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Quantum electrodynamics in the presence of dielectrics and conductors. III. Relations among
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states, the field-correlation functions, and surface-dependent response functions
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In this paper the physical entities such as transition probabilities and the density of states are related
to appropriate electromagnetic-field correlation functions and to appropriate response functions. Such re-
sponse functions have already been computed in a previous paper and therefore these can be used to
obtain surface-dependent corrections. It is sho~n how the density of states and hence Planck's law de-
pends on the presence of surfaces. I explicitly calculate the correction terms for the case of a small

blackbody bounded by two plane conducting surfaces. An appreciable correction occurs if the linear
dimensions of the blackbody are of the order of a wavelength. Next electric-dipole-type transitions in

atomic systems are considered and a straightforward perturbation theory is used to obtain one-photon
transition probabilities in terms of the surface-dependent response functions. As an illustration of the
surface-dependent terms, the transitions in presence of a conducting surface are considered. The tran-
sition probabilities show a marked increase or decrease depending on whether the dipole transition is

parallel or perpendicular to the surface. Both stationary and nonstationary fields are considered. As
a special case of nonstationary fields, the transitions in a coherent field are considered in detail. It is
also shown how the coherent radiation field in presence of dielectrics can be realized. It is found that
if the radiation field, in arbitrary geometries, is initially in vacuum state then at later times it would
be found in a coherent state if perturbed by an external (c-number) electromagnetic field.

I. INTRODUCTION

Paper I discussed how different kinds of response
functions can be used to calculate the electromag-
netic field fluctuations, and in Paper II these were
used to obtain dispersion forces between micro-
scopic and macroscopic bodies. ' This paper con-
tinues with this response-function formalism to
study the impact of dielectric and conducting sur-
faces on the density of states and one-photon tran-
sition probabilities. One-photon transitions, in the
presence of surfaces, have been studied both ex-
perimentally and theoretically by Carniglia,
Mandel, and Drexhage' and by Carniglia and
Mandel. ' In the theoretical work' they used the
explicit quantization of the field. Their results
are valid only in a specialized situation. As men-
tioned in Paper I, I would like to avoid the explicit
quantization of the field because of problems in-
herent in such a procedure. It is for these rea-
sons that the above effects are studied using re-
sponse functions. Results are presented both for
fields in thermal equilibrium as well as fields
which need not be in thermal equilibrium.

In Sec. II are calculated the corrections to the
density of states and Planck's law using the ap-
propriate response functions. Explicit results
are presented for electromagnetic fields in the
domain bounded by two plane conducting surfaces.
In Sec. IH the interaction between the radiation
field and the atomic systems is considered. It is

restricted only to the calculation of one-photon
transition probabilities. A straightforward per-
turbation theory is used to obtain the one-photon
transition probabilities in terms of the correlation
functions of the radiation field. I first consider
stationary radiation fields in thermal equilibrium
and use the fluctuation-dissipation theorem to
express the transition probabilities in terms of
response functions like y, »~, X,~~H, etc. I ex-
plicitly consider the change in transition prob-
abilities due to the presence of a conductor which
gives rise to interesting coherence and antico-
herence effects depending on the orientation of the
dipole moment. Next, transitions in nonstationary
fields initially in a coherent state are treated.
Finally, I consider how such coherent states can
be experimentally realized. In a future publication
the formalism of this paper and Paper I will be
used to discuss lifetime and Lamb shifts of
excited states in presence of surfaces. In later
papers we hope to discuss the anomalous magnetic
moment of the electron, multiphoton transition
probabilities, optical nutation, etc.

II. SURFACE-DEPENDENT CORRECTIONS TO THE
DENSITY OF STATES AND PLANCK'S LAW

It is known from Bose statistics that the average
energy per unit volume between frequencies co and
~+den is given by
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dkp
U((v)d4) gQ- 1PH(ko) V

(2.1)

pg(ko) dko= V(ko/m') dko, (2.2)

if the volume V occupied by the field is very large
(going to infinity) and if the Periodic boundary con-
ditions are imposed at the surface bounding the
volume V. On combining (2.1) and (2.2), one finds
that for the entire free space

where p„(k,)dk is the density of states, i.e., the
number of modes lying in the interval ko to ko+dko.
For the electromagnetic field in a vacuum one has

ized by the Hamiltonzan

(d) =(J[(E'+H')/8r]d'r:), (2.7a)

where the pair of colons denotes the normaE or-
dering. On. using the results of ~ec. lII of Paper I,
(2.7a) becomes

(H) = —fd'r g[d[rr(r, r, D)+Z!r"(r, r, 8)],
i (2.7b)

where SIp and XI/ are defined by (I.3.3) and
(I.3.6), respectively. On writing (2.7b) in terms
of response functions [(I.3.13), (I.3.14)], we obtain

@(0 d(d
U((d) d(d 8g&u ~ 2 ~ ~

8 —i7TC (2.3)
dm d'r 5&+& r, r, co

If we are studying fields in a finite domain such as
the electromagnetic field between two conducting
plates, then (2.2) no longer holds. There would be
a size-dependent correction to (2.2) and according-
ly a correction to Planck's law (2.3). In this sec-
tion we consider such correction terms and dis-
cuss the conditions under which such terms could
make a significant contribution. The usual eigen-
function expansion of the Green's function leads
to the following relation between the density of
eigenvaiues and its imaginary part4:

v x px G —k', G=4wI5(r- r'), (2.4b)

and where I is the unit dyadic. The density func-
tion p~ depends on the type of boundary conditions
imposed on G. On comparing (2.4b) with (I.4.2) we
find that G„. satisfies same equation as y,»z/ko,
y, &„„/k', . The density-of-states factor p„, ap-
pearing in Planck's law, is with respect to the
eigenvalues of the Hamiltonian. It is clear that
there is a relation between ps and the density of
eigenvalues for (2.4b). It is easy to obtain such a
relation for the electromagnetic field in free but
bounded space. We show that

p„(k,) dk, = 4,' d'rIm Q [g„»(r, r, (u)
4m ko v

+X «H(r r ")]
(2.5)

=-', [p„(k,) dk, + p„„(k,) dk, ], (2.6)

where pzs(ko) dko [pz„(k,) dko] is given by (2.4) with

G,, replaced by y, ,» (y,.«„). We know that the
electromagnetic field in free space is character-

po(ka) dko=(ko/2n') d'r Im g G«(r, r, ko) dka,
V

(2.4a)

where the Green's dyadic G (with elements G„.)
satisfies

+K,'f)(r, r, e)]
+" -etch

d(u
J

d'r g((u)

xlm Q [y()»(r, r, —")+X)(»(r,r, —~)],

which on using the symmetry property of y can be
written as

(d) Vf d~=d((o)(r" —I) '
0

with

=— V U~ d(d,
0

(2.6)

8(v)= JdrIrng[rrr (r, r, v)

+X&«sr(r r ~)].
(2.9)

Finally (2.5) and (2.6) follow if we compare (2.9)
with (2.1). If y(" represents the translationally
invariant response (Sec. IV of Paper I), then inte-
gration over r gives V and

Imp', P»(r, r, ~~-™y'8&zH(r,r, &u)

ko+
stnknlr —r'I

'x', lr- r'l

= —k32
3 pj

and on substituting these results in (2.6) we ob-
tain (2.2).

We now consider the following situation: we
have the electromagnetic radiation in the region
-d &z & 0 which is supposed to be vacuum and
which is bounded by two conducting plane surfaces
at z =0 and at z =-d. The surface-dependent re-
sponse functions are to be obtained from (I.5.33)-
(I.5.37). We have first from (I.5.35) and (I.5.36)
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:Z(I& ( ) D-1 I 2 {eiKp'r (e-(K&')'ro+e iK-o'ro) +e(Kp r('e-lKo'rp+e-i o'rp-klwod)], (2 10)
0

dQ dv ~

1
&&) (p r &) Lf-1{eiKo r [@2~2e-(Ko ' r +2~ 2 e-lKp' ro V2p2 e-(Ko'r + V kg 2 e-(Kt)'ro]

2~ u2 0 0 0 0
0 ll

el p 1 [ f(22()2 e iKp
' rp + if 21() 2 e

(Ko' rp-2lwpd + y2 V2e-2fwpdiK-O' rp
0 0 0

2
V

2 e-iK() ' r p] j (2.11)

I(2&2)»(r, r„«)) is obtained from (2.11) if the replacement u —v in the terms in square brackets is made.
Hence

xiikz(r ror &())+x22Irz(rr ro1 &d) = Do (fo()+"o)[e
0

and therefore letting r -x„
~elKo ' r(e-lK()' rp-2(w d e-iKp '

ro) t
J 0 (2.12)

(r r tr)+r'" (r r tr)=—f " "rr (rr rr'')(r" '+e "" " ' —1)
0

(2.13)

Similarly in (2.10) letting r-r„we find that

(r r &o)=- dQdV33EE» 2+
I 2D-1(e2fw z+e- iwpd 2(w z +-2)

ii 0
0

(2.14)

On adding (2.13) and (2.14) we find that the trace y is given by

~(l) (r r ~) ~-1[~2(e2fwpz+ e-2iwoz-2(wpd) 2y 2]
0

(2.15)

which on changing the variable of integration becomes

(~r ~r &d)=2ilf (1 —e «o"od) '[f()2(e 'wozko+e 'wo'"o '"okod) —2]
0 0

(2.isa)

where now

ZU0= 1 —K
2 2

When K & 1, zv0 is pure imaginary and therefore

(2.16b)

Im g /I(fr@(r, I' &&)) = 2k pRe
KdK

(1 e-2fw k d)-1[ 2(e2lw zk +e-2&wpzkp-2fwpkpd) 2)0
zoo

1
= 2lf 3 Re dD (I e-2ik pd )-1[&&2(2(e2f&xkp +e -22(&k oz-2f &k pd) 2] (2.17)

Because of the singularity in the integrand, we have to specify how to go around the singularity. Equation
(2.17) should be interpreted in the following manner: Replace a by n +is, and after the integral has been
done, take the limit c-0. This limit is motivated from the fact that if we move both the conductors to in-
finity then (2.17) should vanish. To see this write (2.17) as

1

Im g y&i) ~(r, r, &()) =2ko2Re dn(1 —e "kod'"+l") '{2(22e 'kod' + @ fs(c2ok x p)
—o(22),

0

+0= 2d+81 (2.18)
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0
Im P X',.&'»(r, r, &o) dz = -4k 0 dI, (2.19)

where

1

I —He d(y (1 e ~~~~ ++24~p~ }
0

1 oo

2eMk +02dk -e g 2lndkoa -2dkoe n

2 p

+ e-2idk 0~-2dk e e-2indk&+-2dk & n
p o e o 0

Now it is easily seen from (2.18) that if we let
d-~ peeping x fixed, then (2.18) gives zero. It
is now clear from (2.1V) that

A similar analysis for the magnetic field response
functions using (I.5.38)-(I.5.41) shows that

0
dz g g&&»(r, r, +) = 2sk 0(Z+ z) . (2.26)

-d

Note that (kod/m —3I) varies from 0 to 1 and hence
(kod/m —3I- z) varies from - z to +-,', and there-
fore it is clear from (2.25) that the correction
term (m/kod) (kod/m —2 —2) can be appreciable
only for kod- n, or for distances of the order of
a wavelength. The final expression for the density
of states, on using (2.25), (2.26), and (2.5), is

p„(k )dk =,'dk 1—t/'k o & kod 1

(2.2Va)

and Planck's law becomes
+-

dCE ~ e 0 +
2 0 ~oo

On using Poisson's summation formula'

e2indko&

dko dko

(2.20) reduces to

1 F 1

=2-2dk, '""

(2.20)

(2.21)

(2.22)

d(d @(d 7T kod 1
~2c'(e'"~-1) k d

(2.2Vb)

It should be noted that (2.27a) and (2.2Vb) are exact
results. ' If kod/m is equal to an integer 3R, then
the K+-,' factor of (2.22} should be replaced by II
leading to I =0, and therefore for such values of
kod the density of states and the Planck's law are
unaffected.

The result (2.2Vb) should be compared with the
result obtained by Balian and Bloch' that the
lozvest olde~ size correction to a spherical black-
body is given by

where K is the largest integer less than dko/z.
In obtaining (2.22) the normalization condition

&(n) dn =-,'

has been used. Hence on combining (2.19) and
(2.22), we have

0
Im dz g yIo~~zz(r, r, &o) = 2k od,

~d

and hence

(2.24)

0
Im dz Q li, ,»(r, r, (u)

=2sk', (3I+-',)

d

(2.25)

0
Im dz g yI',.~»(r, r, &o) =-2ko'd+2wk20(X+ —,').

-d

(2.23)

One also has

which again show that the correction terms become
appreciable only when the radius is of the order
of the wavelength.

III. RELATION BETWEEN ONE-PHOTON TRANSITION
PROBABILITIES AND THE ELECTROMAGNETIC

FIELD CORRELATION FUNCTIONS

We now consider the one-photon transition in an
atomic system and show how the transition prob-
abilities are related to electromagnetic field cor-
relation functions, which are known in terms of
the response functions. The entire calculation
will be done in r space. As already emphasized
several times, we would like to avoid the mode
expansion of the electric field operator as far as
possible. In this way size- or surface-dependent
corrections to transition probabilities are ob-
tained from the surface-dependent response func-
tions.

As discussed by Power and Zineau, ' the inter-
action Hamiltonian between a bound electron and
the second quantized electric field, in dipole ap-
proximation, can be written as
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HH0 P~r. E r d r+2w P~ r d x.
(3.1)

Here P„(r) is the polarization operator corre-
sponding to the atomic system and the last term
in (3.1) is important only for self-interactions
and will be ignored. The density matrix p of the
combined atomic-plus-field system satisfies

Bp/et =(-tll}[H,(t), p], (3.2)

where H, (t) is the interaction Hamiltonian in the
interaction picture. We will take the initial state
of the system as

p(t.) = lq, ) &c, l p,(t.), (3.3)

where l g, ) denotes the pure state of the atomic
system and pz(to) the initial state of the radiation
field. On integrating (3.2) we obtain, in the lowest
order (Born approximation),

Z
t0+T 1

p(t, +T) = p(t,)- @
dt, [H,(t,), p(t,)]-—,

t +T t
x dt, 'dt, [H,(t,), [H,(t,), p(t,)]] .

t

(3.4)

p„(t,+ T) = Trz&gg I p(t, + T) I yy&, (3.5)

where Tr~ denotes the trace over the radiation-
field variables. On using (3.4) and (3.5) and the
orthogonality of lg, ) and lg&), we find that

t0+T t
p~)(to+T) =-

@, dt, dt2
t0

x T &p l[H, (t,), [H,(t,), p(t, )]]l(J& ) .

(3.6)

Writing H, (t) as

E (t)= —J 9 (tr, t) E(r, t)d'r, (3.7)

with E(r, t), P„(r, t), etc. as operators in the
interaction picture, we find that the term
H, (t,)p(t, )H, (t, ) can be written as

Let pz, (t,.+ T) be the probability that the atomic
system will be found in the state

lpga)

after the one-
photon transition has taken place. It is related to
pby

Tr &&tr(E(t )p(t )E(t )I&lr): Q J J d r d r &&tr(Pt (r t &It&t&(t&t)Pt„(r„ t)(tr&&E (r„t,)E„(r„t,)&

(3.8)

The terms like H, (t,)H, (t,)p(t, ), p(to)H, (t,)H, (t,}vanish due to the orthogonality of l(t), } and lpga). On com-

bining (3.6) and (3.8), we obtain

t T t~

Pr,.(t r P) = —„gJJd r, d'r dt, dt, (E„(r„t,)E (r„ t )&&t& IP (r„t,) )Pr&„
5!tl t0 to

x & gf l P„„(r„t, ) l y, ) + c.c.,

which by a change of variables becomes

Prt (t r P) = P JJd r&Pr ld(r„tOP)rI P )&P l r(r„r0P)r)P &t
T t~

x dt, dt, (E„(r„t, + to)E„(r„t, + t,)) exp[(i/h)(E, —Ez)(t, —t,)]+cc.
0 0

(3.9)

where E, and Ez are respectively the unperturbed energies of the initial and final state. Equation (3.9}can

also be written as

pz&(t 0+ T) = —,g l ]f d'r, d'r, &II,. l P~„(r„0)l )t)z) &gz l P„„(r»0) l (J)&) I~(r» r» to),
mn

(3.1O)

with
T

Ittttt(rit rmt t())
0

t
dt, {&E (r„ t, +to)E„(r„t2+to)) e" "" ( )( "& '2'

+(the term with t, t2}). (3.11)
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Further simplification of (3.11) depends on the nature of the electromagnetic field. We first consider
transitions in stationary electromagnetic fields for which the correlation functions are invariant under time
translation. Denoting by &« the energy difference

(3.12)

and on using stationarity, (3.11) becomes

I„„(r„r,) =
t

dt, '
dt, [(E„(r„t,)E„(r„0))e ' ff'2+(E„(r„—t, )E„(r„o)}(.' f'2]

0

r
dt, dt2(E (r„ t2)E„(r2, 0)) e ' y~'2.

0 -t
1

Equation (3.13) in the usual long-time approximation leads to

t„„(r„r, ) = Tf dr&E (r„~)E„„(r„0)) e ' yi',

(3.13)

(3.i4)

which on using Eqs. (1.2.5), (I.2.8}, and (I.2.9) becomes

I .( .)=T[@x". ( „., g)+&".'( „„t)] (3.16)

On combining (3.10) and (3.15), we find that the one-photon transition probability y&& for unit time from the
state ~]r&, } to final state ~gz) in stationary fields is given by

i s; =+ =
@ g f d'&, d'~ &('& Ii'~ F 0) les&&eel p„„&F 0) I('&& (((x'„„(r„&„&~a&+(' JJ(r„r„ru,q)],

(3.i6)
where 8(~& is the symmetrized correlation function defined by (I.2.16) and g" the imaginary part of the
response function defined by (I.2.12). From Eqs. (I.3.11) and (I.3.21) it is clear that (3.16) can also be
written as

&i p f5 d'rd'r&(&, . l& „„(r„o)I()&(,li „„(r„o)Irl~) (( (r„r„ural ii ru'&& 0

g ff d'~ d'~, &(&gli' „(r„a)I('q&&(&]li' „(r„o)((,&b„'"„'(r„r„ro,.~) i( ra,.~& 0.

(3.1V)

(3.18)

Hence in a photon absorption process ((d;f & 0) [one photon emission processes (&u,z & 0)] the transition
probability is determined from the normally ordered correlation function [antinormally ordered correlation
function] of the electromagnetic field. This is, of course, what one expects on physical grounds from the
interpretation of the positive and negative frequency parts of the field operator as corresponding to photon
absorption and emission, respectively. The results (3.16)-(3.18) are valid for any kind of electromagnetic
fields, not necessarily one in thermal equilibrium. We now specialize to thermal fields; and then, writing
symmetrized correlation functions in terms of the response function, (3.16) becomes

g ff d'&, d'r, &g'g(Pg (T ) lll0~) ]ll~ I&P„](7' 0)]l(i)](+co(h((&re,yli/2)] Illlx g(f Kid'y). „'
It is obvious from (3.19) that at zero temperature

~f ~ —Os 1f Q)ff + 0

(3.19}

(3.20a)

i.e., there is no possibility of spontaneous absorption. The spontaneous emission transition probability is
equal to

V jT
'=

7& p ff d""'~d' .&ll; I+ .(~„0)I('y&&(yli .( ., 0& I('& i~X.. (~„~., ~gy), ~'y~ o (3.20b)
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The stimulated emission transition probability is equal to

y,",' i=o g ff d'r, d r& ),iIP e(r„)Ol i)&r& i)lr P„„(r„O)ld,&(e" i —() 'Oox „«(r„r„re,r}.

The absorption probability is equal to

(3.20c)

mn
ff d'ed'r&d, (P(r„O)li)r&&dr IPe(r„O) li)i&(ee" "ir' —))(mx„, e(r„r, —Ireirl)

which on using the symmetry property

fP ~ ~ lg ~ ~ PI
X mnzz( xx 2) &x&) X nmzz( 2& xx &x&) =

X mnzz( x) 2) «&) x

becomes

f d'r, d'r, &d;IP„„(r„O)li)r)&drlP„( „O)l(),&(e " 'ii' —() ' xmx„„(r„r Ire r„l).

(3.22)

It is clear from (3.20c) and (3.22) that

(ab3) (Stim)
~fi ~ ff (3.23a)

Similarly from (3.19) one has

~y, I+ ctoh(P &xz& k 2/)

y&& 1 -coth(P&(&(&h /2)
(3.23b)

Relations (3.23a) and (3.23b) yield the right equilibrium value.
We have thus shown how physical quantities like transition probabilities are related to the electromag-

netic field correlations functions and the response functions. The surface-dependent corrections, cor-
responding to a given geometrical arrangement, to the transition probabilities are now obtained by substi-
tuting the appropriate response functions in (3.19); we have already computed a number of such response
functions in Paper I. Let y«be the transition probability in the radiation field in the absence of dielectric,
and let y&n&) be the transition probability in the presence of surfaces. Then it follows from (3.19) that

(s) (0) (s) (0)
= g ff d'r, d r&i)ilPe„('r„O&ldr&&dr IP„„(r„O)l(,& (mx'„"„e(r„r„rex&

mn

P f d'r, d' , rI&POre„&O)l dr&I&dr„P( Or)I ,. dm&(„"„'x„(r„r„)m, (3.24)

where y' ' is the usual translationally invariant
response function and y

'" denotes the surface-
dependent contribution to the total response func-
tion. Thus the relative change in the transition
probability depends essentially on the ratio X'"/

In particular for a tzvo-level atom located
at r=r0 we have

z =0 and the atom is located at r, = b along the z
axis. The ratio still depends on the orientation of
the dipole moment. We discuss the two cases
separately: (i) the dipole moment has a random
orientation in x-y plane; (ii) the dipole moment
is parallel to z axis. We denote the transition
rates in the two cases by I'

~~
and I' respectively:

d„ lmX& (r„zzr„(u,~)
'

(3.25)
(
I""-I"" Imp', , XI,"zz(r„r„(u,~)

Z'(=xXltzz( 0 o

(3.26a)
where d is the dipole matrix element between the
two states of the atomn To have some idea of the
change, we consider the simplified situation: we
have the radiation field in the semi-infinite domain
~ ~z ~ 0 and bounded by a conducting surface at (3.26b)
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The response functions for the geometry under
consideration are given by

]a Ir -~'I
(0) I I 5 Z. 2

X~y@z(r& r I 4)) = k 06~g +
a~a~, ~~r- r

(3.2Va)

2

(r, r', (v) = k'5, (25), —1) +
~X)~Xg

coherence effect. In the case of the dipole moment
perpendicular to the surface, the transition prob-
ability is increased, leading to a positive coher-
ence effect. These properties are the reflections
of the coherence properties of the black-body
fluctuations in finite geometries which we dis-
cussed in Paper I. Other characteristics will be
discussed in a future paper.

@C~0) r -r,'- f

/r- r,'j
(3.2Vb)

IV. ONE-PHOTON TRANSITIONS IN NONSTATIONARY

FIELDS

ri (zi &i z

It is obvious from (3.2Va) that

Im XI)~zz(ra~ roc &) =
x3 ~ I&

Similarly,

(3.2Vc)

(3.26)

ImX„'," (r, r, ce) =Im X,',"zz(r, r, (g)

cosasinn+0 a n3 a

e = 2ko zo, (3.29)

(3.31)

Hence on combining (3.26) and (3.28)-(3.30), we
obtain

We have so far considered the stationary electro-
magnetic fields in thexma2 equilibrium. For such
fields using the theory of Sec. II of Paper I, it
was possible to compute all the necessary correla-
tion functions in terms of the response functions.
The case of nonstationary fields is extremely dif-
ficult because for such fields there is, in general,
no fluctuation-dissipation theorem, and nice re-
sults like (I.3.11) and (I.3.21) break down. How-
ever for electromagnetic fields the commutator
of the fields at two different space-time points is
still a (; number, and hence the response functions
which we have obtained in Paper I give us the com-
mutator of the fields at two space-time points ir-
respective of whether the field is stationary or
not. The real problem arises in the computation
of the field correlation functions. Before we dis-
cuss such a computation, we would like to de-
scribe how the transition probability is related to
the field correlation functions.

The one-photon transition probability is given
by (3.10) and (3.11). On using the identity

(
F"'-F'" sinn cosa

F ~ n Q.
(0) + 3 2 (3.32) dt, dt, f(t„ tm) =

These relations show how the transition probabil-
ities are altered as a function of the distance of the
atom from the conducting surface. F(" becomes
a damped oleillatory function of n. The surface
Shows a ma, rked effect on these transition prob-
abilities provided the distance of the atom from
the surface is smaller than or of the order of a
wavelength. On carrying out expansions for small
n, we obtain

«.(f(t„t, ) +f(t„t,)],

(3.11) becomes

T T

I„„(r„r„to) = dt, dt,
0 0

x (Z„(r„t, + t,)Z„(r„t, + t,))
F(s) F (0) a2

F (0) +
fl

(3.33)
x exp[i(o,~(t, —t,)]. (4.2)

F(s) F (0) n2F'", rO
' (3.34)

Equation (3.33) shows that the transition probabil-
ity goes down if the atom is placed in the vicinity
of a conductor and if the dipole moment is oriented
parallel to the surface. This is a type of anti-

Further simplification of (4.2) depends on the
nature of the process, i.e., whether it is an ab-
sorption type or emission type. We first treat
the absorption processes. We express the fields
in terms of positive and negative frequency parts
and retain only the sloze2y varying contributions;
then (4.2) reduces to
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Ittttt(r)t r2t t p)

T T

dt, dt (E' '(r„ t, +t,)
0

x E(+)(~r t y t )}elotgf(ty 02)-

cussed in Sec. V.) On substituting (4.3) and (4.4)
into (3.10), we obtain

11
pf, (t p+ ~) =

@ Q d'~. (pf I)I'gp(rat 0) I pg)

(4 3)

We moreover assume that initially the field is in a
coke~ent state so that the correlation appearing in
(4.3) is equal to

(E(-)(r„t, + t,)E„"'(r„t, + t,))
If we write V„as

T 2

dt, V,(r„t,+t,)e' f~'2

=V„*(r„t, + t,)V„(r„t, + t,) .

(The construction of such a coherent state in which
the electric field has an amplitude V will be dis-

(rt„ t, + t,) =f 0 „(r„te)e ' '*det,
0

then (4.5) becomes

(4.8)

pf', '(t, +T) =
@ Q d'p, (yf ~P„„(r„0)(it), ) d(u v„(r„(u), sin[ —,'((of t

—&o)T]
0 —,'vz; —roe" « (4.7)

If the usual condition that the time interval T be small compared with the reciprocal frequency spread of
'U„ is satisfied, then (4.7) reduces to

p'"'(t, +T) = —p d'r, ((If ~I „„(r„0)~(t, ) V„(r„t,+r/2) '
(dy] QP0

n

(4 8)

where &up is the frequency at which Z„ is centered. If (4.8) is summed over all the final states, then (4.8),
under the usual condition of slowly varying density of states and the matrix element, reduces

2

ttt't "(t,+T)= o, r p f rd( (z 0= tdte)ol te(tr„o)l )t'O„t(r„t +1'/0) (z colt)r, e (4.9)

where o denotes the density of the final electronic states. The structure of (4.9) is similar to that of the
formula derived by Carniglia and Mandel using the mode expansion of field operators.

The case of emission in nonstationary fields could be treated similarly. In place of (4.3) we would have

T T
I „(r„r„t,)= dt, dt, (E~ '(r„t,+t,)E„' '(r„t,+t,)) e' ~f"~ 'p'

0 0
(4.10)

(4.11)

where

Im (r„rpt tp) =
T

dt, dt, (E„' '(r„ t, + t,)E'"(r„t, + t,)) e' tf"2 '~),
0

(4.12)

Ig"")(r r t ) = dt, dt, ([E„'"(r„t,+t,), E„' '(r„t, +t,)])e' (f"~ 'p),
0

(4.13)

I' '"~(r„)r„t,) is independent of tp r On substituting (4.12) and (4.13) in (3.10), we find that

p„(t.+ T) =p,", '(t. + T)+p,',""'(t.+ &),

where

tttt"'(t +r)= —p ff d'r, d r, (O lp„(r„o)till)(0 lp (rr, o)'tIO let
mal

(4.14)

xf' dt, dt2([E„'+'(r„t, —t2), E„' '(r„0)])e' &f"~ 'p't (4.15)
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p{e&im&(t ~Z)
g Ig r 0 y y Pgn r2

x dt, dt, E„' ' r„ t, +t, E'" r„t,+t, e' ~f"2
0

(4.16)

It is easily shown that p&~&'"& as given by (4.15) is identical to Tyz~&'"&calculated in Sec. HI [E&I. (3.20b)]. For a
field in the coherent state, p&@,

' ' becomes

o'r'j '(r, rr)=
)e I, f e'r, (oilr (re„o)(o )r

r
,

2

dt's Vo)(r&, t2+t())e &y 2 (4.17)

which on comparison with (4.5) shows that

p{obe&(t + rI) p&e&(m) (f + T) (4.18

It should be noted that p{&,
' (p{&'& ') is nothing but

the Einstein 8 coefficient generalized to nonsta-
tionaxy fields. In next section we discuss how

the coherent states of the radiation field in the
presence of dielectrics and conductors can be
produced.

V. EXPERIMENTAL EXCITATION OF THE RADIATION

FIELD IN PRESENCE OF DIELECTRIC AND CON-

DUCTING SURFACES TO A COHERENT STATE

In Sec. IV we treated one-photon transitions in
nonstationary fields and in particular the case
when the initial state of the field was a coherent
state. ' In this section we describe how the radia-
tion field can be produced in such a state. It is
well known that a harmonic oscillator perturbed
by an interaction of the form f(t)a+f*(t)a~ ends
up in a coherent state (with time-dependent ampli-
tude) if the oscillator was initially in the ground
state. In our realization of coherent states we will
be guided by this fact. I et us assume that our
electromagnetic field is perturbed by an external
polarization 6' and magnetization gg; i.e., the
perturbing Hamiltonian is

H,„,= — rd[(P (r, f ) E(r, f ) +II(r, t) H(r, t)],

(5.1)

where Z and H are second quantized operators
evolving according to the unperturbed Hamiltonian.
In our notation, the linear response of E and H
would be

e(rr(r, tr)i = I )o'r'[r„„(r,r', et)e',.(r', e )

+ X&&&&H(r, r', &())3g;(r ', «))] ~

(5.3)

The Hamiltonian (5.1) has the special feature that
one can study the exact time evolution of the sys-
tem. The time-evoLution operator is

rr(e, e,) = r erp (- O f H,„,(r) er), (5.4)

t~

y(t) =-
@, df, dt, [a.„,(t,), a„,(t,)]

t t
0

=- q*(t)

If initially the field was in vacuum state ~0), then
at time t it wi.ll be in a state

t

lO(e)i=ere(o'J H ..(r)cere(r)) lo) (r. o)
to

We now show that the state ~g) is a coherent state.
To see this we calculate

EI'&(R, t) (y) = [ZI'&(R, t), V(f, t,)] )0), (5.7)

since F.'," acting on vacuum gives zero. Next the
identity so

where T is- the time-ordering operator. It is
easily seen that [II,„,(t), If,„,(&)] is a c number,
and this fact enables one to evaluate (5.4) exactly
using a generalization of Baker-Hausdorff iden-
tity. ' Using this, (5.4) becomes

ior(ee.) = o (-—„, rr...(~)e o(e)), (o o )

6(Z&(r, &(&)) = Q d'r'[X&&~s(r, r', &(&)6'&(r', (d)

[A, e s]=- dy e-" "'[a,a]e-
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if [A, B] is a c number and hence (5.7) reduces to

E',+'(R, i) ) y) = ( /f&')[E',"(R, t), I,' H„,( ) d ] j y),

which we would write as
(5.10)

E,"&(R, i))q) =VIz&(R, f) ~y). (5.11)

Equations (5.10), (5.11) show that ~i[t) as defined
by (5.6) is an eigenstate of E,"' and hence a co-
herent state. Similarly, one can show

If,'"(R, i) tC) = VI"'(R, t) ly), (5.12)

where

v'"'(R i) =(i/a)[N" (R t) f' a,„,(~)d~].

Thus ~(1&) is a coherent state in which the electric
and magnetic fields have the amplitudes V,'~' and
V(z&, respectively. From the definition (1.3.1) of
positive and negative frequency parts, we have

E'"'(R, t) =, (1/2&) f E (R, t')5, (t' —t) dt

(5.14)

where the definitions (I.2.4) and (I.2.5) of the re-
sponse functions have been used. Comparing (5.2)
and (5.17), we find that

'0 Iz& (R, (o) =-5(E,(R, (u));

i.e., the amplitude 'U,'~' of the coherent state is
precisely the linear response of the variable E,.
Finally expressing V,'z' (which is an analytic sig-
nal") in terms of 0,'z&, we have

V,'z'(R, i) =-(I/2&[) de e ' '5(E, (R, (u)) .
0

(5.19)

Similarly, the eigenvalue of H'" is given by

E["t(R, t)= —(1/2&) J dtee ' '5(E(R te))

(5.20)

Equations (5.19) and (5.20) are very basic relations
relating the linear response to the amplitudes of
the coherent states 5(E. , ) represents the response
to an applied polarization and magnetization. Ex-
perimentally, it is of course more convenient to
use an electromagnetic field e, h itself as an ex-
ternal probe, and hence w'e introduce the response
function

which can be used to express the commutator of
E, in terms of response as ~(&&(r, ~))

/~d 2
= X»ze(r& r

& (5&) ~

v8&gr &
4) j

(5.21)

[SI'&(R, f), E,(r, ~)]

=(1/2&)f [E(Rt'), Et(r, r), )ll, (t' t)dt-
=(li/5) f 2','te (R, r, t —r)5 (t ' t Idt'„'-'
= (li/e) f 1[,e (Rr, t')5, (t'+, r —t) dt'

The external field can be taken as equivalent to

N(r, +) = -(1/4&[)e(r, ~)

II(r, (2&) =(I/4&[ik, ) Vx e(r, a&), k, =v/c. (5.22)

Equations (5.22) can be used to obtain the relation
between y»»y»~„and y»~, . One has

and therefore

[E'&"(R, i), E,(r, ~)]e'~" 'd(i- ~)

= 2II X",~zz(R, r, (o)&I(&u) . (5.15)

Consider now the amplitude 'U,'~' defined by

5 (E&(r, (u))
5e,(r', (u)

5((Z&(r, (u)) 56',(r", (u)
56', (r", (u) 5e,(r', ~)

5 (Z&(r, ~)) 5II,(r",~)
5K((r", u)) 5e&(r', (u)

(5.23)

V,'z'(R, f ) = V,' '(R, t ) + C.C.

=(i/a)[E, (R, i), f2 a.„,(~)dT].

The Fourier transform of it is given by

(5.16)

which on simplification leads to

X»z.(r, r', ~) = -(I/4~)X»zz(r r' ~)

1 8 I~
~$&EJ

[&
1 Xj jzz[r& r

& (2&)
KZ 0 fm

&m

(5.24)

5[ t(R, te) = —P f d'r'[2 t (R, , r', te)i&(r', te)

+X„.zz(R, r', (o)II,.(r', (u)],

(5.i7)

In view of (5.17), (5.22), and (5.24), (5.19) be-
comes

V&(z&(R t)= e ~ 2 Q X&,z (R r (u)
0

x ez(r', ~) d'r'du&,
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which shows how the amplitude of the coherent
state is related to the incident field e(r, &o). In

particular, for an incident monochromatic field

e(r, u&) = 2)re(r) 5(a& —(()0) + 2me*(r) 6(&u + (()o),

the amplitude of the coherent state is

(5.26)

)", '(R, )(=-e ' 'f gg, y, (R, r', ra)e, (r')d'r'.

(5.27)

It is moreover obvious that (5.27) (apart from a
minus sign) is nothing but an alternative way of
writing the Fresnel formulas. This amplitude

could now be substituted into (4.9) and (4.17) to
obtain the transition rates.
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Baltes and co-workers is, however, entirely dif-
ferent. I would like to thank Professor H. P.
Baltes for sending many of his reprints and pre-
prints on this subject.
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