T \rangle + \frac{1}{6} \langle 1/\gamma_{12} \rangle \right) - (\alpha^3/4\pi)E \right],$$
 (1.2)

where E is the nonrelativistic energy eigenvalue. Table I presents the relativistic corrections to the g factors in helium and heliumlike ions calculated from Eq. (1.2) with the matrix elements of T and $1/r_{12}$ computed by Accad, Pekeris, and Schiff.⁴ We have neglected terms of order $\alpha^2(m/M)$ because they contribute less than $10^{-9}g_S$ to g_S' .

TABLE I. Relativistic contributions, to order α^3 , to the g factors of helium and heliumlike ions. $[(g'_s/g_s)-1]\times 10^6$ is tabulated

•		α^2	α^3	Total			α^2	α^3	Total
He Li ⁷ n	2^3S	-40.99161	0.067 27	-40.92434	C ¹² v	$2^{3}P_{1}$	-387.3344	0.6563	-386.6781
	$2^3 P$	-40.23112	0.06596	-40.16516		$3^{3}P_{1}^{1}$	-349.4486	0.6004	-348.848 2
	3^3P	-37.56075	0.06364	-37.49711		$4^{3}P_{1}^{1}$	-336.2971	0.5811	-335.7160
	4^3P	-36.647 17	0.06285	-36.58432	1	$5^{3}P_{1}^{1}$	-330.2236	0.5723	-329.6513
	5^3P	-36.22979	0.06248	-36.167 31	N ¹⁴ vi	$2^{3}P_{1}$	-529.5585	0.9005	-528.6580
						$3^{3}P_{1}$	-476.7218	0.8205	-475.9013
	$2^{3}P_{1}$	-93.760 64	0.15547	-93.60517		$4^{3}P_{1}$	-458.3569	0.7929	-457.5640
	$3^{3}P_{1}$	-85.95823	0.14628	-85.811 95	1	$5^{3}P_{1}$	-449.8845	0.7801	-449.1044
	$4^{3}P_{1}$	-83.27375	0.14313	-83.13062	O ¹⁶ VII	$2^{3}P_{1}$	-693.9692	1.1834	-692.7858
	$5^{3}P_{1}$	-82.04195	0.14168	-81.90027		$3^{3}P_{1}$	-623.7174	1.0700	-622.6474
						$4^{3}P_{1}$	-599.2766	1.0374	-598.2392
Be ⁹ iii	2^3P_1	-169.4401	0.2837	169.1564		$5^{3}P_{1}$	-587.9959	1.0201	-586.9758
	$3^{3}P_{1}$	-154.0680	0.2633	-153.8047	F ¹⁹ VIII	$2^{3}P_{1}$	-880.5670	1.5050	-879.0620
	$4^{3}P_{1}$	-148.7560	0.2563	-148.4997		$3^{3}P_{1}^{1}$	-790.4354	1.3638	-789.0716
	$5^{3}P_{1}$	-146.3128	0.2531	-146.0597	-	$4^{3}P_{1}^{1}$	-759.0559	1.3149	-757.7410
						$5^{3}P_{1}^{1}$	-744.5677	1.2923	-743.2754
B ¹¹ IV	$2^{3}P_{1}$	-267.2958	0.4507	-266.8451	Ne ²⁰ IX	$2^{3}P_{1}$	-1089.352	1.865	-1087.487
	$3^{3}P_{1}$	-241.8976	0.4147	-241.4829		$3^{3}P_{1}$	-976.8761	1.6870	-975.1891
	$4^{3}P_{1}$	-233.0968	0.4023	-232.6945		$4^{3}P_{1}$	-937.6951	$\boldsymbol{1.6252}$	-936.0699
	$5^{3}P_{1}$	-229.0430	0.3966	-228.6464	1	$5^{3}P_{1}^{2}$	-919.6000	1.5966	-918.0034

- *Research supported in part by the Air Force Office of Scientific Research, under AFOSR Contract No. F44620-70-C-0091.
- $^{1}\text{M. L.}$ Lewis and V. W. Hughes, Phys. Rev. A $\underline{8},\ 2845$ (1973).
- W. Perl and V. W. Hughes, Phys. Rev. <u>91</u>, 842 (1953).
 Grotch and R. A. Hegstrom, Phys. Rev. A <u>8</u>, 1166 (1973).
- (1973). ⁴Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A <u>4</u>, 516 (1971).