Higher-order relativistic contributions to the Zeeman effect in helium and heliumlike ions*

M. L. Lewis and V. W. Hughes
Gibbs Laboratory, Physics Department, Yale University, New Haven, Connecticut 06520

(Received 12 August 1974)

Abstract

The higher-order relativistic contributions to the Zeeman effect in triplet states in helium and heliumlike ions have been calculated to order $\alpha^{3} \mu_{B} H$.

We have recently given a calculation of higherorder relativistic contributions to the Zeeman effect, to order $\alpha^{2} \mu_{B} H$, in the $2^{3} P, 2^{3} S, 3^{3} P$, $4^{3} P$, and $5^{3} P$ states of helium and the $2{ }^{3} P_{1}, 3^{3} P_{1}$, $4^{3} P_{1}$, and $5^{3} P_{1}$ states of the helium isoelectronic series from LiII through Ne IX. ${ }^{1}$ In this addendum we calculate the contributions to the Zeeman effect of order $\alpha^{3} \mu_{B} H$.

The higher-order corrections to the g factor are contained in g_{S}^{\prime}. To order α^{2}, we find ${ }^{1,2}$

$$
\begin{equation*}
g_{S}^{\prime}=g_{S}-2 \alpha^{2}\left(\frac{1}{3}\langle T\rangle+\frac{1}{6}\left\langle 1 / r_{12}\right\rangle\right), \tag{1.1}
\end{equation*}
$$

where g_{s} is the gyromagnetic ratio of the free
electron, T is the total kinetic energy of both electrons, and r_{12} is the interelectron distance. Equation (1.1) agrees to order α^{2} with a new result, ${ }^{3}$ including terms to order α^{3} :

$$
\begin{equation*}
g_{s}^{\prime}=g_{S}\left[1-\alpha^{2}\left(\frac{1}{3}\langle T\rangle+\frac{1}{6}\left\langle 1 / r_{12}\right\rangle\right)-\left(\alpha^{3} / 4 \pi\right) E\right], \tag{1.2}
\end{equation*}
$$

where E is the nonrelativistic energy eigenvalue. Table I presents the relativistic corrections to the g factors in helium and heliumlike ions calculated from Eq. (1.2) with the matrix elements of T and $1 / r_{12}$ computed by Accad, Pekeris, and Schiff. ${ }^{4}$ We have neglected terms of order $\alpha^{2}(m / M)$ because they contribute less than $10^{-9} g_{S}$ to g_{S}^{\prime}.

TABLE I. Relativistic contributions, to order α^{3}, to the g factors of helium and heliumlike ions. $\left[\left(g_{s}^{\prime} / g_{s}\right)-1\right] \times 10^{6}$ is tabulated.

		α^{2}	α^{3}	Total			α^{2}	α^{3}	Total
He	$2^{3} S$	-40.99161	0.06727	-40.924 34	$\mathrm{C}^{12} \mathrm{~V}$	$2^{3} P_{1}$	-387.334 4	0.6563	-386.6781
	$2^{3} \boldsymbol{P}$	-40.23112	0.06596	-40.16516		$3^{3} P_{1}$	-349.448 6	0.6004	-348.8482
	$3^{3} P$	-37.560 75	0.06364	-37.49711		$4^{3} P_{1}$	-336.2971	0.5811	-335.716 0
	$4^{3} P$	-36.647 17	0.06285	-36.584 32		$5^{3} P_{1}$	-330.223 6	0.5723	-329.6513
	$5^{3} \boldsymbol{P}$	-36.229 79	0.06248	-36.167 31	$\mathrm{N}^{14} \mathrm{VI}$	$2^{3} P_{1}$	-529.558 5	0.9005	-528.658 0
						$3^{3} P_{1}$	-476.7218	0.8205	-475.9013
$\mathrm{Li}^{7}{ }^{7}$ II	$2^{3} P_{1}$	-93.760 64	0.15547	-93.605 17		$4^{3} P_{1}$	-458.3569	0.7929	-457.564 0
	$3^{3} P_{1}$	-85.958 23	0.14628	-85.81195		$5^{3} P_{1}$	-449.8845	0.7801	-449.104 4
	$4^{3} P_{1}$	-83.27375	0.14313	-83.13062	$0^{16} \mathrm{VII}$	$2^{3} P_{1}$	-693.9692	1.1834	-692.785 8
	$5^{3} P_{1}$	-82.04195	0.14168	-81.900 27		$3^{3} P_{1}$	-623.7174	1.0700	-622.647 4
						$4^{3} P_{1}$	-599.2766	1.0374	-598.2392
$\mathrm{Be}^{9} \mathrm{III}$	$2^{3} P_{1}$	-169.440 1	0.2837	- -169.156 4		$5^{3} P_{1}$	-587.995 9	1.0201	-586.975 8
	$3^{3} P_{1}$	-154.068 0	0.2633	-153.804 7	$\mathrm{F}^{19} \mathrm{VIII}$	$2^{3} P_{1}$	-880.567 0	1.5050	-879.062 0
	$4^{3} P_{1}$	-148.7560	0.2563	-148.499 7		$3^{3} P_{1}$	-790.4354	1.3638	-789.0716
	$5^{3} P_{1}$	-146.312 8	0.2531	-146.059 7		$4^{3} P_{1}$	-759.055 9	1.3149	-757.7410
						$5^{3} P_{1}$	-744.567 7	1.2923	-743.275 4
B^{11} IV	$2^{3} P_{1}$	-267.295 8	0.4507	-266.8451	Ne ${ }^{20}{ }_{\text {IX }}$	$2^{3} P_{1}$	-1089.352	1.865	-1087.487
	$3^{3} P_{1}$	-241.8976	0.4147	-241.4829		$3^{3} P_{1}$	-976.8761	1.6870	-975.1891
	$4^{3} P_{1}$	-233.096 8	0.4023	-232.6945		$4^{3} P_{1}$	-937.6951	1.6252	-936.069 9
	$5^{3} P_{1}$	-229.043 0	0.3966	-228.646 4		$5^{3} P_{1}$	-919.600 0	1.5966	-918.003 4

*Research supported in part by the Air Force Office of Scientific Research, under AFOSR Contract No. F44620-70-C-0091.
${ }^{1}$ M. L. Lewis and V. W. Hughes, Phys. Rev. A 8, 2845 (1973).
${ }^{2}$ W. Perl and V. W. Hughes, Phys. Rev. 91, 842 (1953). ${ }^{3}$ H. Grotch and R. A. Hegstrom, Phys. Rev. A 8, 1166 (1973).
${ }^{4}$ Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A $\underline{4}$, 516 (1971).

