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Phase-space description of the thermal relaxation of a (2J+1)-level system
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The master equation describing the relaxation of a (2J+1)-level system is analyzed in the diagonal
representation for the density operator using the coherent atomic states as a basis. The c-number
quasiprobability functions corresponding to the density operator are found to satisfy a second-order
partial differential equation on the surface of the Bloch sphere. This equation is solved in the steady-
state limit, and a few moments of interest of the atomic operators are calculated in terms of classical-
like integrals in the phase space of the atomic variables. In the high-temperature approximation the
partial differential equation is solved exactly for all time by a simple eigenfunction expansion pro-
cedure. For the special case of a two-level system an exact solution is also available for arbitrary
values of the reservoir temperature.

I. INTRODUCTION

The transformation of operator equations into
c-number differential equations has been the sub-
ject of numerous investigations in quantum optics. '
A variety of mapping techniques' have been devel-
oped to deal with problems involving Bose-Einstein
operators which have led to general rules of cor-
respondence, one of the most common being, for
example, the antinormal ordering procedure. In
particular, it is well known that certain master
equations describing the evolution of electromag-
netic field operators' can be mapped into c-num-
ber Fokker-Planck equations evolving in the phase
space of the complex eigenvalues of the field de-
struction operator. In terms of the c-number rep-
resentation, expectation values as well as multi-
time averages of quantum observables have been
reduced to classical-like integrals' which bear a
striking resemblance to the results of the classi-
cal theory of Markoff processes.

Becently a continuous basis representation has
been introduced by Arecchi et al. ' (ACGT repre-
sentation) to describe collections oi two-level
atoms. The close formal similarity between the
ACGT representation and the Glauber-Sudarshan
coherent-state representation' motivated an ear-
lier investigation, ' in which a superradiant master
equation derived independently by Agarwal' and by
Bonifacio et al. ' has been mapped into a Fokker-
Planck equation evolving on the surface of the
Bloch sphere.

The mapping procedure employed in Bef. 6 is
reminiscent of the early attempts in which the
Glauber P representation was used to arrive at a
phase-space description of the operator equations
of motion for electromagnetic field observables.

More recently' certain rules of correspondence
have been developed for quantum-mechanical an-
gular momentum operators. The procedure em-
ployed in this work follows closely the method
used in Ref. 6, except that here we apply our newly
developed rules of correspondence, which greatly
fa,cilitate the calculational procedure.

We consider the master equation describing the
evolution of the density operator for an arbitrary
(2J + 1)-level system interacting with a thermal
reservoir in the Markoff approximation, and con-
struct the differential equation for the quasiproba-
bility function associated with the density operator
in the ACGT representation.

While the exact solution of the time-dependent
phase-space equation appears to be a difficult task,
we have been able to construct the time-indepen-
dent steady-state solution, "and from this we have
calculated some of the relevant expectation values
for the atomic operators. As expected, our re-
sults coincide with those derived from the usual
a.ssumption of canonical equilibrium.

In the special ease of very low reservoir tem-
peratures, the original master equation is formal-
ly identical to the superradiant master equation
discussed in Refs. 7 and 8. Hence the results of
Bef. 6 can be used to describe the low-temperature
limit.

We investigate also the limit of very high reser-
voir temperatures; an exact time-dependent solu-
tion is obtained in this case for the c-number par-
tial differential equation using eigenfunction expan-
sion techniques.

Finally, we specialize the master equation for a
two-level system including the elastic contribu-
tions. We obtain here also an exact solution to the
associated c-number equation for arbitrary initial
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conditions, in terms of spherical harmonic func-
tions.

II. DERIVATION OF THE c-NUMBER DIFFERENTIAI.
EQUATION

The time evolution of an arbitrary (2J +1)-level
system in weak contact with a large heat reservoir
can be described in terms of the Markovian mas-
ter equation (see H. Haken in Ref. 1)

dW = v([ J W, J'] +[J,WJ'])

tor can be resolved as

1= dn(e, q )(e, q (= g )J, m}(J, m(,
m=-J

(2.5)

where dQ =sin8d8dy is the differential element of
solid angle. As shown by Arecchi et al, the con-
tinuous-basis representation (2.3) can be used to
represent arbitrary operators as a continuous
superposition of diagonal projectors

~
8, y)( 8, y ~

.
In particular, one can introduce the quasiprobabil-
ity function P(8, rp, t) as

+&([J'W, J ]+[J', WJ ])

,'q((w J—'J, J J']-+[J-J', J-'J w]), - w(t)= dnP(e, q, t)~e, q )(e, q ~. (2.6)

[J', J ] =2J„[J„J']=+J' . (2.2)

In the first part of the paper we confine our atten-
tion to purely inelastic effects (i.e., we set @=0).

We observe that the evolution of the density op-
erator represented by Eq. (2.1) is such that the
total-angular-momentum operator J' is conserved.
This property of the master equation makes it con-
venient to consider a continuous-basis representa-
tion in the angular momentum subspace of a given
value of J.

We define the continuous-basis representation
in the subspace of angular momentum J in terms
of the states

~
8, y) defined by'

) 1/2

(ey)= g ~Jm)
~

(sin '8) ™
m=-J m+J~

(2.1)

where TV is the time-dependent density operator
for the (2J +1)-level system, v and 5 are the atom-
ic transition rates, and g is a parameter which ac-
counts for phase-relaxation effects. The operatorsJ' are the usual atomic raising and lowering op-
erators which, together with J„satisfy the angu-
lar momentum algebra

The function P represents, loosely speaking, a
weighting function for the

~
8, y) states on the sur-

face of the Bloch sphere for a given density opera-
tor W(t}.

For future reference we shall adopt the notation

w(t)= Jl dn p(n, t)A(n), (2.7)

where 0 stands for the independent variables 8 and

y, and where A(n) is the projector operator

A(n)-=(n)(n [

i2J( 2J 2J,
p k q )

x(c»28)" ""
I J, p)(J, ql. (2.8)

J-wJ = dnP(n, t)~, ~,* A(n),

J'J W= dn P(n, t)K)~-&~+A( )Q,

Next, we repla, ce W(t) in the master equation (2.1)
with Eq. (2.7) and notice, as shown in the Appendix,
that this results in the following terms on the
right-hand side of the equation:

x (cos & 8)J-m 8-i(1+m) &P (2.3) WJ'J =(O'J W)',
The variables 8 and y correspond to the polar and
the azimuthal angle on the Bloch sphere, respec-
tively, and the states

~ J, m) (~ m~ &J) are the ei-
genstates of J, and J'. The states defined by Eq.
(2.3) are normalized to unity, but are not ortho-
gonal to one another, i.e. ,

J ' WJ = dn P(n, t)$~+Q~- A(n),

J J+W= dn P(n, t)$~+ S~-A(n),

WJ J+=(J J'W)+.

(2.9)

i(e, y i
8', y') i'=(cos-', 8)', (2.4)

where cose = cos8 cose'+ sine sine' cos(y —y'}. The
set of ~. 8, y }states, however, is over-complete in

the subspace of the angular momentum J in the
sense that the (2J+1)-dimensional identity opera-

The S operators in the integrals of Eqs. (2.9}are
all represented in terms of c-number differential
forms as shown in the Appendix. When Eqs.
(A15)-(A20) are used in Eqs. (2.9), the master
equation takes the form



NARDUCCI et at.

' ~~~ —&(~~, t)A(II) = v &n &(n, t) -2J sine — —+(1 —cos8) —,—— — - p(~)
B sing B cosg

Bt 1+cosg Bg 1 +cosg By

sing B cosg+5 dQPQ, t 2Jsing+ — —+ 1+cosg
1 —cosg Bg 1 —cosg By'.

(2.10)

If we integrate the right:-hand side of Eq. (2.10) by parts, and note that the sum of the surface terms van-
ishes identically, we finally arrive at the following partial differential equation for the quasiprobabiljty
function Q(Q, t)= sin—8P(Q, t):

B B . sing sing B

Bt ' Bg
—Q(Q, t)= —,2J(v —5) sin8+ v —5 — Q(Q, t) + -,f[ v(1 —cos8)+5(1+cos8)] Q(Q, t)j1+eosg 1 —cosH ' Bg'

8' cos8 cos8
sp' „1+cos8 1 —cos8 (2.11)

Equation (2.11) is the main result of this section. The steady-state solution of Eq. (2.11) a,nd the special
case of very large reservoir temperatures will be discussed in Secs. III and IV.

III. STEADY-STATE SOLUTION OF THE PHASE-SPACE
EQUATION

We look for a solution of the phase-space differ-
ential equation (2.11) corresponding to the steady-
state condition of thermal equilibrium. " We first
write Eq. (2.11) in the form of a continuity equa-
tion,

diffusion matrix. " Since Q, in general, is a con-
tinuous differentiable function of its arguments, we
must have

9' 1nQ 8' InQ

Bq~ Bq) Bq) Bq~

so that the condition for detailed balance can be
written in the form

Bq&
BUq BU)

Bqt,
(3.6)

where the summation convention has been used for
repeated indices, and where the probability cur-
rent I; has been defined as

I; =2;Q — (D;,Q).
Bq

(3 2)

The indices i and j range over the values 1 and 2
and the variables q; and g', stand for 8 and y, for
i,j = 1 or 2, respectively. In the steady state it is
not necessary that the probability current I; van-
ish. In this case, however, we verify that the de-
tailed-balance condition is satisfied, i.e. , the cur-
rent density vanishes when the steady-state condi-
tion is reached. The detailed-balance condition re-
quires that

From Eqs. (3.5), (3.1), and (2.11) it is seen that
U„=O and Ue—= Ue(8); hence Eq. (3.6) is satisfied
identically.

Under the condition of detailed balance the
steady-state solution Q(8, p) must satisfy the
pair of equations (3.3) (for i= 1, 2), which have
the explicit form

(QJ( —5)S' 8+ - — —)))(6 q)
v sing 6 sing

1+cosg 1 —cosg

+ — v(1 —cos8)+ 5(1+cos8) Q(8, y) = 0,
1

(3.3a)

X,.Q ——(D,,Q) = 0,B
(3 3) By 1+cosg 1 —cosg

ol

Following Lax, ' we write Eq. (3.4) in the form

(3.4)

From Eq. (3.3b) we see what we might have ex-
pected, namely, that the steady-state solution
Q(8, 9)) is actually independent of q. Equation
(3.3a) can be integrated at once with the additional
requirement that the normalization condition

B in@ =(D-') X ~ =-U
BD. .

Bq )(tf 4 Bq lz 9 (3.5) 'dg "dyggy=1,
0 0

where (D ')„; is the (k, i) element of the inverse be satisfied. The result is
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Q(g) =[(2J y I)/27[](v 5)[(25)-[2~+t& (2v)-[2~+&&]

x sing[(v+ 5) —(v —5) cosg] '" . (3.7)

Equation (3.7) can be used to calculate the steady-
state expectation values of the operators of inter-
est. In general, the expectation values of normal
ordered products of the form J"J,"J ' are easier
to calculate if we use the diagonal representation
(2.6) and the disentangling theorem of Arecchi
et al. ' The diagonal representation (2.6) leads to

(z"z,z ') = f"e-n p(e, (e, el(eely"1,",J 'le,, e),
(3 8)

while the disentangling theorem allows the calcula-
tion of the diagonal matrix elements (8, (p ~. . .

~ 8, (p)

by direct differentiation of the generating function

y(eo.', ['i, y) =[e8"(sin-,'8)'+ e s"(ote'~ sin-,'8+ cos-,'8)

x (ye '~ sin-,'8+ cos-,'8)]'~
(3 9)

as follows

&8, &~J"J;J ~8, ,)

IV. HIGH-TEMPERATURE LIMIT

As we mentioned before, the exact solution of
the phase-space equation (2.11) is quite compli-
cated for arbitrary values of the atomic transition
rates v and 5. Two special cases which lend them-
selves to exact solutions correspond to the limit-
ing values T = 0 and T- ~ for the reservoir tem-
perature.

In the former case, the differential equation,
written in terms of the density function

@(g, t)= J" de@(8, V, t),
0

is formally identical to the superradiant diffusion
equation that has been discussed in Ref. 6. In this
limit, the time-dependent solution can be reduced
to quadratures. For a discussion of the method of
solution we refer the reader to Sec. VII of Ref. 6.

In the limit of a very high reservoir tempera-
ture, the solution of Eq. (2.11) can be obtained by
eigenfunction expansion techniques. We observe
that for v = 5 Eq. (2.11)becomes

BP(8, (p, t) 2
cosg 8P(8, (p, t) BP(8, (p, t)=2@ + 2p

gt sing gg gg2

n=8"-y=p

(3.10)

cos'8 6'P(8, tp, t)+2@ ~ 2s jn2 g gy2
(4.1)

In particular, we have We look for an elementary solution of the form

(8, tp i J, i 8, (p) = -J cosg, (3.11) P(8, (p, t) =e ""f(8)g(tp), (4 2)

(8, cp ~

J",
~ 8, (p) = —,

' J [(2J —1)cos'8 + 1] . (3.12)

2 J + 1 (I/g)' —1 I+(x
I-o (I/o)' "-1 I-o (3.13)

It is now a simple matter to calculate the steady-
state average of J,. The result of the integration
(3.8) is

where X is an undetermined parameter. The @-
dependent part of the solution is

g((p) = e™~,m=0, +1, . . . , (4.3)

which ensures single valuedness with respect
to rotations around the polar axis of the Bloch
sphere. The 6-dependent part of the solution sat-
isfies the differential equation

where a =5/v=e[ " ' ~. We can write Eq. (3.13)
in a more familiar form as

d'f cosg df, m'
dg' sin8 dg sin'8 (4 4)

(3.14)

which is identical to the expectation value of the
operator J, for a (2J + 1)-level system in canonical
equilibrium with a reservoir at temperature T.

In a similar way we can calculate the second mo-
ment of J, from Eqs. (3.8) and (3.12). The result
ls

where A.
' = A. + m'. The only regular solutions

of Eq. (4.4) are the associated Legendre func-
tions P„(cosg) corresponding to the eigenvalues
X'=n(n+1) (n=0, 1, . . . , ~m) ~n). It follows that
the arbitrary solution of Eq. (4.1) can be expressed
as a linear superposition of spherical harmonics
I'(8, g ),

P(g (p t ) g g Cm - [e(n2nIn) -m+]t lcm(g

(J', ) =J(J + 1)+ —coth'1 2 1 S(d

(3.15)

n=p m=-n

where
7r 2'

C„= dg sing d(p Y„(8,(p)P(8, (p, 0),
0 0

(4.5)

(4 6)
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and P(8, (t), 0) is the initial density function of the
atomic system.

V. PHASE-SPACE DIFFERENTIAL EQUATION FOR A

TYCHO- LEVEL SYSTEM

In this section we analyze the behavior of the
phase-space density function for a two-level sys-
tem interacting with a thermal reservoir. Unlike
the case of the arbitrary multilevel system dis-
cussed in Sec. II, it is possible to find an exact
solution for the density function, even including
the elastic contributions (the )! terms) in the mas-
ter equation. For j'= —,', Eq. (2.1) can be written
in the form

= v(2j Wj' —j'j W —Wj'j )Bt

The solution of the system of equations (5.4) is

Q., ,(t) =Q. ..
Q (f ) Q (0) e-(II+6+ 1/22) t

Q (f ) Q (0)e-( II+6+1/26) t

Q, ,(t) =Q, ,(0)e '(""'+[(3v —5)j(v+ 5)j Q, ,
x (1 e-2(11+6) t

)

(5 5)

is fairly simple, but algebraically involved. Here,
we merely quote the final result

Q. .(t) = o,

Q, ,(t ) = —( v+ 6 + —2'q) Q.
(5.4)

Q, ,(t) = 6(v —5) Q, , —2(v+ 5) Q. ..

Q, ,(t) = —(v+ 5+-2')i) Q, ,

+5(2j'Wj —j j'W- Wj j')
—~glV+ q J3$'J3. (5.1)

From the normalization condition for Q(8, (p, t) we
find that

Using the S-operator techniques mentioned in Sec.
II and discussed further in the Appendix, one can
derive the differential equation for the density
function Q(8, ((I, t) —= sin8P(8, y, t),

SQ S

I (
. I —cost)

(
. I+cost)

1
+ —g sin8 cos8 Q4

g2 1+, v(1 —cos8)+6(l+cos8)+ -)!sin'8 Q
88 4

8' cos8 cos8 1
a((I2 1+cos8 1 —cos8 4

(5.2)

To construct a solution for Eq. (5.2), it is conven-
ient to impose the ansatz

l

Q(8, y, t) = g. Q, (t)sin8PI (cos8)e '
g=O m=-l

(5.3)

where Pt (cos8) are the associated Legendre func-
tions. We will have solved the problem if we can
construct and solve the equations of motion for the
time-dependent expansion coefficients Q, (f). The
same ansatz was used in an attempt to solve the
phase-space equation (2.11). The resultant set of
first-order linear differential equations for Q, (t)
was found to be unmanageably complicated. For
the case of a two-level system, one is concerned
with only four expansion coefficients; furthermore,
only two of the four differential equations are cou-
pled to one another (this number grows if one con-
siders multilevel systems). The procedure for
arriving at the differential equations in question

Q, ,(t) = 1/4~, (5.6)

whereas the remaining three constants can be de-
termined from the initial condition as

VI. CONCLUSIONS

The continuous-basis representation of the co-
herent atomic states provides an elegant descrip-
tion of the evolution of an arbitrary (2j+ 1)-level
system interacting with a reservoir at temperature
T. The master equation governing the time de-
pendence of the atomic-density operator has been
mapped into a c-number equation evolving on the
surface of the so-called Bloch sphere, neglecting
the elastic contributions. Unfortunately, the exact
solution of this differential equation appears to be
quite a difficult mathematical problem. We have
been able, however, to derive the steady-state
distribution for the atomic system, and some of
the operator expectation values of interest. They
have been calculated using the integral represen-
tation (3.8) in the phase-space of the atomic var-
iables and have proved to be identical, as expect-
ed, to the canonical expectation values.

In the limit of large reservoir temperatures,
we have obtained an exact time-dependent solu-
tion in terms of a linear superposition of spheri-
cal harmonics. Finally, we have derived the com-
plete phase-space equation for a relaxing two-
level system, including the elastic terms of the
master equation, and found its exact solution in
terms of associated Legendre functions. The
method of solution employed in this final calcula-

i+mt 2 7r

( + )'
Q (0) d d8 imcP

2i+1 (l —I)!
xP, (cos8) Q(8, ((I, 0). (5.7)
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tion could also be used to derive a time-dependent
solution for arbitrary values of J, but it would re-
quire numerical methods to calculate the time de-
pendence of the expansion coefficients.

A number of useful rules, referred to as the Q-
operator calculus, have been collected in the Ap-
pendix to facilitate the derivation of the phase-
space equation discussed in this paper and for
future applications involving angular momentum
operator s.
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APPENDIX: S-OPERATOR CALCULUS

We develop the explicit form of the X) operators
which are useful in the mapping of operator equa-
tions into c-number differential form. A more
complete description of the method can be found

in Narducci et al. ' We consider the diagonal co-
herent-state projector

2J

A(n) -=f n & (n f
= p r, ,(n),

P, q= 0

where

)/2 2J '})/~

r, .(n) = fJ, p)«, ql (sin) 8)/t+q(cost 8)~J &/est))e &&&t t))(tt

q&

(Al )

(A2)

In view of the applications discussed in Secs. II
and V, we wish to establish the existence of a dif-
ferential operator 5)(n) acting on the angular vari-
ables 0 and y, such that the following identity
holds:

Consider now the special case of Eq. (A3} corre-
sponding to B,=J', with the remaining I3 andA
operators equal to the identity operator. From
the algebraic property of J' we find

B„B,fn)(nfl, . A. =-u(n) fn)(n f. (A3}
J '

f n) (n f

= (cot-', 8)e'('Z, (n), (A9)

In Eq. (A3) the operators B& and A, are assumed
to be angular-momentum operators acting on the
states

f J, P) and (J, q f.
It is useful, in what follows, to consider the

first-order de rivatives

—=-2J(tan-,'8) A(n)+ . g (p+q)r, ,(n),
BA 1

B6f sin8
P, a

(A4}

BA—=-I g (p —q)r, ,(n).
P, e

whence it follows that

J'(~tt)(tt(~=e"(Zstne (cos-,'S)' ——cot-', S n(tt)
8 6) 2

-=&,.(n)A(n). (A10)

A similar calculation leads to the explicit repre-
sentation of the differential operators SJ- and SJ,3'
namely,

~tt)(tt(=e '"(estne —(sin-,'S)' ———tsn —,'S n(D)
B6I 2 By

The operators

z,(n)= g pr, ,(n), (A6)

-=~,-(n)A(n), (A11)

= z, (n)'. (A8)

z, (n)=- P qr, ,(n) =z,(n), (A7)

can be expressed in terms of A(n) and its deriva-
tives using Eqs. (A4) and (A5). One finds at once

1 . BA i BA
Z (Q) = —sin8 —+J(1 —cos8)A+ ——

2 Be 2 By

1 . B z B
J, fn) (Q f= -J cos8+ —sin8 —+ ——A(n)

2 B(9 2 By
-=~, (n)A(n) . (A12)

(A13)

(A14)

The differential operators corresponding to
A(Q) J' and A(n) J, follow from the identities

A(n) J =
f J A(n)]+= $/t:(Q)A(n)s

A(n) J =f J A(Q)]'= S (Q)A(n),

which result from the Hermitian character of the
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projector A(Q). The operators S~~, S are the
complex-conjugate differential forms of the S op-
erators defined by Eqs. (A10), (All), and (A12).

More general expressions of the form given by
Eq. (A3) can be constructed by repeated applica. —

tions of the elementary K) operators given above.
Since this calculation involves a substantial amount
of algebraic manipulations, we list here the X) op-
erators of interest for the calculations performed
in Secs. II and IV.

I BA BAJ'J n(ii) = (C'sin'8+ —Z(i —conc)' n + Jsing cosc+ —sino (2 —conc) —+i Zcosc s—
2 4 Bg 2 B(p

O'A I B'A I . , B'A——sing — + ——;——sin'g
2 BgBy 4 Bcp 4 Bg'

-=&g- Sg+A(Q),

1 1 . BA I BAJ J'A(Q)= J'sin'8+ —J(1+cosg)' A+ Jsingcosg ——sing(2+cosg) —+& Jcosg ——
2 Bg B(p

BA IBA I . BA——sing + —,——sin'g
BgBy 4 B(p 4 Bg

-=&, u, -A(Q),

A(Q) J+J = Sg-Kg+A(Q),

A(Q) J O'= I),"+ S-J- A(Q),

(A15)

(A16)

(A17)

(A18)

I BA I , BAJ A(Q) J'= J'sin'8+ —J(1 —cosg)' A+ -Jsing (1 —cosg)+ —cotg (1 —cosg)' —+ —(1 —cosg)'
2 4 Bg 4 B g2

B'A
+—(tan-,' 8)' -=u, —Z),*-A

-=@,*-g), A (A19)

I I BAO'AJ = J'sin'8+ —J(1+cos8)' A + J sing(1+cosg)+ —cotg(1+cosg)'
2 4 Bg

+ —(1+cosg)', +—(cot—,'8)'I
Bg' 4 By'

CD J +A QJ + coJ' +A ~ (A20)
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