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Extensions of the Case and Ornstein-Uhlenbeck treatments of rigid-body Brownian motion to an

elastically deformable body in d dimensions are given. The motion of Brownian deformations in a
fluid is considered to be locally damped by a retarding friction. To describe the expected fluctuations,

velocity and displacement space-time correlation functions of a body are obtained from the relaxation-

function theorem. A general equipartition theorem is obtained without postulating certain fluctuating

sources. However, it is possible to exhibit those fluctuating sources which would yield our correlation

functions, and thus a generalized Einstein relation between fluctuations and retarding dissipations is

obtained, which is proved to be necessary and sufficient. Sum rules and both Green's and scattering

functions are given for strings, elastically deformable rods, and viscoelastic gels. Curves for the en-
semble-average-square displacements and their integrations over the entire length are given.

I. INTRODUCTION

In order to describe the approach toward Brown-
ian equilibrium of a string or an elastic rod, van
Lear and Uhlenbeck' used a Langevin equation and
postulated (a) the equipartition of energy among
vibrational modes, and (b) a, local damping with a
constant frictional coefficient. As a result, they
verified Zeeman and Houdijk's experiment' and
formula' for a Brownian wire suspended in a gas
in the long-time limit. The present unified treat-
ment of Brownian deformations of elastic bodies
in d dimensions is motivated partly by light-scat-
tering experiments, ' model calculations, ' stochas-
tic solid mechanics, ' and partly by the recent suc-
cess of Case' in his treatment of the usual rigid-
body Brownian motion with the relaxation-function
theorem.

The method we will use is based on (i) a natural
extension of van Lear and Uhlenbeck's expansion in
terms of our eigenvectors of a d-dimension stress-
force operator and (ii) the relaxation-function theo-
rem and techniques of Case. ' A well-known fact'
is that the relaxation-function theorem requires no
detailed structure of the Hamiltonian H, of the body
and the fluid medium except the mere existence
of an equilibrium canonical distribution,

exp(-II, /ksT)
1' exp( H, /k~T)dI' '-

which is used throughout the article for the en-
semble average ( )o. Consequently we have
proved (a) as well as extended (a) to include a more
general retarding friction than (b). Based on the
relaxation-function theorem, we verified the dis-
placement space-correlation function obtained by
Harris and Hearst as. one of our special cases
in Sec. IV. Furthermore, we have rigorously

derived a formula for Tanaka, Hocker, and Bene-
dek's experiment" of light scattering from a visco-
elastic gel.

II. MODELS AND FIELD CORRELATION FUNCTIONS

Brownian motion of an elastically deformable
body in a fluid is realistic, but complicated, as
many degrees of intramolecular freedom are in-
volved. Moreover, Brownian motions of the center
of mass and of the rotational orientations are gen-
erally coupled to a locally Brownian deformation.
We consider only the latter effect by rigidly sup-
porting a body at a portion of its boundary. Fur-
thermore, since the probing radiation has a rela-
tively longer wavelength than intramolecular spac-
ings, continuum models of elastic bodies are used.
We use, for example, a string as the continuum
model of beads and springs. The latter is used
by Rouse" and Zimm" in polymer dynamics.
Also, a rod model is used by Harris and Hearst, '
which includes the worm-like coil model" of the
macromolecule. Moreover, membranes, plates,
and a three-dimensional sponge soaked with a
viscous liquid are often considered.

Our theory begins with the Newtonian equation
of motion:

pu~ — + dto dx() P&&(t —
o) x~xo)

~ 00

x u„(t„xo)= 0. (2.1)

The jth component of displacement vector u(t, x)
of an element of a body from its equilibrium loca-
tion is restored jinearly by an internal stress
force

Bx~ j
82

(~+ps ') ~ ll, sgv')us. (2.2)X' Xa
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BROWNIAN MOTION OF ELASTICALLY DEFORMABLE BODIES

According to the linear theory of strain, "we have
made no distinction in (2.2) between the coordi-
nates x of points in the body before and after the
deformation. However, three general restrictions
will be placed on the externally retarding tensor
function P,,(t, xlx, ) in the following three para-
graphs denoted by (i), (ii), (iii).

(i) Isotropically local restriction:

((t, x) = Q I'„(t)X„(x).

and governed by

Y„+A.„Y„+ dto f (t —to) I"„(t,) =0,

Then, the expansion amplitude is given by

I'„=—(X„,P)

(2.11)

(2.12)

(2.13)

P»(t, «lx.) = ~;,pf (t)~(x x,)- (2.3)

Then u can be decomposed into transverse u,
(divu, =0) and a longitudinal u, (curlu, =0) compo-
nents. Thus, we can formally simplify (2.1}and
write

oil ~~ 4~ I. &4f(&-~ )4(&. *.i 0, = (2.4)

where g(t, x), a scalar field, denotes the compo-
nent of u which is either perpendicular or parallel
to a propagating vector of elastic waves of the
body. The linear operator I-, can be identified
explicitly for the continuum models mentioned pre-
viously as follows:

which is obtained by taking the inner product of
(2.4) with X„(x). In this form, Eq. (2.13) is a
generalization of van Lear and Uhlenbeck's equa-
tion for the retarding friction pf(t). However, we
do not postulate fluctuating forces as they did.
In this form, Eq. (2.13) is also a mild generaliza-
tion of Case's equation for a Brownian rigid body.
Case's equation might be thought of as one com-
ponent of the set of equations associated with a
zero eigenvalue. This zero eigenvalue corre-
sponds to zero deformation and is therefore not
included in our CON set of deformation eigen-
vectors.

(ii) Causal restriction:

f(t) =0, t&0, (2.14)
C', = p/p, C&=(~+ pS ')/p; (2.5)

d =2, I.„=-(v/ph) V', Eh'[12p(1 —o')] 'V';
where f is real, positive definite for t&0

Then a Hermitian Green's function associated
with Eq. (2.4) is also causal, "namely

d =1, I.„=-(7/p) s'/sx', (EI/p) s'/sx'. (2.7)
G(t, xlxo) =0, t&0,

satisf ies

(2.15)

Moreover, we identify C, and C, as the trans-
verse and longitudinal velocities of elastic sound,
C, & (—',}' 'C„and respectively p. and z as the shear
and bulk modulus; h, the thickness; E, the adiabat-
ic or isothermal Young's modulus, 3[(Sz) '+ p, '] '.
The adiabatic or isothermal Poisson ratio cr of the
transverse compression to the longitudinal exten-
sion is defined, 2&o=—(Sz —2p)/2(Sr+ p) & -1. For
rubber, p, «w, v-=-,'; for usual materials, a~0.
For a rod of radius r and mass M per unit length,
the cross-sectional moment of inertia I = —,'nr'M.

Next, a complete and orthonormal (CON) set of
deformation eigenvectors (X„(x)]of the linear,
self-adjoint, stress-force operator I.„ is intro-
duced, in order to span the Hilbert space, as fol-
lows:

Q + Q& Q + Qtp t tp G
happ

x xp ~ t ~ x xp
oo

(2.16)

It is convenient but not necessary to decompose

G(t, xl x,) = Q K„(t)X„*(x,)X„(x) (2.17)

K„+~„K„+ dtp t-tp K„ tp =6 t, (2.18)

and satisfied by the causality condition

K„(t)=0, t&0. (2.19)

in terms of a set of petit Green's functions [K„(t)j
governed by

I.„X„(x)= ~„X„(x),

QX„(x)X„*(x)=&(x -x,),

(X„,X„)=- dx X„*(x)X„(x).

(2.8)

(2.10)

Our convention for the Fourier transform with
respect to time will always be the following:

(2.20)

Then transforming the petit Green's function gives

The elasticity stability condition requires the ei-
genvalues ~„'s to be positive definite. If we expand
(2.4) in the Hilbert space,

K„=[- (- t f„}+~ ]-',

&n ~=&a,-~~
(2.21)
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while transforming the system Green's function
yields

G (xix,) =+K„, X„*(x,)X„(x),

G„*(x)xo)=G „(xo)x).
(2.22)

Moreover, since the transformed amplitude equa-
tion (2.13) can be written as

then by axe(x) =0 we obtain the singular solution:

=u„„5(K„-' )
2

5(~ —~() (2.23)

In order to be able to continue the Fourier inver-
sion analytically into a complex & =&, + i+,

G =—limG =lim Ge' 'dt
(gJ~ p QJ~ p el ~ oo

Gdt = Gdt=
~m OO p

Gdt,
pl

and in terms of the zero-frequency limit of the
bilinear decomposition

Go = limG~ = lim Q K„~X„*X„
QJ~ p ~~p n

=P~-'X*X = Gdift n n (2.28)

equals, in turn, to the spectral decomposition of
the steady-state Green's function

L,G, (xix,) =5(x -x,); G, = g X„'X„*X„, (2.27)

because L„X„=~„X„,which cancels A,„' and gives
Q„X„*X„=5(x—x,). Mercer's theorem" guarantees
the convergence of bilinear formula (2.27) since
all X„'s have the same sign and, in fact, are real,

Y„(i)= (2n)
'' exp(-iru, i+u, t) I'„~der, (2.24)

~C

we must impose the third restriction.
(iii) Dissipative restriction:

K„' -=—ie( i++-fe)+A.„a0, Im&o)0. (2.25)

Namely, the zeros of K„'~, which are singulari-
ties of Y„~, must lie at the lower half of the com-
plex plane, where Im~&0. In case a singularity
lies on the real axis of , the contour C must be
chosen to be parallel to and just above the real
axis of ~, in order to satisfy the causality condi-
tion (2.19) by closing the upper semicircle for
t&0. Then by using the causality condition, the
zero-frequency Green's function equals the time-
integrated Green's function,

positive definite according to the stability condi-
tion.

The relaxation function theorem can be derived.
Let the system of Hamiltonian IIp be in equilibrium
for t& t, with an outside force I" (x). Then the total
Hamiltonian for t &tp equals

dexp -i~ t —t, —i~ A„
~c

&I"„(i)I' (t,)), =5„(k~T/2ppx„)

(2.29)

d exp —ice t —t, -ice+ K„
~c

&I'„(i)& (io))0 =5„sign(t —t, )(ksT/2vk p)
(2.30)

dexp —iv t —t —ice
~c

x (-iv+f )K„

=-0, t =tp, (2.31)

where sign(t) =+1 for i&0. If A.„were zero for
n =m =0, then Z„~~ equals [(-iu)(-i+ +f~)] ' by
Eq. (2.21) and Eq. (2.29) is reduced to the velocity
correlation function of Case' and Zwanzig and
Bixon" for a rigid body in a fluid. Next, one veri-
fies (2.30) by differentiating (2.30) with respect
to t and t, for t& t, and using the following identity

i~[ i~( i~+f )] = i-~[K„-„—a„].
Also the third result (2.31) can be easily verified
by differentiating (2.30) with respect to i and using
B~t~/st=sign(t). We note that real x =-x if x =0
and therefore

BFt BF
(2.32)

0 =IIp — I' dX =IIp — E„F„t .
n

Let & Y„(t)), without the subscript 0 be averaged
with p(H) of (1.1) where Ho is replaced by the above
Hamiltonian. Then by means of the multivariable
Taylor series expansion of p(H) about p(H, ), one
obtains without using any detai1. of 8„ the following
theorem for the relaxation function:

s & I".(t))

= (k,T) '[& &.(t)I;(i.)), —&I:(i))(I;(i,)).].
(2.28)

Since the remaining analysis is identical to that of
Case, ' we represent the fo1lowing results and
verify them as follows.

&I:(f)&.(i,)&, = 5„,.(k.T/2.p)
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which is one of the relaxation conditions required
by Case for time-reversal invariance. Next if we
define the averaged energies as follows

(K.E.)-=—,'
p dx &P'(t, x)&,

=2P &'. ~ 0=- KE. n~

Furthermore, we have written (3.1) in a form that
can be generalized to a spatially nonlocal friction
kernel pf

In order to reproduce (2.35)-(2.37), we will
prove (3.1) to be not only necessary, but also suf-
ficient for a given initial-value problem.

A. Necessary condition

&P.E.&-=-,'
J

dx &q(tx) pL„y(tx)&,
(2.33)

Replacing the linear and deterministic equation
(2.4) with a stochastic Langevin equation,

=aP ~n ~n t o= PE n~

then by applying Case's argument of equal time in
the complex (u plane" to (2.29) and (2.30) one finds
that (2.33) yields the equipartition theorem:

&K.E.)„=(P.E.&„=2ksT (2.34)

Substituting the amplitude correlations (2.29)-
(2.31) into our expansion (2.12), we obtain the
following main result of elastic space-time corre-
lation functions:

pj+p'L„(+p dt, f(t —t,)((t„x)=pS(t, x),0

(3.2)

gives the following definition of fluctuations, de-
noted always with a tilde:

y=C- &q&..&C&.-=j &C&., &y&. =-0. (3.3)

Comparing (3.2) with the Green's function equation
(2.16), we know

t'ai(t, x) =
J

dt
J

dx G(t —t, xix )S(t„x ). (3.4)

&e(t+t., &i(t.. .)&. =
p

(2.36)

satisfies (3.2) by a direct substitution. In order to
make &g&o satisfy the deterministic equation, we
require

&y(t+t„x)g(t„x,)&, = 3 sign(-t)G(~t~, @x,),
p

(2.36)

Expanding

S (t, x) =- Q E„(t)X„(x)

(3.6)

(s.6)

&g(t+ to, x)g(t„xo)&, = G(t', x~xo) dt'.
It)

(2.37)

In principle, the Green's function can be con-
structed by various methods, " although in practice
a spectral decomposition of the Green's function
given by (2.17) and (2.21) is always available owing
to the well-documented" eigenfunctions of the
linear operator I-„. Some examples will be given
in Sec. IV.

gives a Langevin equation of each displacement
amplitude

Y„+X„Y„+Jt dt f (t —to) Y„(ta) =F„(t), (3 "t)

t
Y„(t)= dtoK„(t —to) E„(to)

oo

which by using the definitions of petit Green's func-
tion (2.18), (2.19) yields

III. GENERALIZED EINSTEIN RELATION

dtoK„(t —to) F„(to). (3.6)

As indicated by Case, ' it is possible to turn the
question around and ask as to the stochastic prop-
erties of a force, pS(t, x), which, when introduced
into Eq. (2.4), will reproduce our elastic space-
time correlation functions. The answer to be de-
duced will be given by the following generalized
Einstein fluctuation-dissipation relation:

d+ ~ dk
p'(SS'&, =2ksT

27k g (277J

xexp[i~(t —t') —ik ~ (x —x')]2Repf .

(3.1)

In terms of the Fourier convolution theorem, this
becomes

n, Q @n,QP +n ~ (d s

and therefore produces

&F„~F„~& =K„'~K„,', & Y„~Y„

(3.9)

(3.10)

Transforming the elastic amplitude correlation
(2.30) gives

(I'„Y„„.&, = 5„„i(ksT/pA„) 2m'(u&+ ~').
x [(-iK +f~)K„~+(-i% +f~ )K„'),

(3.11)
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which when substituting into E(l. (3.10) yields final-
ly

&E„E„.&, =6„„,(%AT/pX„)2v6(~+~')

equation

Y, =K,[v +(s+f ) Y +E]= &Y,&+K, E, . (3.19)

X [(—i(() +f~)K„e'„e + (- fu'+ f„e)K„'„]
= 6...(I,T/p)»6(~+ ~')[f.+f.*].

(3.12)

Here use is only made of the definition (2.21) of
K„. One can transform the result (3.12) back
to time space,

&E„(t)E„)(t') &, = 6„„.(As T/p) f (t —t'), t ~ t', (3.13)

provided that one has normalized f (f) at the level
of (3.1) such that

(3.14)

Therefore, substituting (3.12) back into the ex-
pansion (3.6) of S(t, x), we obtain (3.1), the gen-
eralized Einstein fluctuation-dissipation relation
for an elastic body. Furthermore, substituting
(3.13) back into (3.6), we show that the following
form of Einstein fluctuation-dissipation theorem
is a necessary consequence of our elastic space-
time correlation function:

&S(t, x)S(0,x,)&, =(k T/p)f(t) 6(x- x, ), t=0

Y(0) =- Y„Y(O)=-~„

K, —= (s'+sf, +X) '. (3.20)

Rewriting (3.19) by use of our definition of tilde
(3.3) as

K, E, = Y, —
& Y,&= Y, =—L, Y(t),

one can calculate

(3.21)

K, K, &E, E, &
= I., L, & Y(t, )Y(f, )&

by knowing the double -Laplace-transformed gen-
eralized Einstein fluctuation-dissipation relation

(3.22a)

&E, E, &
= (&,T/p)(s, + s.) '(f. +f. ).

Employing the identity

(3.22b)

ln (3.2) we used f (f —to) =0 for t& t, to cut off the
upper integration limit at t, and set s(t) =0 for
t & 0 to chop off the lower limit at 0 so that we can
use the Laplace convolution theorem. Also we
have expanded (3.2) and (3.16) according to (2.11),
and used the fact &E,&=0. Furthermore, the mode
index n from the amplitude Y„(t) was suppressed
and abbreviated

8. Sufficient condition

Given some fixed initial conditions,

g(0, x) = &0(x), g(0, x) =)()o(x),

(3.15)

(3.16)

)(.(f, +f, ) —= (s, +f, )K, '+(s, +f, )K, '

-(,+s.)[(.+f. )(, +f. )+&],

and carrying out one of the double Fourier-Mellin
inversions at the singularity s, +s„=0, one can
obtain

);=).)'()) —J exp( e))Y(e)d)- (3.1'7)

an.d the Fourier-Mellin inversion formula

r
Y(t)= L-, 'Y, = (2~i) -'J ds e-" Y,

- (3.16)

along the Bronwich contour B, parallel and to the
right of the coordinate axis of the imaginary part
of s. We will always carry out our equilibrium
ensemble average, & &o, in two steps, with the
partial ensemble average associated with the fixed
initial condition denoted by angular brackets with
no subscript (( &), and finally over all possible
initial values at the end of our calculation. Apply-
ing (3.17) to (3.2) gives the transformed amplitude

one can solve the initial-value problem using the
Langevin equation and then prove the Einstein
relation (3.15) to be sufficient to reproduce our
elastic space-time correlation functions, either
in the long-time limit or averaging (3.16) over all
possible equilibrium values. We will use the stan-
dard Laplace transform formula

& Y(t, ) Y(t, )&
= (ks T/p X)JL, ', (s, ~f, )K,

+L-, ', (s, +f, )K,

—[Y (Y(t, )&&Y(t,)&l„,=,

+ ~~. '&Y(f, )&&Y(f,)&I,,=,]j.
(3.23)

Because of the damping of the systematic part of
the friction, Eg. (3.23) will reproduce the ampli-
tude correlation (2.30) if s is replaced by —i(u and
use is made of the dissipative condition (2.25} in
order to combine the first two terms into

, ~(s+f, )K,. Moreover, the left-hand side of
(3.23) is decomposed by the definition of tilde into
two terms

&Y(t,) Y(f,)&= &Y(t,)Y(f.)& —&Y(~,)&&Y(t.)& (3 24)

Since as a result of the systematic part of the fric-
tion the averaged amplitude decays lim&Y(t)&=0
as t-~, then the second term of (3.24) involving
the product of averages will vanish as will the re-
maining terms of the right-hand side of (3.23}when
we take the long-time limit: t, —~, t, —~, but
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t, —t, =t .Therefore, we finally obtain from (3.23}
and (3.24) our equilibrium correlation function
(2.30) in the long-time limit. In particular for
t, = t„we obtain the equipartition theorem (2.34)

because

(4.4)

If we had not posed the fixed-initial-value problem,
we could average (3.23) also over all possible ini-
tial values by means of the equipartition theorem

2p(~'. &. =2&,T =p(k&)(Y', &„ (3.26)

which allow us to cancel terms involving the prod-
uct of averages on both sides of (3.23) at all times.
Clearly, it would then not be necessary to take
the long-time limit. This contrast illustrates that
the stochastic elements enter the equation of mo-
tion through the I angevin source and/or the ini-
tial conditions in the stochastic Langevin approach,
whereas only the initial conditions are stochastic
in the deterministic relaxation approach. Similar
proofs for (Y(t,)Y(t, )& and (Y(t, )Y(t,)& can be easily
constructed, if use is made of the following two
equations:

L,Y(t)—= Y, = Yo+s Y, =( Y, +&s KE, , (3.26)

Using (4.2) and (4.3), our general equation of mo-
tion (2.4) reduces to

pl+ pL. 0+ pf.4 = o, (4.6}

Therefore, the associated Green's equation (2.16)
becomes

G + L„G + pfoG = 6 (t)6 (x —xo),

which in terms of the bilinear decomposition
(2.17},

(4.7)

G(tx~x ) = PK„(t)X„*(x,)X„(x), L„X„=A.„X„,

and therefore is the generalized Langevin equation
(3 2):

pl+ pL, 0+ pfo( =pS. (4.6)

s,s, (f, +f, )=-s,K, '+s, K, ' —(s, +s,)(s,s, +A.).

(3.2'7)

gives a petit Green's equation

K„+~„K„+pfjC„= 6(t) (4.9)

This completes our development of the approach
of equilibrium amplitude correlations from a given
initial data by means of the Langevin sources and
the systematic retarding friction.

IV. WHITE-NOISE BROWNIAN DEFORMATIONS

An elastic body has been considered to be em-
bedded in the medium characterized by our three
conditions, namely isotropically local, causal,
and dissipative. Furthermore, the correlation
time of fluctuating forces exerted on the body is
assumed to be infinitesimally small compared with
the decay time of the averaged displacement due
to the systematic friction. Since the friction and
the force correlation are proportional, both must
have a white spectrum, i.e.,

(pSpS'& = 2ksT (pfo)6(t —t')6 (x —x'). (4.1)

Indeed, this is a special case of our generalized
Einstein fluctuation-dissipation relation, if we
normalize

2 6(t) dt = f 6(t) dt =1
&p J

(4.2)

f (t) =2f.6(t), (4.3)

for the even function 6(t) =6(-t), then causal f (t}=0
for t & 0 demands

A Fourier time transform of (4.9) gives the same
result as that obtained by substituting (4.4) into
(2.21) directly, namely

K„=[-iv( itu+f )+X„]—'.
A simple Fourier inversion gives

(4.10)

K„(t)=(2v)-' d& e ''K-
= 6(t) e o' ' sin(Q„ t}Q„', (4.11}

where 0(t) is the Heaviside function and Q„ is the
vibration frequency of nth mode defined by

Q„'+ ,' f;=~„. - (4.12)

dto dxo G(t —t xOix ) O(tSxO)0 (4.13)

via the force correlation (4.1), or use the results
(2.36)-(2.3'I) of the relaxation-function theorem.
In terms of the Green's function, one obtains from
either method the final resujts:

Clearly, (4.11) satisfies the causal K„(t)=0, t&0
and can be constructed directly from (4.9}. Know-
ing the petit Green's function (4.11), one can pro-
ceed to calculate the elastic space-time correla-
tion functions with various formulas. Either use
the solution
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((t)(t+tG x))I(tG xG))G-(yeT/p) e-fol('l»

&&+ [cos(Q„l tl) —(f,/20„)
G, (xlx) = Q ~„'x„*(x)x„(x), (5.3)

x A.„cos Q

+ (f,/ 2Q„) sin(Q„l tl)]

xx„"(xG)X„(x), (4.15)

(((t + t„x)g(t„x,)), = (keT/p)G(l tl, xlx, ) sign(-t).
(4.16)

For equal-time points, the space-time correla-
tions are simplified

()1)(t, x)(t)(t, x,)), = 0,

((I)(t, x)(t)(t, x,))G = (keT/p)&(x —x,),
(q(t, x)y(t, x,)), = (u, T/p) g ~„-'X„*(x,)X„(x)

n

= (~BT/p)G. (xl x,),

(4.17)

(4.18)

(4.19)

x sin(n„l tl)]x„*(x,)x„(x),
(4.14)

(g(t + t„x))t)(t„x,)), = (ke T/p) e ~G~ '~ '

which have been decomposed with respect to the
complete and orthonormal set (X„(x)}of eigen-
vectors associated with the internal stress-force
operator I.„(2.5)-(2.7). Substituting (5.1) into the
Pecora-Van Hove scattering function,

S(Q, ~) =
J

dxexp[ Q'(—&eT/p)GG(xlx)]

~ ))0

2 k~T
dxo dtexp st+Q'

xt ~ 00 P

dt G(t; xI;.)),
(5.4)

gives us the differential cross section of radiation
scattering from intramolecular fluctuations. More
detailed predictions will be given in the forth-
coming paper. Here we discuss only our results
when the dissipation function pf has the white
spectrum pf, and is reducible to those results in
the literature as special cases.

A. Viscoelastic gel, light-scattering experimentwhere G, is the zero-frequency limit of G defined
generally by (2.26) and therefore (4.19) can be
directly obtained from our main result (2.37) by
using (2.26). Should a nonwhite friction spectrum
pf~ be appreciable in reality, the Fourier inver-
sion (4.11), which may be difficult to obtain but
in principle exists, gives us different elastic
space-time correlation functions with respect to
the same set of eigenvectors as that of a white
friction spectrum pf, .

Tanaka, Hocker, and Benedek (THB) used optical
(homodyne) mixing spectroscopy to detect the
polarized and depolarized light scattering respec-
tively from the longitudinal and transverse dis-
placement thermal fluctuations of a uniform elastic
network against an extremely viscous gel liquid
held by the network of the size 0.4 cm'. For a gel
of 5% polyacrylamide (prepared from Canalco
premixed reagents), THB found: p-1 g/cm';
p. -10' dyn/cm'«Iu of rubber; z-2p/3, i.e. ,
o -0 for a sponge; f -10" dyn sec/cm'; and they
derived two decay times 7& and w, for their dis-
placement correlation functions from (2.4) postu-
lating a specific structure of the system's Hamil-
tonian:

v; „-=-,'~, -=p/f -10 ",
(5.5)

T,)„„=2/7'G&G =f /pC2q2-10 —G.

Here C denotes the elastic sound velocities, either
C, -10 m/sec or C„respectively given by (2.5)
along or perpendicular to the elastic wave propa-
gation vector q, which is selected out by the light
scattering of wave number transfer 10' cm '.

According to our theory, we must construct the
Green's function which then gives rigorously the
displacement space-time correlation function.
To this end, the CON set of eigenfunctions (X„(x)}
and eigenvalues fA.„}of the stress-force operator
I,„gi en vby (2.5) is written as follows:x,[-i()( i(ut+f~)+-x„] 'd~

xX„*(x,)x„(x), X(x)=(V)-'" 'e"'", q„=n2v/t, V =t'. (5.6)(5 2)

V. DISCUSSION AND CONCLUSION

The elastic displacement space-time correlation
functions given by Eqs. (2.35)-(2.37) are quite
general and useful. They are derived from the
relaxation-function theorem (2.28), as well as ob-
tained from the generalized Einstein fluctuation-
dissipation relation (3.1) via the associated Lange-
vin equation (3.2). According to our theory the in-
tramolecular correlation function

&ly(t, .) -C(0, )I'&,

G (x, x) —f dt (l x( G))'x',
1&1

(5.1)
is rigorously obtained in terms of the system's
Green's functions

G(t, xlx, ) =(2n) 'Q exp I-t(ot}
n, C
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Here n=(n„, n„n, ) are integers, and

V Q exp[&q„(x —x,)] = &(x —x,),

V ~ dxexp[i(q„-q ) ~ x]=&„„.

Operating I.„on the eigenfunction (5.6}yields

n =Ct &n, C&Q'

(5.7)

(5.8)

(5.9)

sion amplitude &„(t) of ((t, x), where our subscript
n denotes their wave-vector channel number q„
given by (5.6), then we have reproduced the follow-
ing overdamped result using the THB approxi-
mation (5.17):

(Y'„(t)Y„(0)) =(k T/p&„)(A, e' '~'~+A e' -~'~)

=—(&aT/pC'q„') exp( —
~ t~/r„.„) (5.21)

xg n„-' sin(n„ t)X„*(x,)X„(x). (S.iO)

By definition (4.12) we can rewrite the mode fre-
quency n„ in terms of THB notation (5.5}:

n„-=(&„—.'f', )' ' = &—(-,'f, )(1 -4c'q'„/f')' '
= j(i/g )(1 ~2~2)1/2 (5.11)

for the overdamped vibration against the extremely
viscous gel liquid. Knowing the specific Green's
function, we obtain from our unified treatment
of an elastic body the following specific result:

Specifically, THB assumed a constant friction
coefficient f = pfo;

—then from (4.8) and (4.11) follows
our Green's function.

G(t, xixo) = 8(t) e o'2

which has been, apart from the trivial normaliza-
tion factor V/(2m)', obtained independently by THB .

and verified with their experimental data obtained
at a fixed optical mixing-time interval t and plotted
(5.21) against all the channels q' axis, which is
proportional to 7, '.

We note that (5.21) follows also from (2.23) and
(2.24) if use is made of our equipartition theorem
(3.25). Within the framework of our model equa-
tion (2.1), it is natural to suggest that the slightly
nonexponential decay, which concerned THB in
their polarized light scattering at 90' from the
sample at 25'C, is due to a retarding frictional
coefficient of pf . A detailed analysis will be given
in a forthcoming article.

B. Polymer dynamics, model calculation

(0(t, x)4(0, xo))o =Q (&aT/p~. )

x X„*(x,)X„(x), (s.i2)

Harris and Hearst (HH) considered an elastic
rod of a fixed length by means of a Lagrange multi-
plier P, which gives the force operator pL„ in
terms of their arc length s:

where we have abbreviated, according to THB, pI =QB /Bs -PB /Bs . (5.22)

= —[1 y (i —(gp 7 ) ]/7.

and defined analogously

Arshorr = 2[1 —(1 —~o&0) ],
Ar ~=-2[1+(I —+'&') ' ']

(s.i3)

(5.14)

(s.is)

A, +A&=1, i~,A, +i~ A&-Q.

Given further their approximation

(s.16)

Thus, we have rigorously derived A, and A& which
clearly satisfy the conditions imposed by THB,
namely

HH applied a specific white-noise spectrum [de-
fined by their Eq. (46) which is —', of Eq. (4.1)] to a
Langevin equation given by their Eq. (48). Because
of the HH white-noise assumption, our generalized
Langevin equation (3.7) of the expansion amplitude
F„(t) includes the HH equation as a special case.
Furthermore, by postulating a detailed form of the
Hamiltonian H0 in their canonical distribution Eq.
(22), they obtain the following equal-time displace-
ment vector correlation [see HH Eq. (30)]

(x(s) ~ x(s')) = (3kaT/n)g y, (s)y, (s')/p. , (5.23)

v /v =v'&u'-10 '«1f S 0 0 (5.17)

we have

(5.18)

—i(u —= -,'To(so= 1/y„,„.
(5 19)

(s.2o)

If we express (5.12) also in terms of our expan-

If we identify np&/p and g,. (s). in (5.23) respectively
to be the definitions of eigenvalue A.„and eigen-
function X„(x)of the x component of the stress-
force operator pI-„, the HH correlation result
becomes three times the displacement correlation
(4.19) of one component. A natural generalization
of their calculation of intrinsic viscosity to an ex-
ternally retarding friction is currently under in. —

vestigation.
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C. String and rod, stochastic solid mechanics

Although van Lear and Uhlenbeck (VU) did not

apply Green's function techniques to express final
results, they calculated a detailed time course
of mean square amplitudes including our (4.19)
[see VU Eq. (21)] as the long-time limit, by using
the white spectrum (4.1), derived here without
using any detail structure of the system's Hamil-
tonian. However, using the Green's function one
can sum up (4.19) by a homogeneous solution rep-
resentation of Green's function.

(i) String with rigid ends":

(-~/p)G, =x(x, —1)8(x, -x)+x,(x —1)8(x -x,).
(5.24)

(ii) Rod with one end clamped:

(6EI/p)G =x'(3x -x)8(x, -x)+x'(3x -x,) 8(x -x ).

(5.25)

(iii) Rod with two ends clamped"

(6EI/p)G, =x'(x, —1)'(3x, —x —2xx, )8(x, -x)
+x,'(x —1)'(3x -x, —2x, x)8(x -x,),

(5.26)

where E is the Young's modulus and I is the cross-
sectional moment of inertia, given below Eq. (2.17)
for L„which yields L„G,=&. Brownian deforma-
tions at equal time and space are plotted in Fig. 1
for a string and Figs. 2 and 3 for rods; and their
integrations over the entire length are respectively
the invariant traces (Tr) of Green's functions

TrGO=— dx Go(x, x) =Q'„'

=(P/')(6), (P/EI)(3x4) ', (P/EI)(3x4x5x'7)-'

(5.2V)

which are proportional to the areas under curves
and in turn to the mean-square-ensemble deviations

&'8 (x,t) &or

KsT

04-
&0 (x,t)&EI

BT

Q2-

O. I

I'"IG. 2. Under the influence of the "white noise, " the
displacement correlation function (g (x, t))p reduced by
the ratio of the flexibility parameter EI and the thermal
energy k~T, is plotted against a unit length rod with one
end clamped. The total area (P (x, t))pEI/k&T is a uni-
versal constant, (3x4) '.

over the entire length /. Equation (5.2V) provides
us with interesting sum rules over mode frequen-
cies (4.12). Finally we make remarks about (i) how
the presence of stochastic forces affect each mode
of oscillation, (ii) the ultraviolet catastrophe of
equipartition theorem, and (iii) a general nonlocal
white noise.

(i) From Figs. 1-3, the equal-time displace-
ment correlation is seen to bear slight resem-
blance to the shapes of the fundamental or the
lowest undamPed oscillation. Actually for both
the string and the rod, the displacement corre-
lations at equal time are sustained by the stochas-
tic noises. In the case of a tuning fork, all "in-
harmonic" modes decay rapidly in time and only
the lowest mode is sustained. On the contrary,
due to the "white noises" the displacement corre-
lation of each mode decays exponentially in time
at the same rate. Although each mode does share
an equal amount of energy, the higher the mode
of oscillation the smaller the amplitude of the dis-
placement correlation.

(ii) A realistic source correlation is very sharp
in time, but it is not as sharp as 5(t) =(2v) '
x f"„d~1exp(-iet) which has a unit amplitude1
for all &. Thus it is customary to cut off the am-
plitude at higher frequencies determined analogous-

-0.25

0.0
I

0.5 1,0

&0 fx,t)&EI

KsT

O.OI-
0005-

I

0.5 X

FIG. 1. Under the influence of the "white noise, " the
displacement correlation function (P (xt))0, reduced by
the tension 7 and the thermal energy k~T, is plotted
against a unit length of rigid supports. The total area
(g'(xt)), ~/k&T is a universal constant 6

FIG. 3. Under the influence of the "white noise, " the
displacement correlation function ($ (x, t))0 reduced by
the ratio of the flexibility parameter EI and the thermal
energy k~T, is plotted against a unit length rod with two
ends clamped. The total area (g (x, t))OEI jk~T is a uni-
versal constant, (3 x 4 x 5 x 7) ~.



BHQgfNIAN MQTIQN QF E LASTICALLY DE FORMABLE BQDIES

ly by the Debye's frequency. This is then called
the practically "white noises" associated with the
cut-off white spectrum. In other words, higher
modes of oscillation will not be excited by the
realistic "white noises. " Therefore, the tail part
of the infinite sum over the high-frequency modes
will not contribute to the total energy. Then the
total energy is finite, which means the string will
not be ruptured by the realistic "white noises. "
It is with this qualification that the white noise is
used and in this sense that an equal amount of
energy is found for each excitable mode beneath
the natural cutoff. A similar qualifying statement
should be made for &(x) which then explains the
& singularity of Eq. (4.18). There exists at least
one case in which (4.1) is kinetically derived. "
As a matter of fact, the practically white noise
present in the Knudsen gas is indeed local in space,
for the arrivals of gas particles are always ac-
cording to a local Poisson distribution.

(iii) A general nonlocal white noise

(S(x, t)S(x', t')) =. s5(t —f')D(x —x'), (5.28)

imposes no mathematical difficulty. One can al-
ways expand S =Q„E„(t)X„(x)and D =Q„„

&&D„X„*(x)X„(x')to obtain a mode-mode coupling

(F„(f)E„(t'))= sD„„5(t—f'),

where D„=&„ is decoupled for the local white
noise. Although the displacement correlation will
generally involve a double sum over the mode fre-
quencies Q„and 0 weighted by the coupling con-
stant D„and X„*(x)X (x'), the integration of ener-
gies at equal time and space over the entire length
will reduce, by means of the orthonormality of
X„*(x)X (x'), the double sum to a single sum
weighted, however, by the diagonal term of the
nonlocality coupling constant D„„. Then, we find
a partition law of mode energies weighted by D„„
for the nth mode.
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