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A moment solution to the Boltzmann equation is considered for the initial-value problem of a weak-
ly ionized rarefied gas, or gas mixture, in a uniform electric field. No restrictions are placed on the
smoothness of the initial data or the mass ratio between the ions and the neutrals although the theory
converges fastest for heavy ions in a light gas. A principal result of this theory is the prediction of
shock-wave phenomena in pulsed drift tubes. The result is most persistent for heavy ions in a light gas.
For instance U* ions in He can be significantly affected by sharp initial conditions for 10* collisions.
Comparison is made with the results of asymptotic theories to smooth initial data.

1. INTRODUCTION

The diffusion equation is frequently used to de-
scribe the motion of a weakly ionized gas under the
influence of a uniform electric field.!™*° Such a
theory may be viewed as an asymptotic solution to
the Boltzmann equation in the limits of smooth ini-
tial data and high gas density®>® (but still in the
binary-collision region). Corrections to the diffu-
sion equation (still for smooth initial data) in an
asymptotic series in inverse powers of the neu-
tral-gas density are standard in the kinetic theory
of neutral gases®~% and more recently in the case
of sparse electrons®~% and ions®"~%° in a relatively
dense neutral gas under an applied uniform elec-
tric field. Convergent theories of the Boltzmann
equation exist®+% =% but such theories have appar-
ently not been applied to the case of a weakly ion-
ized gas in a strong uniform electric field. There
are some miscellaneous theories concerning devia-
tions from the diffusion equation for ionized gas-
es®~"™ but they are suspect since they do not re-
duce to the asymptotic theory. There also exist
some numerical studies.™~™ The ion density is
assumed so low that both ion-ion collisions and the
effect that the ions have on the gas can be ne-
glected, Equilibrium conditions are assumed for

the neutral gas and collisions are assumed elastic.

The subject herein is basic in the sense that
some penetration can easily be made in a doubly
nonlinear transport theory. That is, fluxes due to
both electric fields and density inhomogeneities
are not strictly proportional to gradients. The
simplicity lies in the fact that the theory is mathe-
matically linear to all orders since we take the
neutral gas to be totally unaffected by the charged-
particle motion.

II. GENERAL FORMULATION
The method employed is simply a different trun-
cation of an extension® of a theory due to Ki-
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hara.”™" Under the assumptions mentioned, a
linear Boltzmann equation suffices to describe the
motion of the ions.”~"" Taking moments of the
Boltzmann equation as in Ref. 75, and extending
them to mixtures of neutral gases,® one obtains

= () 4% () = (qB/m) - (09, 9)

+nNZ)(J<leP>=O, (1)

where ¢, m, v, n are the ion charge, mass, velocity,
and density, respectively; ¢ is an arbitrary func-
tion of velocity, N is the neutral-gas density, and
X; is the fraction cf neutral-gas species j in the
total mixture; E is the applied electric field. The
angular brackets stand for averages over the ion-
velocity distribution function; J; is a collision op-
erator which for elastic collisions is defined as

NX,J,u= [ d9,dV,F, 9 -y(F)]g0;, (@)

where F; is the equilibrium distribution function
for neutral-gas species j, V; is the jth-species
neutral-gas velocity, g;=|¥-V,|, o, is the dif-
ferential scattering cross section between the ions
and the neutral-gas species j, and V' is the ion
velocity just after a collision. If

YO =@ =] e 'S0 1P (e /)i, (3)

where &= (m/2kT)/2%, kis Boltzmann’s constant,
T is the neutral-gas temperature, S are Sonine
polynomials, P are Legendre polynomials, and

¢ is the azimuthal angle of the ion-velocity vector
about the field direction, then for the Maxwell
model of constant mean free time, these functions
are eigenfunctions for the collision operator? ™ so
that

T ¥ =200 90 @
The Maxwell model corresponds to an ion neutral
potential varying as 7. For other potentials the
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collision operator may be expanded in a series®®™

which, extended to neutral-gas mixtures,® reads
J; W= Z [a,(tm)]; lP(zs,Z,, (5)
$=0

where the expansion coefficients are
_@r+1)stE—|m|)!
i 2Tf§3/2(l+1’+%)(l+| m | !

[a,s(tm)]
x fe'(”/g)zip(zer.Jj Yindv. (®)

The evaluation of [ a,,(Im)]; from the cross sec-
tions or potentials is indicated elsewhere,5%8:76:79-81
The following notation will be defined for con-
venience:

bystm)=3" X[ a, (im)l;,

£ = byo(10) 1 b,s(lm)

= s Mrsim ) 7
vim brr(lm) Horim st boo(lo) ()

1]

Values of £ and 77 are given in the Appendix for a
few low-order values of the indices.
The thermal speed of the ions is defined as

¢=(2kT/m)"2. (®)
A collision frequency v is defined as
V=Nboo(10), 9)

which is equal to a momentum-~transfer collision
frequency in the zero-field limit. For the Maxwell

1+1 4 lr+1) L. 1(@2r+21+1)

model®

v=qE/muv,, (10)

for all values of the field.
A dimensionless field is defined as

§=qE/mtv. (11)
For m =M (M is the mass of the neutral gas) at
about room temperature the ion energy gained by
the field is about equal to the thermal energy when
§~1.

Dimensionless coordinates are introduced,

T=vi, p=vz/t8, (12)

so that 7~1 for times on the order of a mean free
time between collisions and p ~1 for distances cor-
responding to how far an ion drifts on the average
in one mean free time. Derivatives of high order
with respect to the dimensionless coordinates are
expected to be relatively unimportant for long
times £, or large distances z, compared with de-
rivatives of low order.

Restricting ourselves to one spatial dimension,
Eq. (1) reads

) > -
57 D+ U0) — 8 <(nVY)

1 9
+ Z nrslm<nw(lsrz;> +g % < czn(p(lryzg> =0.
SEY

(13)

Making use of some of the properties of Burnett
functions,®:™ Eq. (13) becomes

97 U21+27 +1) 20+2 ., _
—¢L+uﬂ¢?— 5<—2l+1— =557 ¢’*i>+ 2 st 65

aT
s=r
1 0 /1+1 .,
" ap 2l+1¢’+1

where ¢}=(ny?’) and the index m, which can be
taken to be zero for the one-dimensional problem,
is deleted.

Equation (14) is the basic equation considered.
The essential assumption implicit in it is that the
collisions are elastic. There is no assumption
about smooth initial data so that a judicious trun-
cation could yield a convergent theory in which
sharp initial conditions and boundaries can be
dealt with. The previous theories for ions®"
treat the last two terms in Eq. (14) to a lower or-
der than the remaining terms which has as a re-
sult:

i) = 3 Wi, (15)
i =0

which is an asymptotic series.?*'%® Here w; is a
tensor of rank ¢ whose components are called

2i+1 ST it

20@7+1) ¢7-1> =0 (14)

asymptotic transport coefficients. Previous theo-
ries for electrons® % assume that the electron
distribution function can be expanded in a spher-
ical-harmonic expansion which is truncated at the
second term. In addition, the time variation of the
second term in the spherical-harmonic expansion
is neglected. These assumptions in effect assume
that the initial data are smooth which puts into
suspicion results claiming to account for large
density gradients. All these asymptotic theories
make worse a fault already exhibited by the diffu-
sion equation, namely, for the sharpest possible
initial distribution

F(t=0,F,¥)x 8(T) 6(V), (16)
the diffusion equation predicts that
9
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everywhere, which of course is not correct. Cor-
rections to this result using the asymptotic theo-
ries, if anything, make the result worse®”™®°
which is not unexpected since these theories are
not up to dealing with (16). In Sec. VI we will see
result (17) modified.

III. TRUNCATION

There are two separate things to be truncated in
Eq. (14), both of them having to do with high-order
averages appearing on the right-hand side
(¢35, d741, P711). The first term ¢$ deals with de-
partures from the Maxwell model of constant mean
free time. For the Maxwell model, =0, and for
heavy ions in a light gas, no M/m,™ " % and the
collision operator is diagonal. Cases for which
is not negligible can be considered by simply put-
ting the resulting transport coefficients in terms
of the w’s appearing in Eq. (15), obtainable from
the asymptotic theory,® which should work so long
as the phenomena to be studied do not depend on
the details of the spectra of the collision operator.
As an alternative, terms in 7 can be treated to a
lower-order approximation and asymptotic devia-
tions to the diagonal J will result.®® As another
alternative a two-temperature Kihara-like theory®?
can be employed which results in moment equations
of similar form as Eq. (13), but which promise
convergence instead of asymptopia for other than
Maxwell-model ion-neutral interactions at high
fields.

The system of moment equations (14) is truncated
at the number of equations desired. The averages
¢%+1, 9711 in the highest retained equation are ap-
proximated in order to decouple the retained equa-
tions from the deleted ones. A reasonable way to
decouple these moments is by letting

9 b on

3 ® % 5 (18)
where the ¢ on the right-hand side of Eq. (18) is
evaluated from Eq. (13) or (14) neglecting deriva-
tive terms. Since Eq. (18) is only used for some
of the terms in only the highest-order equation
considered, I will conjecture that the approxima-
tion scheme is convergent.

IV. EQUATIONS FOR THE ION DENSITY

The first approximation starts with the lowest
possible moment, {v°). Higher-order approxima-
tions include accurately the higher moments in the
preceding approximation. The first few approxi-
mations are considered for the diagonal collision
operator (n=0). The complete first ten approxi-
mations may be obtained from the determinant in
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Table I which shows the dispersion relations of
the first ten moment equations resulting from ap-
plication of Eq. (14). This also visually indicates
the approximate scheme which consists of con-
sidering for the jth approximation only a j Xj
square matrix starting at the upper left-hand cor-
ner as indicated, and approximating the nonzero
elements lying to the right of the square matrix as
indicated by Eq. (18).

The first approximation yields the well-known
Euler result

on 1299

5?+5 ap -—0,

(19)

where we approximate

1099 on

el & VL) 20

o “op (20)
which yields

on on
a‘r+8p 0, (21)

which simply propagates the initial condition, un-
changed in shape, with the drift velocity.

The second approximation (Navier-Stokes) is the
simultaneous solution of Eq. (19) and

8¢1+¢1 1 an__].'_%_o.‘.__aipo (22)

where we approximate [using Eq. (14) neglecting
derivative terms]|

1 1 \on
3g< (263 - >> §(a-3g )7 @
where

=%+, +1/28%, (24)

In order for a nontrivial solution of Egs. (19), (22),
and (23) to exist,

an Bn Bn 9%
a1 ap BT 552 =0, (25)

or the same equation for ¢?. We will consider this
equation further in Sec. VI.

The third approximation (incomplete Burnett) is
the simultaneous solution of Egs. (19), (22), and

3¢ 1 1og) 1o¢;

a7 +“10¢O+2g¢1—é’——3?+—g—5;3—_0’ (26)
where we approximate

1 8¢t

-ga;::lz_—g“(5§m+4goz)gz (2m)

In order for a nontrivial solution of Egs. (19), (22),
(26), and (27) to exist,
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2

3% 1
5?+a—+(1+‘§1°)arz+ v5105557 ~ ( 28 "% §°2>

The same equation is satisfied by both ¢} and ¢?.

The fourth approximation (complete Burnett) is
the simultaneous solution of Egs. (19), (22), (26)
and

¢2 (Loey 2 99] 3 a¢g
+“02¢2—28¢1 8 Bp_Sé’ ap +55 "aF‘O;

2 +£1°8T

< é,zﬁm+ £10£02> 287+ 511510(5510+4502) 5p3 =0.

(28)
-
where we approximate
10¢; 291
g—£~6‘£osgozg a_p- (30)

In order for nontrivial solutions of Egs. (19), (22),
(26), (29), (30) to exist,

(29)

J
on on 0% 1 9% 8°n
8—7_-+55+(1+§10+§02)-3?+( T 0+% EOZ)E)pBT 282 ap2+(§1o+§oz+§ozglo)8 3+3£1°€°28p87

3

n 3 a*tn 3 9'n
—gz's ( £10t8 502)8,:)287' +[FE,, (B0 +EE)(BE o +4E ) + 12502.503]8 R X s 374 2_672_502510%28_7—
[3& 5 12 2 3*n
+[ $( §10+4502)—T§10502503]m=0~ (31)
—

The effect of higher approximations is to change . . 5
the coefficients of the second- and higher-order .8_’;..2_’?2. Zdoz 2@ q0+d2) - 2(y0+d0q0)8_’§
derivative terms, and to add derivative terms of a7 p p %
order equal to the order of approximation. The
meaning of incomplete Burnett and complete Bur- + (250 +2d7, +q0) pﬂ+ o), (38)
nett approximation will become clear in Sec. V.

3%
‘a‘jr—s'" 8p3+3d08p —3(q0+d0)
V. REDUCTION TO THE ASYMPTOTIC THEORY
. . o + @37, +6d0q0+d4) +O(7) (39)

In the asymptotic theory, the ion flux j is com-
puted from the Boltzmann equation, with the time- 8% ot 35,
derivative term put in terms of space derivatives g;z*w—4d055§+2(qo+2dz) %ro(7), (40)
via the continuity equation, which results in®®

8% 8 n
8 o2 Py 5+5d a+0(’7) (41)
j=nvy—Dzg BZ+QZZZ azn Tty (32) o7T° " op %
6,
where v;, D, and @ are the ion drift velocity, dif- g—% z +0(7). (42)
7% 3p°

fusion coefficients, and higher-order transport co-
efficients, respectively.

If dimensionless transport coefficients are de-
fined,

v,=0,/E8 =1, (33)
= (v/628*)Dy4, (34)
=(?/8°* Q222 » (35)
=(3/8*%")R;zz22, (36)

$o= (*/8%®)S;2222 (37

then the approximation scheme described in Sec.
IV reduces to the asymptotic theory as follows: to
sixth order,

The general equation in any approximation for »
to second order is

oan on 9%y dazn 3%

3;+55+ lé—;g— 25;§+d3—555;=0, (43)

which reduces to the diffusion equation

on on 9%
3t Top 055—2—0, (44)
asymptotically in all orders of approximation. Ta-
ble II shows how the coefficients d,, d,, and d,
change in the first five approximations.

In the analogous case of a single monotonic neu-
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tral gas, the acceleration term in the Boltzmann
equation is zero resulting in d, =0, d,=3%, d;=0 in
any approximation higher than the Euler approxi-
mation. Thus the convergence of the coefficients
is no problem and the sequence of approximations
should have at least a finite radius of conver-
gence.%%" Pekeris et al.® have tested this for the
Maxwell model for the first 483 moment equations
and for rigid spheres for 105. The speculation of
a finite radius of convergence is reasonably well
founded at least in neutral gases.

The third approximation has terms of third order
(i.e., third-order derivatives) in it but does not
reduce to the asymptotic theory. However, the
fourth approximation does reduce to the asymptotic
theory to third order

on on 82y

a7 T3p ~ %oap? qoap =0, (45)

which suggests, as in the case of neutral gases,®°
that suitable truncation points should include 1, 2,
4, 6, 9, etc. numbers of moment equations (as is
shown in Table I). That is, the complete Navier-
Stokes approximation has all of the moment equa-
tions included up to 27 +7=1, the complete Burnett
approximation has all of the moment equations in-
cluded up to 27 +1=2, etc. Therefore the third ap-
proximation, resulting in Eq. (28), is called the
incomplete Burnett approximation because it does
not include all the 27 +7=2 moment equations. A
natural suggestion is that the complete super-Bur-
nett approximation (six moment equations) reduces

to asymptotic theory of fourth order
an on %n %n 9%n
—E+$—d03_p2+qow—705?_0’ (46)

and the nine-moment-equation approximation re-
duces to the asymptotic theory of the fifth order

an on 9% 8% a'n 3%
ﬁ*’%' °8p2+q°8p °8p4+S°8p5_0 (47)

The important fact to be gleaned from all this is
that higher complete approximations do not alter
the asymptotic theory to lower order which leads
one to conjecture that to the extent 7>1, terms
higher than the Navier-Stokes approximation do
not contribute significantly.

VI. SOLUTIONS FOR THE NAVIER -STOKES
APPROXIMATION

We consider Eq. (25) for the density in unbounded
space,
3 n 8n an 9%y

Yo7~ Yo s)

where

<vz> lquZZ

a= gz"' 2E0t5tn= ( >2 = mKvy’ (49)

where K is the ion mobility. Apart from the scal-
ing of z and ¢, Eq. (48) depends on only one pa-
rameter, «. In Fig. 1 is shown a contour plot of
« in a plane whose axes are § and m /M.

Under the transformation

¥(p, T)=n(p,T)exp (37 -p/20), (50)
Eq. (48) becomes
321/)_ 0%
81' a_+B zpy (51)
where
=(a-1)/4a. (52)

Equation (51) is a telegraphers equation on which
there is much literature.®3-%¢
The solution to (51) transformed back to z, is

n(p, 'r)=f_:°° (Gl(p’, T(p -p’,0)

9
+Gy(p", TIgznlo=p, 0) o', (63)

TABLE II. Divergence of second-order coefficients.

Order of
approximation dy dy ds
1 0 0 0
2 1 1/28%+ (3 by + £ &49) 0
3 1+& 1/28% +4 &, g—im
4 T+&i0+ &, 1/28° L0+ b
5 1+&g+ & + &1 17282 — (L s +3 £10)y FhotTln tiu i+ Ep)
Asymptotic
theory 0 1/252”;— §02+§—§10"1) 0
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0.00! 0.0l o.l | 10 100
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FIG. 1. Contour map of a, a shock parameter in the
ion-neutral mass ratio—electric field strength plane.

where the Green’s functions are, for p?<a7?

G,(p, T)=%e""*[5(p +ar)e /2% + 5(p - ar)e?/2%]

+Z%exp(—%+ 2p—a> <Io(u )+ 2[;2711(“)), (54)

G,(p, T)=(1/2a)exp( - 37 +p/2a) I,(n), (55)
where
p=B(r?-p2/al?, &=a. (56)

Notice that more initial data need to be supplied to
Eq. (48) than the diffusion equation [Eq. (44)] be-
cause of the higher-order time derivative.

In order to illustrate the nature of the solution,
Eq. (53), we will assume that the initial ion distri-

bution is a & function, Eq. (16), which means that
an(p, 0) _
8p =0 ’ (57)

so that the G, term can be neglected. In this case
n(p,7)=Gy(p, 7). (58)
Equation (54) is plotted for several values of a (a
=10000, 100, 3, 1.1, 1.01) in Figs. 2—6, respec-
tively. It is convenient to compare with the results

predicted by the diffusion equation. Therefore the
vertical coordinate is multiplied by

(4D, )2 = [4(a - 1)8%7]V/2, (59)

which expands in time, and the horizontal coordi-
nate is transformed to

_ 2=yt p-T
y= (4Dzzt)1/2 = [4(a _ 1)7.]1f27

(60)

so that the diffusion-equation Green’s function in
unbounded space for this coordinate system is
nD(p,T):(rr)"/ze"’2 (61)

for all time.

0.6 T T T
a = 10000
T:=4
04 T 7
T=0©
n o+ -
o2t -
L

0-2 -1 [¢] 2

y

FIG. 2. Navier-Stokes—level ion density vs y at
various times for a =10000. The horizontal coordinate
is moving in the field direction and compressing in time
and the vertical coordinate is expanding in time so that
the diffusion-equation solution to this case (T=%) re-
mains stationary.

The function, equation (54) [which represents the
ion density under initial conditions equation (16) in
unbounded space] is plotted for extremely low
fields or low mass ratios in Figs. 2 and 3. In the
limit of large «, Eq. (54) becomes more symmet-
ric about y =0, but otherwise remains very much
like Fig. 2. The height of the thick lines in the
shock front and rear indicate the fraction of ions
contained in the shock. The ion-density evolution
corresponding to electrons in a neutral gas at any
fields or ions in a neutral gas at extremely low
fields is shown in Fig. 2. For ions at low fields
but slightly higher than those shown in Fig. 2, Fig.
3 typifies the density evolution. As can be seen
from Figs. 2 or 3, it only takes a dozen or so col-
lisions for the density to evolve to the diffusion-
equation solution (7 =«). See Eq. (62).

In Fig. 4 is considered a case typical of light
ions (m/M =~0.2) at high fields or heavier ions at
medium fields (see the contour of @=3 in Fig. 1).
The principal difference between Fig. 4 and the
previous two figures is that the density distribution

FIG. 8. Navier-Stokes—level ion density vs y at
various times for « =100.
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0.6 T T T
T =4 3
a =
— = |
T 6 —
T = 64
04k T - 256 .
T:=o
n - —
0.2— -
1 |
-2 -1 2

0
y
FIG. 4. Navier-Stokes—level ion density vs y at
various times for a=3.

is more skewed for short times. As opposed to the
cases where a>>1, it takes about 250 collisions to
relax to the diffusion-equation solution.

In Figs. 5 and 6 is shown the extreme case of
heavy ions and very heavy ions at high fields. For
the regions where a=1.1 and 1.01, see Fig. 1.
Here the distributions are yet more skewed and
deviations from the diffusion-equation solution per-
sist for 4000 and 65 000 collisions, respectively.

The prominent feature of these curves, the shock
wave, depends for its existence on a discontinuous
initial ion-density distribution. Since such a den-
sity discontinuity is not readily produced in the
laboratory the shock wave would be smoothed out
in experiment, though not as smooth as the diffu-
sion equation would have it.

Such effects could conceivably be measurable for
heavy ions at high fields in experimental situa-
tions®"*® possibly hampering at least the interpre-
tation of the mobility due to the peak shift. As an
example, for Xe* in He (m/M ~33) shock effects
could be present for ~30000 collisions, and for U*
in He (m/M = 60) shock effects could be present for
45000 collisions.

T I |
a = 1.1
0.6 [~ ]
T=16
- T = 64 ]
T = 256
0.4 T = 1024 _
n T = 4096
L T=® _
0.2 -
—/
0 | | |
-2 -1 0] I 2

FIG. 5. Navier-Stokes—level ion density vs y at
various times for a=1.1.

FIG. 6. Navier-Stokes—level ion density vs y at
various times for a=1.01.

The asymptotic form of Eq. (54) for long time is

1 .2
N T PR T

2(y —»°)

which is valid as long as [t(a@ ~1)]*/2>1 and
|p|<«<ar (i.e., not near a shock front).

The correction terms in the large parentheses
of Eq. (62) should not be taken too seriously how-
ever because competing terms of the same order
should arise from the Burnett theory [Eqgs. (31) or
(45)]. For instance, solving Eq. (45) in unbounded
space in the long-time limit yields5%6°

&b, D~ g ¢ L -4C - £y?)
+0(C®)], . (83)
where
C=3q,/(a3/?1/?). (64)

Normally C>0 so that the correction terms in Eq.
(63) are of the opposite sign to those in Eq. (62)
(corresponding to a density distribution skewed in
the opposite direction in Figs. 2-6). However for
the Maxwell model at high fields with m /M > 20,
q,<0 and the correction terms in Egs. (62) and (63)
have the same sign.

VII. CONCLUSION

A number of theories have been discussed in this
paper. I shall indicate in this section the scope of
each, what physical phenomena are encompassed
in each, in what cases each is liable to be impor-
tant, and what outstanding problems can be con-
sidered. The theories considered are at the Euler-
level hydrodynamics, Eq. (21), Navier-Stokes—
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level hydrodynamics, Eq. (25) convergent or Eq.
(44) asymptotic, and Burnett-level hydrodynamics
Eq. (31) convergent or Eq. (45) asymptotic. These
are shown in Fig. 7 indicating their accuracy and
scope.

The Navier-Stokes—-level hydrodynamics for a
weakly ionized gas considers that momentum is a
function of position within a pulse. The convergent
theory allows for stationization of momentum
where the asymptotic theory (diffusion equation)
does not. Since stationization of momentum hap-
pens very quickly for electrons, Eqs. (25) and (44)
give almost identical results for electrons as soon
as the shocks wear off.

Burnett-level hydrodynamics take into account
that energy is also a function of position in a pulse.
The convergent theory takes into account energy
stationization as well. At least the asymptotic the-
ory suggests that this level of hydrodynamics may
be especially important for electrons®® where the
higher-order transport coefficient, @, is very
large at high fields.*® Thus solution of Eq. (31), or
the equivalent set of moment equations, is neces-
sary for a good electron-transport theory if elec-
tron inhomogeneities are significant on the scale
of an energy relaxation distance. Burnett-level
hydrodynamics should also yield a good back dif-
fusion theory where none now exists™'2°~2% and can
take care of transport near boundaries. Burnett-
level hydrodynamics may also be important in
various types of gaseous discharges where certain
types of constrictions or instabilities develop
which are preceded by large density gradients.

The asymptotic theory at the Burnett level has
little useful to say except to suggest when the dif-
fusion equation should break down.

Analysis of higher-order effects might best be
carried out by considering the dispersion relations
contained in Table I as has been done extensively
in neutral gases,%54-68,101,102
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APPENDIX

Values of low order £,;,, 7,4, and a few £’s are
as follows:

=1, £,,=(m +M)/2m,

§oo=(m+M)/(2m +M),
regardless of the force law. A few are

3(m +M)>?

$0 G, A 1 Al

EULER|NAVIER-STOKES| BURNETT | SUPER BURNETT
w
(L]
5 CONVERGENT THEORIES
.|
}_
=
i
3 (25) 28 3
<
Po
15}
> 21
=
U) \
z
5 \
(49 \
-
- (a5) @6
= ASYMPTOTIC THEORIES @7
1 1
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ACCURACY

FIG. 7. Domain and accuracy for various theories
considered. The numbers refer to equation numbers
illustrative of the theory.

£ - Sm+M)?
20~ 24 +16m>M +24mM?’

_ (m+M)
EO3_3mz+M2+3mM ’

for the Maxwell model with isotropic scattering, or

B 5(m +M)?
" 15m® +5m® + 8mM ’

EJ.].

£ = 5(m +M)?
207903 + 16m3M + 20M%m’

B T0(m +M P
T 910m 3+ 252mM +135M72°

E()3

for rigid spheres. (See the literature for more de-
tails.”®7%8%81) The main point is that the above
two sets are weak functions of the force law.®°
However, 7 is a strong function of the force law.

It vanishes identically for the Maxwell model and
thermal diffusion depends for its existence on
n+0. Gaseous diffusion plants require 7+ 0 for
their operation. A useful ploy is to equate 7, to

8 InK/9 Ine, a measurable quantity:

B 3 3 InK
Mow =7 (5%, +4£,,)82 0 In€ ’

— [PIT(I+s+3)]
s ST e+ 3)]

where a convenient formula for § is

§=0.020837(n/T)/*KE/N,

where m is in amu, 7T in °K, K—the reduced mo-



306 J. HH WHEALTON 11

bility—in cm?/V sec, and E/N in Townsends. (For
more detailed information on these collision inte-
grals see Ref. 80.)

For a Rayleigh mixture (m > M) the matrix ele-
ments of the collision operator have a particularly

simple form,
£,=1/@r+D), N,y 01/m)7-2],

so that the 7, are negligible.
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