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The exact solution for the ground state of the quantum one-dimensional N-boson problem with
attractive 8-function two-body potentials is compared with the (exact) self-consistent solution of the
corresponding variational Hartree problem.

I. INTRODUCTION N

4g =C~ exp (2)

The Hartree-Pock (for fermions) and the Hartree
(for bosons) approximations play a fundamental
role in the study of many-particle systems. The
Raleigh-Ritz theorem implies that the solutions
yielded by these approaches provide a rigorous
upper bound to the exact ground-state energy of
the system; but little is known about the accuracy
of these approximate techniques, ' their general
acceptance resting largely on the apparent sound-
ness of the physical picture that constitutes their
basis, It is therefore of interest to compare the
exact and approximate results in one case, in
which both can be evaluated exactly. This test
case is the one-dimensional problem of N bosons
interacting via two-body ~-function potentials. '
In this paper we report the results for the ground
state in the attractive case; because this state
is bound, no container is needed to confine the
system, and this implies a considerable simplifi-
cation. Indeed the N-body problem has been
solved exactly only in this case. The Hartree
problem can be solved exactly even in the presence
of a container, but this problem (including the
interesting questions of the dependence upon the
boundary conditions and of the "ther modynamical"
limit as the size of the container diverges propor-
tionally to N) shall be discussed elsewhere

II. EXACT SOLUTION

The Hamiltonian for the problem is'

82 N

, -g P 5(x, —x&), g&0 . (1)

The exact ground state of this system is the (only)
N-body bound state, and it is characterized by
the (translation-invariant and symmetrical) N
particle wave function'

In order that this wave function be normalized,

dx, ~ ~ ~ dx„5(x, ) (f„('=N,~ ~

me IO

the constant IC„~ has the value (see Appendix A)

~
C„[=Nt [(N- i)t (-.'g)"-']" .

In Eq. (2), and always in the following,

1 N

xc.m. g

The density

PN(~) =I «, « '(» )'(~«~.),la I'

corresponding to this N-particle state can also be
evaluated exactly (see Appendix A):

N-I n(N ))2e-'rnÃlxl/2

2 ~ (N+n —1)!(N-n 1)!'-
rl =1

The argument x of p~(x) represents of course the
distance from the center-of-mass of the system.
In the limit of large N, this formula yields (for
/x/&0)

p„(x) =—,'gN'[cosh(-, 'gNx)] '
x [I—N [1—~~ cosh (~ gNx)]

+0[N-2 Ne-4'E Ix 1/2] j
As for the central density p„(0), it can be evaluated
in closed form for all N (see Appendix A):

p~(0) = ,' g N'(N - I)/(2N - 3) . -
The ground-state energy of the system, cor-
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III. SELF -CONSISTENT HARTREE SOLUTION

The Hartree (approximate} solution for the
ground state of the problem obtains inserting in
the Ritz variational principle,

E» -E[4]=(4~ IH —H. I 6 ),
the trial wave function'

(10)

4~=N" ],], V(xi) .

This trial wave function is not translation in-
variant, this being a well-known difficulty of the
Hartree method For this reason in (10) the
center-of-mass Hamiltonian H, = —N '(S'/Sx,' )
has been subtracted from the N-body Hamiltonian
(other prescriptions are discussed below).

The (normalized) single-particle wave function
(p(x) is determined so that the functional E[g,]
attain its minimal value E~ ~, which represents
the Hartree approximation (by excess) to the exact
ground-state energy E&. The process of minimi-
zation of the nonlinear functional of y(x) (which
obtains by inserting (11) in E[p,] ) yields, by
standard techniques, the Hartree eigenvalue equa-
tion

—[(N-1)/N] y" (x) —(N 1)gI y(x) I-'y(x) =e(p(x),
(12)

the value E ~ being then related to the smallest
eigenvalue e~„~ of this nonlinear equation by the
relation

Z„"'=&1e& &+-,'nr(-»&))J&d»(1(&)('. (13)

The function (p(x) appearing in this equation is of
cour se the normalized "self-consistent" eigen-
function of (12) corresponding to the smallest
eigenvalue e&»~, and it is related to the (Hartree
approximation for the) density p»~")(x) of the sys-
tem by

responding to the wave function (2), is'

E»= —+g N(N —1) .

As a consequence of the purely attractive char-
acter of the forces, clearly in the limit of large
N the system collapses to a (linear) volume of
order 1/gN and the (binding) energy per particle
is proportional to (gN)'. lt should be noted that
the assumption that g be inversely proportional to
N, g=y/Nwith y constant, although implying a
finite binding energy per particle in the limit of
large N, does not prevent the collapse, since in
the limit of large N the system would then reduce
to a fixed size (of order 1/y), and its central
density would diverge proportionally to N.'

p»"'(x) =NI v (x) I' .
As shown in Appendix B, the only' normalized

solution of (12) is

(p(x) = (—,
' g N)'~'/cosh(-, ' g N x),

and the corresponding eigenvalue is

e,„,=- —,', g'N(N-1) .
Thus the Hartree method yields

E»l ) = —
~~ (gN)~(N- 1) =E»[N/(N+1)]

p„'"&(x) = —,
' gN'[cosh(-'. gNx)] -',

implying

p.'"'(o) =-.' gN'= p.(0)[(»-2)/(2N-2)] (»)

IV. DISCUSSION

The comparison of the Hartree results with the
exact ones is so explicit and simple as to require
no comments. We merely emphasize that all
Hartree results coincide with the exact ones in the
limit of large N (even if g were assumed to depend
on N, e.g. , g = y/N), while they may be quite off
the mark for small N; this is consistent with the
philosophy underlying the Hartree method, and

may be largely traced to the non-translation-
invariant character of the Hartree many-particle
wave function.

Indeed, because the subtraction of the center-
of-mass kinetic energy is an important, and con-
tentious, issue in Hartree and Hartree-Fock com-
putations of not-too-many-body systems, ' it is of
interest to mention the results (all of which can
be easily computed in closed form) that would be
obtained employing other (less accurate) prescrip-
tions to subtract the contribution of the center-
of-mass motion. The roughest procedure is to
ignore altogether the problem, namely, omit to
subtract H, from H in Eq. (10). This results in
the disappearance of the factor (N-1)/N in the
first term of the right-hand side of (12), yielding,
in place of Eqs. (17)-(19), the results

E~~ ~ = -+,g 'N(N- 1)' = E„[(N- 1)j(N + 1)], (20)

p»~
"~ = —,' giV(N 1)Lhc[o-,'sg(N-- 1)x]) ', (2l)

p»'")(0) = —,' gN(N- 1) = p„(0)[(2N- 3)/(2N)] .
(22)

A less drastic procedure (often employed in
actual computations) performs similarly the
minimization procedure (ignoring the center-of-
mass problem), but subsequently subtracts the
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expectation value of the center-of-mass Hamilto-
nian II, (evaluated in the state described by the
Hartree wave function that minimizes the ex-
pectation value of II). This procedure yields of
course the same expressions (21) and (22) for the
density, but a value for the energy intermediate
between (20) and (17), namely,

E)~("i = —+, g'(N- 1)'(N+ 1) = E„[(N- 1)/N] .
(23)

Qf course all these results coincide for large
N. The difference [ E» ~(/N(N+ I) between (23) and

(17) is a measure of the spuriosity' of the Hartree
many-particle wave function (this difference would
vanish were the dependence upon the center-of-
mass coordinate factorable); it is smaller than the
difference ) EN ~ /(N+ 1) between (17) and (9) which
accounts for alE the inadequacies of the Hartree
trial wave function and not only its lack of transla-
tional invar iance. '

I,(t)=[N(N!)]-' P I „(t),

with

N t2 Ndt„dttt g t)
00 A=a

N

x e(t- t„)exp — Q (tt —t, )) . (A4)

It is now convenient to introduce the Fourier
transform of I„„(t),

Clearly I~(t) is an even function of f; hereafter
we assume, for simplicity, that t is nonnegative.

The symmetrical way the different coordinates
enter in the definition of I~(t) (clearly any other
coordinate could take the place of t, without
changing the result) implies that we can write

APPENDIX A

I~ „(v) = dt e '"I„„(t). (A6)

In Appendix A we prove Eqs. (4), (6), and (8).
We start with Eq. (5) of the density p„(x) which,

using (2), can be rewritten as follows":

C~(x) =Nl &~ I'(2/a)" 'I (kZx), (A1)

(A2)

+ d)O N

le(t) = dtdt tl ,g t,)
e(t-t),

N

x exp —g (t, —t, () .
$&j=l

Inserting in this formula the Fourier representa-
tion of the center-of-mass & function,

e P t, =(Pe) ' J dteexp(iteP t ), „
4~ 1 A=a

(A6)

and introducing the constants n~ with the position

(A7)

we then get

+ OO + OO

(v) =(2)))-' du d4 exp[(i(u —u„)t„] dt~, exp[(i(u —ag, )&g ~J

tn+1 t2
~ ~ ~ d)t„exp[(i(u —i v —n„)t„] ~ ~ dt, exp[(i&a —o. ,) t, ] 8)

du i& —a„" Q &+ia„" (A9)

- j.
a&"~ —a~"~

J= 1 A= 1

(A10)

In these expressions n„=2k' —X- 1, (A13)

a „ = n~ +iv&„ „ ,(n)

A'n&=X-' ~ a&n~

(A 11) and from this it follows that A " is actually in-
dependent of the index n,

Ai"~ =iv/N . ( A14)

The explicit expression of the coefficients n~
obtains easily from definition (A7). We find

Inserting these expressions in (A10) and per-
forming the sums and products we get
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( )n2»+1NN 2 N-1
I», n(N) =

(N „)((„ I), II (N —&g" )
'

f=x

(A15)

We now perform, using the residue theorem,

the Fourier transform

l„„()e=(2e) ' J eve'"'I e„( )v,

and we get

(A16)

?? ].

I„„(t)=(-)"+'[(n—1)!(N-n)! J
' P (-)~(N+n- j —I)!e N!" ~~'/[(j —1)!(n- j —1)!(2N j —1)-!J. (Al'?)

j-1

Inserting this expression in (A3) we obtain

N-z
(t) g I(N) e m»-1 (A18)

with

77? -&I! ~N=(-) "[N(N!)(N+m —1)!(N m-1)!-] ' Q (-)n(N+m —1 —k)! /[k! (m —1 —k)! (N-1 —k)! ]. (A19)
A=p

The sum in this expression can be performed using the Saalschutz formula, "getting

I!N) =(-)""m/[N! (N+ m —1)!(N-m —1)!J.
Thus, we finally obtain

N-I
p»(x) = tC»l'(2/~)"-' g (-)""ne-'""""/[(N- I)!(N+n-I)) (N-n- I)!] .

?? =

(A20)

(A21)

There remains to compute t CN [, which is fixed by the normalization condition (3), or, equivalently,
by the condition

dxp (x) =N . (A22)

This becomes, upon integration of (A21),

~ CN [
-2 = 2(2/g)»-' g (-)""[N! (N+ n - 1)!(N n- 1)!] -1 . - (A23)

The sum on the right-hand side of (A23) can
again be performed, " and there obtains expression
(4) for

~ CN~, that is thereby proved. Insertion
of this expression for

~ CN
~

in (A21) then yields
Eq. (6), that is thereby also proved.

The last equation to be proved is (8). This
follows from (6), using again twice, after ap-
propriate changes of indices, the same formula
used to evaluate (A23).

solution y of Eq. (12) is real. In fact inserting
the polar representation

p(x) =A(x)e'"!"', (Bl)

with A(x) and y (x) real, in Eq. (12), we get

—[(N —1)/N] (A (x) —[g'(x)] 2A(x)) —(N —l)gA2(x)

= eA(x), (B2)

APPENDIX 8

In Appendix B we solve the Hartree eigenvalue
equation (12).

We are interested in normalizable solutions, that
must therefore vanish asymptotically. The struc-
ture of Eq. (12) immediately implies that the
corresponding eigenvalue c is negative and that
asymptotically not only the solution y, but also
its derivatives, vanish (exponentially). From
this remark there immediately follows that, apart
from a constant phase factor, any normalizable

y'(x) = C[A(x)] (B4)

C being an arbitrary (real) constant. Inserting
this in (B2), we get

—[(N —1)/N][A "(x) —C'A '(x)j —(N- l)gA2(x)

= eA(x) . (B5)

y" (x)A(x) + 2X '(x) A'(x) = 0 .

The second equation can be immediately integrated,
yielding
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Looking at this equation in the asymptotic region,
we immediately conclude that the constant C must
vanish, implying, through (B4), that )((x) must be
a constant. Q.E.D.

Neglecting hereafter a constant phase factor,
we rewrite Eq. (12) as follows:

—[(N- 1)/N] V' "(x)—(N- 1)W"(x) = s mix)

(B6)

Multiplying this equation by cp (x) and integrating
we get

and is clearly integrable by quadratures, yielding

(-2s/[(N- 1)Z)J"
cosh([N/(N-1)] "'(-s)"'(x —a))

(B9)

Here a is an arbitrary (integration) constant,
whose presence corresponds to the translation-
invariant nature of the problem.

There still remains to satisfy the normalization
condition

—[(N- 1)/NJ[y'(x) J' ——,'(N- 1)gq4(x) = sy'(x) .
dx px =1, (B10)

To eliminate an additional integration constant in
this equation we have again used the fact that both
y(x) and p'(x) vanish asymptotically.

Equation (B7)can be rewritten as follows:

q '(x) =+[N/(N- 1)]"
x y(x)[- e--,'(N-1)W'(x)1", with s(„) given by Eq. (16).

(B11)

which, due to the nonlinearity of the problem,
does play a nontrivial role. Indeed, inserting
(B9) in (B10), there obtains the eigenvalue condi-
tion

One rigorous result concerns the coincidence of the
exact and the Hartree-Fock values of the ground-state
energy in the high-density limit [E. H. Lieb and M. De
Llano, Phys. Lett. B 37, 47 (1971)]. Although this
result is not applicable to the case considered here
I.because (i) it refers to the fermion case, (ii) the pro-
perties of the potential that are required for its valid-
ity do not hold in this case, and (iii) it refers to many-
body systems included in a container, whose density
can be increased ad libitum squeezing the container],
it is consistent with the findings reported below.

2F. A. Berezin, G. P. Pochil, and V. M. Finkelberg,
Moscow Univ. Vestnik 1, 21 (1964); J. B. McGuire,
J. Math. Phys. 5, 622 (1964); E. Brezin and J. Zinn-
Justin, C. R. Acad. Sci. (Paris) B263, 670 (1966);
C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967) and Phys.
Rev. 168, 1920 (1968). Several recent papers extend
this many-particle model and/or use it as a test case;
but we have been unable to locate any paper using it to
test the Hartree approximation.

SUnits are chosen so that 82/2m =1, implying that g is
an inverse length.

4This fact originates from the peculiar zero-range nature
of the interaction; it contradicts a conjecture by
E. Lieb and D. Mattis, Mathematical Physics in One
Dimension (Academic, New York, 1966), p. 401 )see
sentence after Eq. (5.26)].

5This wave function is now normalized to N upon integra-
tion over all the N coordinates x;, without 6(x, ~ ).

6The term-g~y(x)p corresponds of course to the Hartree

effective potential J „dx' v(x-x')
~
y(x') p, due to the 5-

like nature of the two-body potential, v(x) = —g6(x). In
Eq. (12), and always in the following, primes stand
for derivatives.

TExcept for the (infinite) degeneracy originating from
the translational invariance of (12) and corresponding
to the arbitrariness implicit in the possibility to re-
place x by x -a, with a an arbitrary constant, on the
right-hand side of (15) (see Appendix B).

See, e.g. , the review paper by F. Palumbo, in The
Nuclea~ Many- Body P~oblem, edited by F. Calogero
and C. Ciofi degli Atti (Editrice Compositori, Bologna,
1974), pp. 685-705.

~The exact coincidence of the differences between (20) and
(17) and (17) and (9) is remarkable, but presumably of
no significance.

~OThe factor N in this formula compensates the absence
of a factor N ~ in the argument of the center-of-mass
6 function in Eq. (A2).

~~See, for instance, Eq, 2.1.5(30) in Higher Transcen-
dental Eunctions, edited by A. Erdelyi (McGraw-Hill,
New York, 1953), Vol. I, p. 66. To apply this formula
to our case, set a = 1 —N, n = m-l, c =b+2 and take
the limit b + ~.

~ Replace the summation index n by k=N-1 —n, and
then use the truncated binomial formula fsee, for
instance, Eq. (0.151.4)1 in I. S. Gradshteyn and I. M.
Ryzhik, Tables of Integrals, Series and Products
(Academic, New York, 1965), p. 3.


