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Starting from interatomic potentials and static radial distribution functions, a self-consistent iteration
scheme has been used to calculate velocity autocorrelation functions in liquid metals. The interatomic
forces are treated directly. The calculation bypasses the details of the many-body dynamics and it is
not necessary to introduce any additional parameters. Several simplifications may be used without
introducing appreciable deviations. The results are in good agreement with computer experiments on
liquid sodium at 383 °K, suggesting that the velocity autocorrelation function may be a simpler quantity

than previously supposed.

I. INTRODUCTION

By combining the electron theories of metals
and the distribution function theories of liquids,
March, Paskin, and their co-workers'™* have
obtained the static radial distribution functions
g(») (also known as the pair correlation functions)
and the interatomic potential V() for liquid metals
from x-ray and neutron diffraction data (v is the
interatomic distance). In this paper, a procedure
is developed for the calculations of velocity auto-
correlation functions in liquid metals.

The time-correlation formalism, developed by
Kubo, Zwanzig, Green, and others,> ' has been
extensively used to describe atomic motions and
transport properties. Because of the many-body
interactions, explicit calculations of autocorrela-
tion functions are difficult. It is often necessary
to introduce additional parameters to describe the
interactions between the atoms and the environ-
ment.!*"!® These parameters cannot easily be
related to either V(r) or g(r).

We propose a self-consistent or iteration scheme
such that a detailed knowledge about the many-
body dynamics may not be necessary. The proce-
dure has been applied to liquid sodium and our
velocity autocorrelation functions may then be
compared with the computer experimental results
of Schiff,?® and Paskin and Rahman®** with satis-
factory agreements. We will use ®(¢) =(V(0)V(¢))
for the velocity autocorrelation function and
¥(t)=®(t)/®(0) for the normalized (or reduced)
velocity autocorrelation function with ¥(0)=1,
where v, ¢, and the angular brackets denote veloc-
ity, time, and a canonical ensemble average, re-
spectively. Zwanzig, Gaskell, and others”:2:'7
have formulated the many-body problem into an
integro-differential equation with memory function
K:

av

t
= +£K(T)\I/(t—‘r)d7=0. a)

This equation may be regarded as a generalized
Langevin equation,?' the memory function being a
generalized viscosity or frictional parameter.

We will focus our attention on one of the parti-
cles, defined as particle 0, and classify the par-
ticles in the fluid as follows: (a) particle 0; (b) its
nearest neighbors numbered as ¢ with ¢=1,2,...,x,
where n is the total number of nearest neighbors
(n~12); (c) all other particles forming a back-
ground. We will single out the interatomic forces
F,, exerted on particle 0 by its nearest neighbors
and approximate all other interatomic forces by a
memory function K. The motion of particle 0 may
be described by Newton’s equation

Ta Y Fo=-2 . @
1 1

The units are chosen such that the mass m of the
particle is unity (m =1). Since V(») is short ranged,
and the forces from the outer-shell atoms tend to
cancel each other, only the nearest-neighbor forces
are expected to be important. We may also use a
slightly modified form of (2):

av, -
_‘%Q =Z f{O = *Z-foi ’
i i

v s o (3)
f0=F - (Fio)e ’

where (F,), is the force ¥, at the equilibrium dis-
tance. Usually (fw)e is a weak repulsive force and
I(E,),l=1V'(a@)|, a being the nearest-neighbor dis-
tance derived from g(»). We choose the initial
velocity ¥,(0)=U at £=0. On solving (2) or (3),

we may define the function ¢ and ¢ for the zeroth
particle:

dlu, £) =T Vy(t), P, t)=dlu, £)/u?. (4)

The functions ¢ and § may be regarded as the
velocity correlation function and normalized veloc-
ity correlation function for particles with a speci-
fied initial velocity u#. It is then necessary to aver-
age over the Boltzmann distribution to obtain ®(¢)
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and ¥(¢):

Bt < o 00, e P
- f: e-u?/ U2 gy
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S e vtdu

S() S wlu, t)Plu)du
®0) f:P(u)du ’

where U = (2kT)'/? is the most probable velocity of
the Boltzmann velocity distribution, P (u)=ute™*”/ Y
represents a probability distribution, and %2 and T
are the Boltzmann constant and temperature. The
maximum value of P(x) occurs at #=v2 U. The
median value is 1.47U for P (u).

Similarly, for particle ¢, we have

av - =
at =Zfat=foi+z-{ub 6)
o a#o

where the nearest neighbors of particle ¢ are de-
noted by a, one of them being particle 0. We will
now replace Eaﬂ;f’ai by the sum of a generalized

friction term and a fluctuating force K(t); thus (6)
may be written as follows:

(5)

W(t)=

%:ﬂi— ftK(T)Vi(t—T)dT+K(t). (7)

In (1) and (7), the memory functions involve » and
n —1 nearest neighbors; since n~12, the differ-
ence is expected to be negligible. We also have
assumed that K is independent of initial velocities.
For liquid sodium, we did find that §(u, t) was only
slightly dependent on u (see Fig. 4). The statistical
properties of the fluctuating force K(t) have been
reviewed by Chandrasekhar?' and others.

II. SELF-CONSISTENT PROCEDURE

A self-consistent or iteration procedure may now
be developed. For an arbitrary initial choice of
T then K may be evaluated from (1). With
¥,=1 and other initial conditions, (2) and (7) may
be solved simultaneously to give ¥(«, t) (numerical
time integration will be performed, proceeding
from time ¢ to t +At). On canonical averaging over
various values of u, ¥‘*)(¢) is obtained from (5).
The iteration may then be repeated to obtain ¥,
¥@ . until self-consistency is reached.

Qur first iteration starts with an arbitrarily
chosen ¥ (¢). It is well known'~* that the static
radial distribution function g() has a very sharp
maximum at the nearest-neighbor distance a. The
initial configuration would be very close to a spher-
ical nearest-neighbor shell of radius a surrounding
the zeroth particle. Approximating this configura-
tion by either the face-centered cubic or hexagonal
close-packed structure,?® we have 12 nearest

neighbors, i=1at 6=0, i=2 at 6=7, {=3,4 at
6=w/2, i=5,...,8 at 6=7/3, and i=9,...,12 at
9:27r/3, where 8 is the colatitude angle in the
spherical coordinate system. Because of the sharp
maximum of g(r), we will neglect the correlations
between g(») and u.

For small deviations from the equilibrium con-
figurations, the harmonic (small vibration) ap-
proximation may be used. Since many vibrational
modes are excited at liquid temperatures and these
vibrational modes have random phases, there is
no velocity cross correlation between neighboring
molecules:

(7,(0) 7,0)) _
(70(0) 7,000 " ®)
Hence we may use the initial condition {(¥,(0))=0.
We will now consider the case of # along the +z
direction (other cases will be discussed later). It
is well known that the interatomic force V'(7) is
strongly repulsive (“hard core”) for small dis-
tances and is relatively weak at large distances.
We expect fw to be the dominating term in (2);
hence we may approximate ¥, for i=2,...,12
without introducing appreciable errors. From (4),
it is only necessary to consider the z component of
the forces for the calculations of ¢ and ¥.
Let us now consider particle 2. The canonical
average of (7) may be written as

i%l _f, - fK(T)WZ(t _ 1)) dr. ©)

The solution of (9) will give us the average velocity
(¥,) and the average position (z,). It is also neces-
sary to consider the diffusion effects. For an
arbitrary initial choice of ¥ (¢), the diffusion
coefficient D is given by®*°®

D =kT fwwm(t)dt. (10)

Let p,(z,, t) be the probability (not normalized) of
finding particle 2 at position z, at time ¢{. With a
weak force ?02, then we get free-particle diffusion
about the average position z,,

pz(zzs t)=e" (zz-<12))2/4Dt‘ (11)

From the probability p,(z,,t), the force F, is
given by

fpz(zzy t)V’(ZO —Zz)dzz
[b5(25, 1) dz, :

Along the directions perpendicular to the 02
interatomic vector, the diffusion effects should
not influence foz significantly, and hence they have
been neglected. Similar equations may be written
for _150,. for i=3,...,12.

To obtain the position of particle 1, it is neces-

F,(t)= (12)
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sary to solve (7), with an initial value v,(0) (and
then average over the Boltzmann distribution
later). However, it is difficult to solve (7) in gen-
eral.?® We will solve (7) by numerical integration
from time ¢ to £ +At. Following the notations of
Chandrasekhar,?! the effect of the fluctuating force
A(t) over the time interval (¢, ¢ +At) is given by its
integral B(at):

- trAt
B(At)=f A(e)de. 13)

The probability of occurrence of different values
for B(Al) is then governed by the unnormalized dis-
tribution function w:

w = o~ DBYRPTE 0t 14)

The integral B(At) represents the velocity change
over the time interval (¢, f +At) due to the fluctua-
ting force. Although the initial position and veloc-
ity of particle 1 are fixed, they will spread out
later because of the fluctuating forces.

The procedure may be summarized as follows:
We start with an initial configuration of particle 0
surrounded by its nearest neighbors, =1 at 6=0,
i=2at 6=m, etc., ¥=a. An arbitrary ¥ (¢) was
chosen, and K‘°(¢) and D may be calculated from
(1) and (10). Using diffusion for ¢=2,...,12 as
given by (i1), we solve (2) and (7) simultaneously
with the initial velocities V,(0) =U along the z axis
and v, (0) for particles 0 and 1, respectively; after
averaging over the Boltzmann distribution of v,,
the new velocity autocorrelation function ¥ (¢) is
obtained from (4) and (5). The procedure is then
repeated to obtain ¥ (¢), ¥ (¢), etc., until self-
consistency is reached.

A convenient initial choice for ¥(®(¢) is the Gaus-
sian form

T () = 752, (15)

where s is an arbitrary constant. This choice
satisfies the general conditions for ¥(¢):

¥(0)=1, ¥(0)=0, ¥(©)=0.

In this procedure, we have assumed that (1, ¢)
is independent of the direction and magnitude of 4.
Furthermore, our computational task would be
greatly eased by several plausible simplifications:
(a) The interatomic forces from particle 3 to 12
cancel each other and have very little effect on the
velocity autocorrelation function of particle 0,
since these particles are far away from the z axis.
(b) The fluctuating force A(t) for particle 1 aver-
ages out and does not change the velocity autocor-
relation function of particle 0; thus (7) may be re-
placed by

av, - ¢ .
o =fm-f K()¥,(t -7)ar. (16)
0

(c) The effects of the Boltzmann distribution of
v,(0) also average out to zero as far as the velocity
autocorrelation function of particle 0 is concerned.
That is, as an initial condition, we may use

v,(0)=0 at ¢=0. an

However, it is difficult to prove our assumptions
and our simplifications. Hence the procedure will
be applied to liquid metals and the effects of our
assumptions and simplifications may be assessed
directly. Our results may also be compared with
computer experiments.

II. RESULTS

The procedure will now be applied to liquid
sodium at 383°K. We use 0=3.24 A as the unit
of length, the mass of the sodium atom # =3.82
x1072% g as the unit of mass, and 107!3 sec as the
unit of time. Then we have 27 =0.0132, U =0.162,
and V2 U =0.23. In these units, the interatomic po-
tential V(7) for 0<7<1.5 is

V() =0.0204[(A7"3 + Br~5) cos2ky
+(Cr~* +DY"®) sin2kr 4 E eF =€ /r0] | (18)

where A =-0.42;, B=-0.56, C=-2.96, D =1.46,
E=15.11, F=5.07, G=10.79, % =1.15, 2k =5.987.
This potential is identical to V,(*) of Schiff?° and is
also very similar to the LRO-1 potential of Paskin
and Rahman,®'* which was chosen to fit the x-ray
diffraction data. Both the interatomic potential
V() and the interatomic force V'(r) are shown in
Fig. 1. In accordance with March, Paskin, Rah-
man, Schiff, and others,'”*'2° we have omitted the
three-body forces, since very little is known about
the electron correlation effects. The nearest-
neighbor distance’™* is a =1.145.

Preliminary iterations are shown in Fig. 2,

Y@ g and U@ being the dashed lines, solid
lines, and circles, respectively. Two different
Gaussian functions given by (15) and with s =1.9
and 0.04 are used for ¥‘©, Although the initial
choices of ¥‘9 are vastly different for the two
values of s, the first iteration results are quite
similar, and further iterations do not change ¥
appreciably. It may be concluded that the con-
vergence is satisfactory for our fteration proce-
dure.

The effects of our simplifications are examined
in Fig. 3. We have calculated #(0.24, t) [at the
median velocity of P{(u)] for @ along the z axis with
all three simplifications, and the results are shown
as the solid lines. In Fig. 3(a) the effects of par-
ticles 3 to 12 are included, with the results given
as open triangles. In Fig. 3(b) the effects of the
fluctuating forces A(f) are included, with the re-
sults given as closed triangles. In both cases,
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FIG. 1. Interatomic potential V(7) (in units of 4.01
x 10712 ergs=2.50 eV) and interatomic force V' (7) (in
units of 1.24 x 10~* dyn) vs distance » (in units of 3.24
x 1078 cm) between sodium atoms. The force is repul-
sive for V' <0 and attractive for V' >0.

the effects are slight. In Fig. 3(c) we have in-
cluded the velocities v, parallel to the interatomic
z axis. (The effects of the perpendicular compo-
nents are expected to be small.) The results for

v, =+0.12 are shown. On averaging over the Boltz-
mann distribution e~*1/%% of the z component of the
velocity with U =0.16, the results shown as crosses
are not very different from our v, =0 results,
shown as the solid line.

In Fig. 4 we have examined our assumption that
¥({, t) is independent of the magnitude and direc-
tion of 4. In Fig. 4(a) we have given ¥(u, t) for
several values of u, their directions being along
the z axis. These results are only slightly differ-
ent from each other. The canonically averaged
¥(t) is closely approximated by ¥(0.24, ¢), where
u =0.24 is the median value of the distribution

o N -
S=1.9 |y e
§ \o
= \ ' \ $=.04
o Ao X\/ ]
-.5F F ° ]
0 2 0 2 4

FIG. 2. Preliminary iteration results with ¥, ¢@
and ¥@ shown as dashed lines, solid lines, and circles.
Gaussian function e~*/? is used for ¥, The time ¢ is
shown in units of 1071% sec.
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FIG. 3. Effects of the simplifications on ¥(0.24, £)
with U along the z axis. Solid lines, all three simplifica-
tions; open triangles, effects of pari_:»icles 3 to 12 in~
cluded; closed triangles, effects of A(t) of particle 1
included; open and closed circles, v =0.12 along —z and
+z directions, respectively; crosses, ¥(t) on averaging
over the Boltzmann distribution of v;. The time ¢ is
shown in units of 10713 sec.

function P(u). In Fig. 4(b) we have given $(0.24, t)
for two different directions of #, along the z axis
(“head-on” collision) and at 7/6 or 30° away from
z axis (“triangular” collision). In the latter case
we have considered four nearest neighbors at

distance a and along the directions (0,0), (n/3,0),
(m,0), and (27/3, 7) and the initial velocity vector

oS "

0120t123

FIG. 4. ¥(u,t) vs t. (a) For u along the z axis; the
open circles, crosses, and closed circles are for u
=0.16, 0.24, and 0.32, respectively. The dashed line is
the canonical averaged ¥ from (5). (b) Solid line,
Schiff’s computer experiment; crosses and triangles,
$(0.24, t) for U along the z axis and at /6 off the z axis.
The time ¢ is shown in units of 10~1? sec.
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U along the direction (7/6,0), in the spherical
coordinate system. Again these two results are not
very different.

In Fig. 4(b) the solid curve is the velocity auto-
correlation function of Schiff>® by computer experi-
ments from the potential (18). (Very similar com-
puter results have been given by Paskin and Rah-
man®'? for a slightly different potential.) The aver-
age of our two sets of ¥(0.24, t), with U along the
z axis and 7/6 away from the z axis (head-on and
triangular collisions), is very close to Schiff's
computer results.

It is somewhat surprising that good agreement
with computer experiments has been obtained [see
Fig. 4(b)] despite the numerous approximations and
simplifications. The liquid structure is apparently
solidlike for short times of the order of 107'* sec.
Also, the velocity autocorrelation function ¥(t)
is primarily (but not completely) determined by
one “hard” collision between one particle pair
(01 in our notation). Only approximate considera-
tions of the other particles are necessary since
their effects are weak. Whereas ¥(¢) is derived
from the motions of particle 0, we have approxi-
mated the motions of particles 1,2,...; hopefully,
these approximations would influence ¥(¢) only
indirectly. Apparently, many fluctuation terms

cancel or average to zero. Often, these self-
cancellations are of great importance, and have
been used, for example, by Cohen and Heine,?*

to justify the applications of energy-band theories
to solids. We also note that ¥’(¢) is not very sen-
sitive toward the choice of K1) (¢) of the neigh-
boring particles from the previous iteration; hence
the iterations converge quickly. It is therefore
possible to bypass the details of the many-body
dynamics.

Our calculations suggest that the velocity auto-
correlation function may be a simpler quantity
than was previously supposed. Similar conclusions
have also been obtained by us® for liquid argon
with the Lennard-Jones potential, our correlation
function being in good agreement with Rahman'’s
computer experiments.?® It would be interesting
to know why the calculations may be made so sim-
ply or why the fluctuation terms nearly average to
zero. However, these may be very difficult ques-
tions.
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