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Quantum-mechanical radial distribution function for a hard-sphere gas at low density and
high temperature
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A high-temperature expansion is obtained for the density-independent part of the radial distribution
function (pair-correlation function) for a quantum-mechanical gas of hard spheres. Explicit expressions
are given for the first five terms in this series. Comparison with the numerical values obtained by
Larsen shows that our expansion is accurate for all values of the radial distance at moderately high
temperatures.

I. INTRODUCTION AND STATEMENT OF RESULTS a =r/a,

Q =(2m)' (a/A. )(R —1),
(3)

(4)
The radial distribution function (or pair-correla-

tion function) g(r) is a quantity of central impor-
tance in the theory of both classical and quantum
fluids. ' ' It occurs in the expressions for both
equilibrium and transport properties. ' It can also
be experimentally determined by x-ray and neu-
tron-diff raction techniques. '

At low densities, g(r) can be replaced by its
density-independent part g, (r), which is deter-
mined by binary interactions only. ' In the classi-
cal case, this is simply'

where P =1/kT and v(r) is the pair intermolecular
potential. In the quantum case, go(r) can be ex-
pressed in terms of the two-body wave function, "
and as such is amenable to numerical calcula-
tion. ' " Usually such numerical treatments are
supplemented by the Wigner-Kirkwood (WK) meth-
od." This gives an expansion for g,(r) in powers
of 8',"""which holds at moderately high tem-
peratures and at large separations r. However,
for a potential v(r) which is a nondifferentiable
function of r the WK expansion breaks down, "and
we must look for an alternative method,

In the present paper, we consider the case of a
dilute gas of hard spheres. Numerical calculations
of g, (r) for this system have been performed by
Larsen' and Miller and Poll. ' The WK series does
not exist for hard spheres. However, using a
method devised by Handelsman and Keller" for the
second virial coefficient of a hard-sphere gas, we
have obtained the following high-temperature ex-
pansion for go(r) for hard spheres of diameter a
and mass m.

where

y, = (1/W2)(X/ )aQ'erfcQ,

(6)

(I)

y, = (I/37() (X/a)'Q'[(1+ Q')e —(3 + Q') v mQ erfcQ],

(8)

y, = (1/24v 2)~ -s/2(~/a)

x[-(16+26Q'+4Q')e ~ +(39+28Q'+4Q')WmQ erfcQ].

(9)
erfcx is the complementary error function, de-
fined by

2 & 2
erfcx= —

~i e ' dt.
v n' „~

At moderately high temperatures, the series (2)
gives good agreement with Larsen's' numerical
results over the entire range of r.

(10)

II. RADIAL DISTRIBUTION FUNCTION

Let II„bethe Hamiltonian for a system of N
particles in volume V. The pair distribution func-
tion, defined in the canonical ensemble, is'

(2), - N(N —1)
p (r„r,) =

is the thermal wavelength. Then the explicit ex-
pressions for the y s, as obtained in Sec. III below,
are

g,(r) =0, r&a

Let

=$+p +p +'y +/3+. . . , r a.
xd r ~ ~ ~ d r~
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where Q„is the partition function

rz) dr ~

p~"(r„r)2gives the probability of finding one mol-
ecule at r, and another at r, . In a fluid, it depends
only on the distance r =

~ r, —r, ~
and on the density,

and it is customary to write

p"'(r„r,) = p'g(r), (13)

wherep N=/V is thenumber density, and g(r) is the
radial distribution function, or pair-correlation
function.

g(r) is still a function of p. It can be expanded
as a power series in the density, '

g(r) =g,(r) +pg, (r) + p'g, (r) + (14)

For dilute gases, only the first term g,(r) (the
density-independent part) need be kept. It is given
byl J5,6

g,(r) = X' (r„r,~
e 8"2

( r„r,)
=2'~'x'(r~e '""~r) . (15)

where JI." is the Hamiltonian for the relative mo-
tion of two particles:

g, (r) =g", (r) a (2s + 1) 'g',"'"(r),

where
rel

g', (r) =2'~'x'- (r(e "'
~ r),

(17}

H',"= —(k'/ppg) V'+ v(r) .

In the limit of classical statistical mechanics, (15)
reduces to g",(r) as given by (1).

In the above, we have not taken the quantum
statistics into account (i.e. , we have treated the
case of Boltzmann statistics). For particles of
spin s obeying quantum statistics, (15) should be
replaced by'

p 00

g, , (r) =2' 'A'(4, zr') ' —
~~

dk e ' ~R»(r) ~'

vp

+ Pe '"'~la„,(~)~~*) .
(22)

The radial wave function R»(r) is for a continuum
state with wave number k, and R„,(r) is for a bound
state of energy e„,. Equations (20)-(22) have been
used in numerical calculations of gp for hard
spheres, ' ' for 'He, ' and for H, .'P

This 's a satisfactory method at low tempera-
tures. At higher temperatures, a large number of
partial waves have to be included in the sum, and
also the range of the k integration in (22) has to be
increased. Thus it is desirable to supplement this
scheme with some alternative method at high tem-
peratures. In the case of g, , this is supplied by
the WK method. " This gives an expansion in
powers of A' about the classical limit"'":

g,'" (r) = e "'"'[I + 8'(o, (r) + k'(u, (r) +. . . ], (23)

where ~,(r} are functions of the derivatives of
v(r).

If v(r) is not differentiable, this method fails,
and g, does not have an expansion in powers of
I'." An extreme case is that of hard spheres.
We investigate this case below, and find an alter-
native expansion which is useful for calculating
gp at high temperatures.

For g',"'", the WK method is not useful (even if
the potential is differentiable). This is because
the presence of a steep repulsive core in the po-
tential causes gp"'" to decrease rapidly with in-
creasing temperature, becoming negligible above
a few degrees Kelvin. This effect has been dis-
cussed by a number of authors. ' "'" Thus, ex-
cept at very low temperatures, it is sufficient to
calculate g', only, and we do not discuss gp fur-
ther in this paper.

g',"'"(r)= 2"'x' (- r
~ e '"2

~
r ) . (19)

III. HARD SPHERES

In (17), the plus refers to Bose-Einstein statistics
and the minus to Fermi-Dirac statistics.

From Eqs. (17)-(19), we see that g,(r) can be
expressed in terms of two-body wave functions.
A partial-wave decomposition leads to"

We wish to find an expansion for g, (r) for a
system of hard spheres about its classical limit:

g",(r)--0, r &a

=1, r&a.

go"(r) = Q (2I +I)go, ~(r)
l~

g',""(r)= g (—I)'{2&+1)g, , (r),
l=p

(20)

(21)

The first term in such an expansion was given
many years ago by Uhlenbeek and Beth." They re-
placed the hard sphere by a hard wall, and found

g,'"(r) -1 —exp[-2~(r —a)'/x'], r & g. (25)

Recently, Bruch has shown that the right-hand
side of Eq. (25) is a lower bound for god .

A method for obtaining higher terms in such an
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expansion has been given by Handelsman and Kel-
ler." They were principally interested in obtain-
ing a high-temperature series for the second
virial coefficient Bq„(T)., which is related to the
distribution function by

B, (T) =-,', [1-g,"(r)]dr. (25)

Thus they left the terms in their expansion of g,"
in the form of multiple integrals, preferring to
do the r integration in Eq. (26) before the other
integrals. We show that it is possible to obtain ex-
plicit expressions for these terms, which can be
easily evaluated for a range of values of ~ and
X/a.

Our method is basically the same as that of
Handelsman and Keller. " (See also Ref. 21.) We
write

The appropriate boundary conditions are found by
expanding (31) in powers of 1/a. This leads to

GO(0, y, z; r0; P) = 0, (35)

G, (0, y, z; r0; (8) = —,'d 'G,'(0, y, z; r0; p), (37)

1 d'+(x- x )'
GO( ) 0) I ) 8( Dp)3/2 p 4Dp

d'+ (x+x,)'
4DP

etc. , where the prime denotes differentiation with
respect to x. In general, G„(0,y, z; r, ;p) can be
expressed in terms of G and its derivatives at x
=0, where m&n.

Equation (34) is easily solved to give

g',"(r) = 2'/'X'G (r; r; P ),
where

G(r; r(), P) = ( r
~
e "2

~ r() ) .

Then G(r;r, ;P) satisfies

B G/B(3 —DV'G = 5(P)5(r —r0),

G(r; r;, P) =0 for P &0,

(27)

(28)

(29)

(30)

(38)

This gives the Uhlenbeck-Beth approximation [Eq.
(25)] to gOd . From (35), one obtains the equation2'

x
Gn(x) y) zs r0) ~) 8(~D)3/2 (p ~)3/2

dy'dz' G„(0,y', z', r,; 2)

and the boundary conditions that G(r; r0; p) vanishes
when r & a and when r- ~. G(r; r,;P) is the Green's
function for diffusion past a sphere, with center
r=0 and radius a, with r, the source point, P the
time, and D= If'/m the dif—fusion constant. "

We wish to expand G(r; r0; P) in powers of 1/a.
As a first step, a new origin is taken at the surface
of the sphere, on the line joining the center and the
source point. A Cartesian coordinate system xyz is
introduced, with the x axis passing through the center
of the sphere and the source point. The gz plane is
then tangent to the sphere at the origin. Relative
to this coordinate system, r= (x, y, z), r0= (x0, 0, 0),
and the sphere center is at (-a, 0, 0). The boundary
condition that G vanishes on the hemisphere x & —a
is now

G ( (a' —d ') '/' —a, y, z; r,; P) = 0,
where

(32)

Expanding G(r; r,;P) in powers of 1/a,

G=Gp+G, a '+G2a +. . . ,

substituting in (29), and equating powers of 1/a
gives

(39)

This follows either from standard Green's-function
methods, using G, as the Green's function for the
homogeneous equation, "or alternatively by taking
a double Fourier transform of (35) with respect to
y and z, and then a Laplace transform with respect
to P.

One can now use this equation to calculate Gy,
using G, (0, y, z; r0;P) as given by (37), and then re-
peat the procedure for G„G„etc.This is the
method used in Refs. IV and 21, and gives the G„'s
as multiple integrals. It is possible to do the in-
tegration explicitly in these expressions for G, and
G„butthe process becomes increasingly difficult.
We therefore adopt the following more systematic
procedure.

It can be shown (by induction) that G„canbe
written in the form

BGO/Bp —DV Go= 5(p)5(r —r0),

BG„/BP—D V'G„=0, n &0 . (35)
where /II"~ is independent of y and z. Inserting (40)
into (39) shows that AI"~ satisfies
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a("' x x. n (4I&)k-l -1/2 y l 2

5'p) ~& g pk+l+l $1 02 I) l
k'= l

S(') =0.
From (47),

(51)

Qp

)( 1~ Wlf-l -3/2 0+ l+ 1 x /4D(8 7)g —T) 7'

(41)

Ik(lo', i) = ~o, l 1k[P'Ax" (o' xo' P)]

(p
-1/2 e 3/4D -8)

Using (50) and doing the transforms gives

(52)

We note that we are finally only interested in

G„(x;x; P) -=G„(x,o, o;x, o, o;P)
=A("'(x; x; P), (42)

I p(l)) xx5 -(3+3,)(k/D)
0,1 8@D2p

Inverting the transform gives

rl;"~(xx '5)=$3 ' ' 'll'„', (43)

but it is necessary to calculate the other A, " for
the intermediate steps. Equation (41) can be writ-
ten as

(y) xxp x + xp
8&(D (4Dp)l/2

Thus, by (40),
x' x

G,(x;x;l3)=5, , er)e
( )x,).

(54)

where

~g

I,'"& =C, d~A(")(0 x ~)~""'
p&

~/0

ik-l -3/2 32/4D(8--))X P —T)

and

(44)

Higher terms are calculated in a similar manner.
We have evaluated two more terms, the results
being

X
12&(3/2(DP))/2

Xx[(1+X')e " —(3+X2)v w XerfcX],

(56)

We now observe that (44) is in the form of a con-
volution integral, and this suggests using Laplace
transforms. Let

+0
(46)

denote the operation of taking the Laplace trans-
form with respect to P. Applying this to (44) gives

X 2 4 -XG, (x; x; P)=,/, [-(16+ 26X'+ 4X')e

+ (39 + 28X'+4X')Rl(xerfcX],

(57)

where X-=x(DP) '/'.
These results are still in terms of the special

lk(II")k) =C, kLk[p
' "Ak(")(0; x5;p)]

{pk-l -3/2 -x /4D 8) (47)

TABLE I. Contributions to go~ for A,/a =1.0.

A('&(x. x.P) =P-'I('& +P-'I(' .

Substituting (40) into (37) gives

A ' (0'x'P)=0

A"&(O x P)=-'A"&'(O x P)

(48)

(49)

XP -Xp/4D 8
16 3/2(Dp)5/2

From (44) and (49),

(50)

The transforms on the right-hand side can be done,
and their product inverted to give I l "l, . To illus-
trate the method, we give the details for
A,"'(x;x,; P). From (43),

1.0625
1,125
1 ~ 1875
1.25
1.3125
1.375
1.4375
1.5
1.5625
1.625
1.6875
1.75
1.8125
1.875
1.9375
2.0

-0.9758
-0.9065
-0.8018
-0.6752
-0.5414
-0.4133
-0.3004
-0.2079
-0.1370
-0.0859
-0.0513
-0.0292
-0.0158
-0.0081
-0.0040
-0.0019

0.0143
0.0457
0.0791
0.1043
0.1163
0.1148
0.1028
0.0848
0.0649
0.0464
0.0311
0.0196
0.0117
0.0065
0.0035
0.0017

0.0008
-0.0014
-0.0089
-0.0198
-0.0306
—0.0385
-0.0416
-0.0401
—0.0350
-0.0281
-0.0209
-0.0144
-0.0093
-0.0057
—0.0032
-0.0017

-0.0001
-0.0003

0.0009
0.0039
0.0085
0.0135
0.0175
0.0195
0.0194
0.0174
0.0142
0.0108
0.0076
0.0049
0.0030
0.0017

0.039
0.138
0.269
0.411
0,549
0.670
0.770
0.847
0.903
0.941
0.966
0.981
0.990
0.995
0.998
0.999
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I'IG. 1. Direct correla-
tion function go~ for ~/a
=0.1, 0.5, 1.4, and 2.0.
Solid lines: obtained from
our high-temperature ex-
pansion. Broken line: Lar-
sen's numerical result for
A/a =2.0.

0.2

1.0 1.25 1.5 1 .75 2.0 2.25
I

2.5

coordinate system, with origin on the sphere sur-
face. Transforming back to the original coordi-
nate system gives the result stated in the Introduc-
tion [Zqs. (2)—(9)].

IV. DISCUSSION OF RESULTS

One check that can immediately be performed on
our series for g," is to insert it in Eq. (26) for the
direct part of the second virial coefficient, . This
yields

1
+ O((X/a)')

jn agreement with prevjous results. ~~'2~'25

We expect the series (2) to be useful for calculat-
ing g~o (r) for small values of X/a (i.e. , high tem-
peratures). However, (2) is not simply an asymp-
totic series in powers of A/a, since Q depends on
X/a. In fact, (A/a)Q = (2w)~'(R —1); so inspection
of (6)-(9) suggests that the expansion may work
best for R close to 1. This indeed turns out to be
the case. However, the expansion also holds for
larger values of R, since the y&'s behave like

e, and consequently decrease rapidly as R in-
creases. To illustrate the behavior of the terms,
we give in Table I the values of the y s for A/a= 1,
and a range of values of R. We note that the terms
alternate in sign (except for R close to 1), and in
calculating go~ we have used the standard procedure
of including only half the last term.

Figure 1 shows go", as calculated from our high-
temperature series, for A/a=0. 1, 0.5, 1.4, and
2.0. The general features of such curves have al-
ready received adequate discussion in the litera-
ture"', so we will not repeat it here.

At the two lowest temperatures, given by X/a
= 2.0 and 1.4, we can compare our results with the
accurate numerical values of I arsen„' obtained by
summing the partial-wave series. For X/a = 2.0,
there is some deviation for larger values of R,
and Larsen's results are shown as a broken line
in Fig. 1. For A/a=1. 4, the error is too small to
show on the graph, the difference between our re-
sults and Larsen's being less than 1% for the en-
tire range of R.

We conclude that our series gives an accurate
representation of go for all r at moderately high
temperatures (X/a& 1.4). At somewhat lower tem-
peratures it is still quantitatively accurate for
small r, and at least qualitatively correct for
larger x.
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