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The different kinds of response functions introduced in a previous paper are used to calculate the
dispersion forces. An exact expression for the interaction energy in a system of harmonic oscillators
interacting with a second-quantized radiation field is obtained in terms of appropriate response
functions. The radiation field may be either the field appropriate to entire free space or the field
altered by the presence of the dielectric. The result is valid for arbitrary geometries involving dielectric
and conducting surfaces. An expansion of our result in powers of e? leads to the results of other
authors. The calculation of the dispersion force for the case of excited states is also briefly discussed.
Next the problem of the dispersion force between macroscopic bodies is considered. Lifshitz’s expression
for the dispersion force is rederived using the response functions and the two methods are compared.
The role of surface modes in the determination of dispersion force is discussed. Finally the dispersion
force between a spatially dispersive and spatially nondispersive dielectric is calculated exactly. When the
spatial dispersion is weak, then it is found that the first-order term is repulsive in nature, in contrast
to the zeroth-order term which is attractive. As a by-product of our analysis, surface-polariton

dispersion relations are obtained.

I. INTRODUCTION

In Paper I of this series of papers’ I introduced
various kinds of response functions and used them
to study black-body fluctuations. In the present
paper I show how these can be used in the calcula-
tion of dispersion forces in a system of many at-
oms as well as between macroscopic bodies. The
dispersion forces between two atoms were origi-
nally calculated by London,? and later by Casimir
and Polder,? taking fully into account the retarda-
tion effects. Aub and Zienau* carried out the cal-
culation to order ¢®. These methods used straight-
forward perturbation theory. Over the last decade,
a number of other methods have been developed,
which are basically of three types: (i) a method
based on the S-matrix approach,® (ii) one based on
calculating the normal modes of the coupled atom-
field system and then summing over the energies
of these modes to obtain the interaction energy,®”
and (iii) one based on a version of linear-response
theory.® Of these, the method of Mclachlan ap-
pears to be specially attractive although he car-
ried out calculations to various orders in €. In
what follows linear-response theory will be used
to obtain a closed-form expression valid to all or-
ders in & for the interaction energy in a system
of harmonic oscillators. Our result agrees with
the result of Renne. Moreover, an expansion of
our result to various orders in ¢® leads to the re-
sults of Casimir and Polder, Aub and Zienau, and
Mclachlan.

We next discuss the problem of Van der Waals
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forces between macroscopic bodies, the calcula-
tion of which is much more involved. Lifshitz®
introduced the idea of a fluctuating electric and
magnetic currents in Maxwell equations. The cor-
relation functions of the electromagnetic field vari-
ables can be calculated in terms of the correlation
functions of the fluctuating current, and from the
knowledge of the correlation functions the stress
tensor was computed. Van Kampen et al.'* calcu-
lated the interaction energy between macroscopic
bodies by summing over the energies of the nor-
mal modes of the system. These normal modes
were calculated using Maxwell equations. In a di-
electric, which is finite in extent, one has two
types of modes: (i) bulk modes and (ii) surface
modes. The bulk modes are independent of the
geometry whereas surface modes depend on shape
of the dielectric. It can be shown easily that only
surface modes contribute to the dispersion force.
The modes of the dielectric are also known as the
polariton modes, which are essentially coupled
photon-material excitation modes. The method of
Van Kampen et al. has received a good deal of at-
tention'?; however, if the damping of the dielectric
function is included, then the method seems to
fail. In presence of damping the normal-mode
frequencies are complex, and it is not clear what
one should sum over to obtain the interaction en-
ergy. Other problems associated with this method
when retardation effects are included are discussed
in Ref. 13.

In the present article I show how the response
functions can be used in the calculation of Van der
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Waals forces between macroscopic bodies. Ina
brief communication’ I have discussed surface
response functions and showed their use in the cal-
culation of dispersion forces when retardation ef-
fects are unimportant. The outline of the present
paper is as follows. I first derive an important
relation between the equilibrium fluctuations and
the response functions at purely imaginary fre-
quencies. In Sec. II, I consider a system of har-
monic oscillators. I start with a microscopic Ham-
iltonian and calculate the linear response function
valid to all orders in the coupling constant between
the field and matter oscillator. The fluctuation-
dissipation theorem then leads to the interaction
energy. The result is valid for any geometrical
arrangement involving dielectric and conducting
surfaces. The dispersion force is calculated in a
system of harmonic oscillators. In Sec. III, I cal-
culate using the result of Sec. II the dispersion
force between an atom and a dielectric. The re-
sults for the case of a conductor follow as a spe-
cial case. I also point out some of the problems
associated with the normal-mode method. The re-
sults at each stage are compared with those of oth-
er authors. I also consider the dispersion force
for the case of excited states. In Sec. IV, I use
the response functions calculated in Paper I to ob-
tain Lifshitz’s formula for the dispersion force.

A brief comparison of our method with Lifshitz’s
method is also given. In Sec. V, I calculate the
dispersion force between a spatially dispersive
and a spatially nondispersive body. The role of
surface modes is clearly displayed in our method.
For simplicity I treat only the case of zero tem-
perature, although the method is equally applicable
to finite temperatures.

Let us now discuss the relation between the equi-
librium correlation S;;(T, ', 0) and the response
function at imaginary frequency. The response
function y;;(¥,T’, 2) for Imz > 0 is related to
X;Ij(_f’! T, w) by

> 1 e - " (.
Xij(_f’r ’z):;j dw(w-2) lXiJ'(r:r”w)'
(1.1)

As mentioned in Paper I, the response function
X{j, for the case when the variables A; and A; have
the same parity under time reversal, has the sym-
metry property

xHE T, 0) =@, T, w) == FE, T, -w). (1.2)
On using (1.1) and (1.2), it is easily shown that

f X,.J.(Y',Y-’,iw)dw=f E T, wde.  (1.3)

0 o

On using fluctuation dissipation theorem, Eq.
(1.2.10), we find that the equilibrium correlation

function at zero temperature is given by

Sy F,00=(1/2m) [ dwS,F,F,w)
= (2/27) j dw coth(Bwli/2) x 1, (F, ', w)

=(}‘fi/21r)f dwlx!,F, 7, w) -xl;F, 1T, -w)],
o
B=xo,

which on using (1.2) becomes
Si:'(f»?"o)=(ﬁ/w)f dwxi;(F, T, w),
0

and then on using (1.3) we have the important rela-
tion

S,,(F,¥,0) =(rz/ﬂ)f dwy, &, 7,iw), (1.4)
0

which has been obtained under the assumption that
A; and A; have the same signature under time re-
versal.

II. INTERACTION ENERGY BETWEEN A SYSTEM OF
HARMONIC OSCILLATORS AND THE
ELECTROMAGNETIC FIELD

Before we calculate the dispersion forces in a
system of harmonic oscillators and the atom and
a dielectric, we present the result for the mean
value of interaction energy in terms of the re-
sponse functions. The interaction Hamiltonian for
a system of identical oscillators and the radiation
field is

H1=—f D) BEF)dr, @.1)

where E(F) is the second-quantized electric field
operator and where P(T) is the polarization opera-
tor,

P() =3 (¢ +a])o(F -T,)d
i
EZEP@({'—?{)- (2.2)

Here d is the dipole moment matrix element and a
and " are the annihilation and creation operators
satisfying the usual boson commutation relations.
We assume that the system is further driven by
an external electromagnetic field giving rise to a
perturbation Hamiltonian

Heoo== [ 36)- 3G, 0% 2.3)

It is easily seen, from (2.1), (2.3), and the fact
that ¢ and a” are boson operators, that p; satis-
fies the equation
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B+l py=2w,d- [EF, 1) +8(F, 1)]. (2.4)

We will put 7 =1 throughout this section. The elec-
tric field operator obeys the Heisenberg equation
of motion and hence its time dependence is given
by (¢, being the time when Schridinger and Heisen-
berg pictures coincide)

E(F,t) =St 0R (T, 1), (2.5)
where £ is the Liouville operator,
£=[H,...], H=Hy+H, +H,. (2.6)

We now use the identity®®

t
e;.ﬁ(t-tg) =et£o(t-to) +f eiS(T—to)i(£l+£eXt)et£0(t-7)dT
to
(2.7)
to rewrite (2.5) in the form

td‘r ei-C(‘r-to)

to

[fdsr’ BE)-BE@), By (F, -7 +t0)],
2.8)

where —}50 is the field operator evolving according
to the unperturbed Hamiltonian, i.e.,

By (F, 1) =e'Cot =t E(F, 1,) . (2.9)

Now if we use the fact that the commutator of the
free field operators at two different space-time
points is a ¢ number, then (2.8) reduces to

E@F, ) =E,(%,t)—i

t
B, 0 =5, t)+if fd%'df
to

X Z [-Eo(i‘; - T); —E.oj(_f’) 0)]_P’j(—f’: T) .
! (2.10)
In particular we have from (2.10)
d-E(F, 1) =d- E (%, 1)
t
+if D D, ¥y, t =7) py(7)dr,
t,
ot 2.11)
where D is the free field propagator™®
D(F,¥,7)=[d-E,(F,1),d- E,(¥,0)]. (2.12)

On taking the Fourier transforms and letting ¢,
— —x we obtain, from (2.4) and (2.11), the equa-
tions

6?}; Eifr,wtz;)>_z > o, T ,,w)ggéi%,);, (2.13)
(=0 +wg) (ps(w)) = 21“’02501}(‘” (p;(w)
+2w0d- é’(ri,w),
(2.14)

Dy;(w) =D(F;, T, w)EJ dr D(%;,%;,7)e'T.
0

On inverting (2.14) we have
(Bl = 2013 8(F), w),
i

or
¢ pi(w))
53.3(‘{.j’w):2wom;jly (2.15)

where the matrix M is given by

My =(—w? +wi)d;; — 2wy Dy;(w). (2.186)
On combining (2.13) and (2.15), we obtain
5(d- E(F
UL EEL 9D i, 3 4y (@G (2.17)
1

5d- &(%;, w)
The mean value of H,
Hy) == (pd-EF)
1
is, on using (2.17) and the relation (1.4), given by

1= . -
Hy :;J dv Z[—2zwoﬁ)”(w)9ll“‘]w:,-,,. (2.18)
[¢] ij
We recall that p; and E have the same parity under
time reversal. It should be noted that ® is propor-
tional to ¢® (second order in the coupling constant).
The total energy is obtained in the usual manner™

by integrating over €%, i.e.,

OE :<H> - (Ho>
:-Zl—ﬂf:du j: de—izTr{-ZiwosD(w)

X[ =w? +0f = 2wy D(W)] ety s

(2.19)
where (H,) is the ground-state energy in the ab-
sence of any interaction between the radiation field
and matter. On integrating over ¢*, we obtain

oF =1—f°° dx Trln[1 - 2iwya,Gx)D(Ex)],  (2.20)

21 J,
where o, is proportional to the bare polarizability
ap(w) = (W —w?)7t. (2.21)
An expansion of (2.20) in powers of ¢® gives

1 = “.1 . R . \n
oE ——ﬂfo dx "z:; - Tr{2iw,0,Gx)DEX)]".

(2.22)

Equation (2.20) is our final expression for the in-
teraction energy in a system of harmonic oscilla-
tors. The field propagator which appears in (2.20)
is related to the response function. Let y;;(¥,T’, w)
be, as before, the response of the electric field to
an applied polarization @

XijEE(f‘; _f": w) =5(E‘(f‘, w)>/5(Pj(f,’ w) 3 (2-23)
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then from Eq. (I.2.4) we have

DE, T, w) =~ ) didxijpe(, T, 0), (2.24)
and hence ’
OE =21—ﬂfom dxTrln (1 - 2w, a,(Ex)
x> d,d,x,-jEE(ix)> .
Y (2.25)

The dispersion force is now obtained by substitut-
ing into (2.25) the appropriate response function.
We first consider the case where there are no sur-
faces; then x;,;p5(T,T', w) is translationally invari-
ant and is given by (1.4.7), i.e.,

Wo? 92\ gUwelT-Tl

iipe@, T, w) = =50+ ==

x.tJEE(r)r’w) (cz ij 8xi8xj> |I‘—I‘/|
(2.26)

In this case (2.20) can also be written, on intro-
ducing the renormalized polarizability

a(w) =[w? - w? -2 w,D(F;, T;, w)] ™, (2.27)

as

OE =dE, +2ﬁ—ﬂf dx Trin[1 - 2iw,a@x)D(Ex)]
0

(2.28)
=0E, - ij dx Z 1 Tr[2iw,a(@x)D@x)]",
271 Jy —n
(2.29)

where

O, =2£777J; dx1n[1 - 2wy, (ix)D;;Ex)],  (2.30)

DY 6Ex)=(1- 0:;)D;;(Ex), (2.31)

and N is the number of oscillators. The term JE,
corresponds to self-interactions; i.e., it is the
one-particle term. It should be noted that 3E, is
not the entire one-body contribution—to this one
should add the contribution coming from the con-
tact term 27 [ |P|2d%. The terms correspond-
ing ton=2,3,..., etc. yield respectively the two-
particle, three-particle, ... contributions. The
result (2.29) coincides with what Renne® obtained
by using normal-mode method except for the pres-
ence of one-body terms SE,. The results are also
in agreement with those obtained by Casimir and
Polder,® and Aub and Zienau®* except that the bare
polarizability of the oscillator is replaced by a(w),
which contains the effects of radiation damping.
The present derivation differs from that of Mc-
lachlan® in that we produced an exact expi‘ession
for the interaction energy. Mclachlan calculates
the dispersion force to each order in €.

III. DISPERSION FORCE BETWEEN AN ATOM
AND A DIELECTRIC

In this section we consider the dispersion force
between an atom and the dielectric. We treat the
atom as an oscillator. The dispersion force be-
tween an oscillator and a perfect conductor was
calculated to order ¢*, by Casimir and Polder?
using a straightforward perturbation theory.
Renne® has calculated the force to all orders in
€? by summing over the energies of the normal
modes of the system comprising the oscillator,
conductor, and radiation field. The effect of the
conductor was replaced by an image dipole. The
problem of dielectric is more involved than the
conductor case. It is not quite clear how to apply,
say, the method of normal modes to calculate the
dispersion force between the atom and dielectric,
since with retardation included it is not at all ob-
vious what to take, for example, for the image
dipole. We have seen (Sec. II) how the linear-
response theory leads to an exact expression for
the dispersion force. For the case of a single os-
cillator located at T=b, (2.25) reduces to

1 = .
oFE *ﬂfo dxln(l - 2w, (ix)

x Z didei]EE(B: E,UC)) .
ij

(3.1)

This result is valid for arbitrary geometries. It

“should be noted that the effect of the geometry is

contained in ;55 (D, b, w).

In the special case when the dielectric of dielec-
tric constant €,(w) occupies the domain - <z <0
and the atom is situated in vacuum, the response
function y;; is obtained from (I.5.43), (1.5.42) by a
trivial change of variables. We write it in the
form

XijEE(_f’ vf‘,) <"’) zx(ioj)EE(_f)—fI; (4)) +X(il;EE(_f!.f‘” w) 1
(3.2)

where x is given by (2.26) and x* by

- i dudv ..
x(ilJ?EE(r) I", (.U) == ﬂffTXu(u, v, 0))

xexp{iu(x — x') +iv(y -y') +iw(z +2')},
(3.3)
w?=R -k, wd=kle, -k,

=u?+v?, Ry=w/c,

with
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N 2Wo =W 2w
X, v, w) = kow o Y (1———~€0w +w°>,

Koz, v, W) =%1,(v,u, w),

ke, —w,)

Rasltt v, @) == Wwe, +W,

s

vwwe, —~w,)
v —_—
Rast, v w)-—-——°—°—(

wey+w, O’

(3.4)
iaz(u: U, w) = —)223(14, U, w) )

~ 2w
X125 v, W) = —uv <1 _weo +wo> y

X2, v, W) =X, (%, v, ),

uwWwey, —w,)

= =Yq,(u, v,w).
WE,+W, a0, @)

X1stt, v, W) =
The interaction energy is obtained by substituting
(3.2)—(3.4) into (3.1). Usually the orientation of
the dipole moment is not known and hence (3.1) is
to be averaged over the orientation of d;. It does
not appear possible to obtain a closed form expres-
sion from (3.1) once this averaging is done.

To lowest order in the coupling constant, we
have from (3.1)

>

w, * . =
6EO = _—;Q E dl'dj JO ax a()(zx)XijEE(b; b,zx) ’
which on averaging over d; reduces to

0E, =—52|d|? f dx aoix) 3 xiis5(B, B, ix)

=0E? +6E"(b),

where 6E is the usual shift in the ground-state
energy and 6E" is given by

8E2(b) =————°I lzf ax ay(ix) E xWer®,b,ix) .
317 o 0 i1iEE ’ 3
(3.5)

On substituting (3.3) and (3.4) into (3.5) and after
some algebra, we obtain

ZwO]d|2

SEX(b) = I dx ay(ix)x®

P (pz - 1)[)(60 - 1)> -2Pbx/c
Xf @ (po s ’

€D +D,
(3.6)
where €, is at pure imaginary frequency ¢x and
R=pre,—1. NER )

For large distances, (3.6) reduces to

4w |d|? c \*
SEY(b) = - —i%TLaQ(O)@ﬂ

Xf”di)(po p (pZ—l)p(eo—1)>
Do +P €op+po ’

(3.8)

which is equivalent to the result of Dzyaloshinskii
et al.® To show this, we write (3.6) as

SEY(b) =~ w°id[ f dx ay@x)x®

~2px/c ) Do
xfl dpe {Po b +

[z
by +P

P(PPQ -+ )J
pey + 1, ’

(2p% = 1)(€x £ = 15)
€D +D

and use the identity (pp, —p* +1)(p +p,) =pe, +p, to
show that the terms in square brackets reduce to
zero and then (3.6) reduces to

2
wold] f dx o, ix)x

* —2pbr/c P @p*=1)(p - Po)>
Xfl dpe <p0+p b +bo

SE®(b) ==

(3.9)

For the case of a conductor, on taking the limit
of infinite conductivity, we obtain from (3.3) and
(3.4)

- 82
Xee(F, T, w) = ((2513 - l)m—

i

+E2(26;, — 1)6”)

eikORi

R;

, (3.10)

Ry=(x=2,), (¥ =%, (z +2,),

which should be compared with the translationally
invariant response (2.26) and this is what one ex-
pects from the considerations of image dipole.
The exact result for the interaction energy is ob-
tained by substituting (3.10) into (3.1). The result-
ing expression does not appear to coincide with
the result (21) of Renne.® The difference is pre-
sumably associated with how the averaging over
the orientation is done. However the lowest-order
result coincides with his expression (22) as well
as with Casimir and Polder’s result?

Ia'll2

SE®(b) =~ f dx a,(ix)

92 e~
3 —_—
X <8&2 a >o,:2bx/c ) (3.11)
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In this section we have considered the interac-
tion energy between an oscillator and a dielectric.
Using the same technique one could, of course,
also consider, the problem of several oscillators
in the presence of a dielectric. It should also be
noted that we have been able to obtain an exact ex-
pression for the dispersion force because we treat-
ed the atom as an oscillator. If this assumption
is to be relaxed then the expression for the inter-
action energy is very involved. However the low-
est-order result (to order ¢?) is more or less
identical to (3.5). Using the perturbation theory
it is straightforward to compute the interaction
energy for the ground state as well as for excited
states. One, for example, finds for a two-level
atom

6E™ () =— <5E<"(b) +Re Y xizs(b,b, wo)d,d,> ,
(3.12)

where 6E*) and 6E'” are the interaction energies
for the excited state and the ground state, respec-
tively. 8E'" is given by (3.5) and x;; by (3.3). For
a conductor 8E“ is also proportional to 5~° at
short distances. However 6E“’ — 6E'” is not pro-
portional to 573, It is clear that the large distance
behavior of 6E“’ is determined by the term x‘® and
hence is very different from that of 6E*.

IV. DISPERSION FORCE BETWEEN TWO ISOTROPIC
SPATIALLY NONDISPERSIVE DIELECTRICS

We now calculate the dispersion force between
two isotropic spatially nondispersive dielectrics
of dielectric constant €(w) and separated by vac-
uum. The dielectrics are assumed to occupy the
volumes 0 <z s and -~ <z < -d, d being the sep-
aration between two bodies. The dispersion force
is given by the zz component of the stress tensor
at a point just outside the medium occupying vol-
ume 0 <z <=, i.e., at the point z=0". It is given
by

Fo. = (1/4m)(E,(F, )E,(F, 1) +H,(F, DH (F, 1))
- 3EF,0-EF, 1) - ${HE,0)
“HFE, )] e=0- (4.1)

Note that E (H) is even (odd) under time reversal
and hence the correlations of the form (E—E?) or

(HH) would be given by (1.4). The appropriate re-
sponse functions have already been computed in
Paper I. We must also subtract from (4.1) the con-
tribution to the stress tensor if the second medium
were absent (d— «). So the effective response func-
tions would be given by

xies (T, w) =X1;56(F, T/, @) —bim Xise6(T, T/, )
(4.2)

G. S. AGARWAL 11

- [§)] - . -
=xijee(T, T, w) —;ml X(ilj)EE(Y" ', w).
—> 00
(4.3)

The translationally invariant part does not con-
tribute to x*. x{zg, etc. [lim,. . x¥5z] are to be
obtained from equations (1.5.18)~(1.5.21) [(1.5.42)—
(1.5.44)]. Similarly the effective response func-
tions involving the magnetic field would be

£f > - . > -
Xijuu(E, T, w) =X(il}HHG', ', w) -}ilm X(ili)HH(r7 I, w).
—> 00
(4.4)

Subtracting (1.5.43) from (1.5.18) and (I.5.44) from
(I.5.20), we obtain for the effective electric fields

—- - zkz e - w - T T _l"/,"
(K x &) :21”:)0[)2 l(K“Xp,,)<m—oﬂe o't — @7t r°> ’

(4.5)

- = w _,[W,€ -w > e\ %7
(K - &i ))z_ZWz:JoDll(wZe +w (i b, —w K- Dy)e™ kom0

+(Bp, +w K, e~ o -r0> ’

(4.6)

Similarly the effective magnetic fields are ob-
tained by subtracting (1.5.45) and (1.5.46) from
(1.5.29) and (1.5.27), respectively:

®. % 7ol=) ikgz 1R X m

(Kyx3¢j™) =— ZﬂwoDl (Ky xmy)

X <e"iK{;"'o +we‘iKo'To> ,

W€ +w 4.7

iw w —-w

K, -7 =Po p-1(W =W,
(K - 567) 2nw0D2 <w W,

X (kﬁm,_ —wo_ﬁ" . fﬁ“)e'ﬁ(ﬂ To
- (Kfm, +w0-ﬁ“ : I_ﬁu)e_m{;.ro> '
(4.8)

No subtraction is needed for the fields §’, 3¢+’
because of (I.5.42). Let us now see what the van-
ishing of D, and D, implies. From (I.5.18)-(1.5.21)
it is seen that in the absence of any probe

(—ﬁu X gff’)Dz =0, (—ﬁn : _gﬁj)Dx =0, (4.9)

which implies the follo“gng.

(i) I D,#0, then (K- &) =0 implying that §¥ =0
and hence (Elx_gﬁf’)#O and then the first of equa-
tions (4.9) leads to D, =0. Therefore the vanishing
of D, corresponds to those modes for which the z
component of the electric field vanishes. Such
modes are usually referred to as TE modes. The
dispersion relation for such modes, from (1.5.22),
is given by



11 QUANTUM ELECTRODYNAMICS IN THE PRESENCE OF...II... 249

2
(%) e~2iwod =1 | (4.10)
w-w,

_(ii) If D, #0, then (R, x &®) =0 implying that
(X, 8¢ )#0 which leads to D, =0. Such modes are
the so-called TM modes, and the dispersion rela-
tion for such modes is therefore

(“’———f’e = >2e'2‘wo‘ -1. (4.11)
W€ =W
The dispersion relations (4.10) and (4.11) coincide
with the well-known ones obtained by conventional
methods.’ 2! The response function contains the
information about these surface modes.

We will now use the response functions obtained
from (4.5)-(4.8) and (1.5.19), (I.5.21), (1.5.28),
(1.5.30) to calculate the dispersion force. From
(4.6) and (1.5.21) the response function xT. . is

dudv _, 4Kwie®
2nw, Y (we)? —w?’

X5, B, w) =i [

where D is the two-dimensional vector p =(x,v,0).
Similarly using (4.5), (4.6), (1.5.19), and (I1.5.21),
we find

XifxfEE(p’ P, w) +xs25(P, P, w)

dudv w2D=1
fonw ( -wz f Wi _1w2>4w§, (4.13)
and on using (4.7), (4.8), (1.5.28), (1.5.30),

- > dudv 4R2w?
eff =i pIt—_iTo
X3suu (P, P, @) Zf 2mw, % w? —w?2’ (4.14)

Xiqyﬂ(ﬁa T)y w) +X;gﬂﬂ(5; -5: w)

2n-1 2 -2
="if dudv szz 4 ko€ D a2, (4.15)
2mwy \w? —w? wie?

The dispersion force is equal to

BT s .
Fa=ges | d6(2xS55s(0, B, 10) +2xS5an P, B, i)

Z Xff;fEE -ﬁ’p,iw)_,_x'?l;l'ﬁy(f)’—ﬁ’iw)])

(4.16)
On substituting (4.12)—(4.15) into (4.16), we find
that

o 2
Fu=gz [ do [ auao (28 o207
o tw

which by change of variable reduces to
=g | dow® [ fap
2n%¢% ), , orre
y { w_&)e "
p-p,

P+PoEN? apyware .
+[<p——<l—_p0€> ¢ -1] . (1

F

(4.12)»

where
PP=e(w)-1+p2. (4.18)

The expression (4.17) coincides with Lifshitz’s
expression.’ We see how the zeros of D, and D,
(which give the surface modes) contribute to the
dispersion force. We could similarly consider
the case of more complicated geometries or the
magnetic bodies. The generalization to the case
of finite temperatures is trivial.

We now briefly compare our method with Lif-
shitz’s method. Maxwell’s equations, in a medium,
should be regarded as equations for the mean val-
ues.” We solved such mean-value equations to ob-
tain the appropriate response function and then
used the fluctuation dissipation theorem to calcu-
late the correlations. Lifshitz, on the other hand,
augmented Maxwell’s equations with fluctuating
forces, thereby making them Langevin equations.
The situation is similar to what one does in the
theory of Brownian motion. For example, for a
free particle, the macroscopic equation is given
by

+ft’)’(t—T)U(T)dT =0, (4.19)
0

which is replaced in the theory of Brownian mo-
tion by

+f'7(t—7)v(7)dT=F(t). (4.20)

The correlation of F(¢) is calculated from the re-
quirement that the equilibrium value of (v?) as pre-
dicted by (4.20) must be equal to the one given by
the law of equipartition of energy (second fluctua-
tion-dissipation theorem??). Once the correlation
functions of F(f) are known, all other correlation
functions of v(f) can be calculated. Lifshitz’s cal-
culation is analogous to this procedure. The other
method is to solve (4.19) for the linear response
which then enables one to obtain equilibrium correla-
tion functions via the first fluctuation-dissipation
theorem.?? The final results are, of course, iden-
tical.

V. DISPERSION FORCE BETWEEN A SPATIALLY
DISPERSIVE AND A SPATIALLY
NONDISPERSIVE BODY

As a final example of the calculation of disper-
sion force using the response function formalism,
we consider a spatially nondispersive body of di-
electric constant €,(w) and occupying the domain
- <2z < -d and a spatially dispersive body occupy-
ing 0 <z <. We assume that the two bodies are
separated by vacuum and that the spatially disper-
sive body is characterized by the dielectric func-
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tion (1.6.1), viz.,
(K, w) =€, +x /(K - 1?). (5.1)

For the meaning of various symbols we refer to
Sec. VI of Paper I. We will assume that the bodies
are separated by a distance d at which the retarda-
tion effects can be ignored. We have discussed
(Sec. VI of Paper I) briefly the structure of the
electromagnetic fields inside the medium charac-
terized by (5.1). The dispersion force in the pres-
ent case is given by

Fo=1/8mM(E [, E,(F, 1) - E, (T, )

XEx(-f: t) - Ey(?: t)Ey(f’ t)>z=o"] M
(5.2)

The correlation functions appearing in (5.2) are
J

related to the response functions via (1.4) and
therefore

nore - .
Fz":ﬁfj dw<2x33EE(r, T,iw)
0

-2 XiiEE(f,_fyiw)>
;

z=0"

(5.3)
The response function from (1.6.27), (1.6.28), and
(1.6.29) is

- > @ .
XijEEG', Loy w) :X(P;EEG, Tos w) +XileE(r: Ty, w) ’

X o, Ty, w) = ffdudv —1giute=xgh+iv(y=3o) [ Liwye-zg) | p=iwye=zq) _ €+1 g iwi@rzgr2d)
H o 211 9x; axm '

(5.4)
where
X,y Ty ) = = o [T = T, (5.5)
ijEE\Y)y 10y axiaxoj 0 H .
€, — 1
_Bl-ﬁza +Ww 1(1 - Ol) e+iw1(z+zo)>
B, =By —w (1 - ) : (5.6)

As in Sec. V, we must subtract the contribution to (5.3) if the second isotropic dielectric were absent. The
corresponding response function is given by (1.6.30), i.e.,

. - - - dudv
}‘Ln;} xijEE(r; 19Y) UJ) :X?;EE(I'; Ty, W ) 2," ox; 8x J'j <

The vanishing of the denominators in (5.6) and (5.7)
yields the surface-polariton dispersion relations
(with retardation effects ignored); i.e., (i) the sur-
face-polariton dispersion relation, for the case
when the spatially dispersive medium occupies

0 <z <« and is surrounded by vacuum, is

B,=Ba+w (1-a)=0, (5.8a)

which can be shown to be equivalent to the stan-
dard dispersion relation.?2® (ii) The dispersion
relation for surface polaritons in the geometry,
when the spatially dispersive medium occupies
0 <z <« and isotropic dielectric occupies —» <z
< —d and the two are separated by vacuum, is

ﬁl“ Bza +W 1(1 - a) €3 +1 e-ziwld

B —Bo—w,(1-0) e -1 =1, (5.8b)

which can be shown to be equivalent to the disper-

sion relation obtained by standard methods.®™2!
The effective response function is therefore

thEE(r Ty, W) = 27{ 89x,0%,, fj

X [eiwlz(e—lwlzo _

dudv

D—leiu(x—xohiu(y—yo)
elwlzoa)
—-iw,z -1,~iw,2 fw,2
- 1 -
e (@ 1e™ 1% — g*1%0)] s

(5.9)

BZOZ _wl(l - a) iubc=x )+ iv(y=y ) +iw (2+2,)
“hasw,(I-a) )¢ T T T 6
-
where
B, - B0 +w (1 - )
@ ==1 2 : . 5.10
B, -Ba-w (1-a) ( )
On combining (5.3) and (5.9) we obtain
F:—_ﬁij dwj dudvkyD™,, (5.11)
4m J,

o “ €+1 P+1 44 -1
" d 2 3 Y2 oexd _
ZnZL “’fo . “<e3-1 o-1° 1,>,w’

(5.12)
where
b= B, =B,
(a-1)w,
:eﬁ(well‘_”;f’:’)z@;l”i;gp) . (5.13)
Here €, is the local dielectric function
€, =€ —x/12, (5.14)
and
w, =ik, wi=pe /e —1®, wi=p2 k2. (5.15)

We first note that in the local limit of the dielec-
tric function (5.1) (m*—~o0), w,<Vm* w, <Vm*,
and hence § =€, + O(1/Vm*). Therefore in the lo-
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cal limit, (5.12) becomes

B f"" (€, +1)(€, +1) )
- d K2di( A3 T 2I\T T ) p2kd
Fozgm ), * ), ((e -0 M

P fm w
= dwf x2dx
167%d* J, o

l. 3(1.w)+1][ 1(1w)+1] & -1
<[€3(1w)—1][€1(zw) 17¢ 1) ) (5.16)

which is the well-known expression for the disper-
sion force between two isotropic dielectrics at
short distances and which displays the d”*® depen-
dence on the separation between the two bodies.* *°

If one of the bodies is spatially dispersive, the
dispersion force, at short distances, is no longer
proportional to d~® because of the dependence of ¢
on k. For a weakly spatially dispersive medium,
one can carry out an expansion in powers of
(m*)~*2 and it is clear that next term will be pro-
portional to d™% A straightforward algebra shows
that

F=Fy+F +++-, (5.17)
where F, is given by (5.16) and F, by

_hw, 1z 8 <€ +1>
= - d
Fy 32n2d4w,<m*wo> f d“’f \e,=1)¢

X €, (€, ~ €)? [(ZO >U - 1] [3 <Z—;>m +1]

(€5 +1)(e, +1) -2
X(me -1> s (5.18)

where w, is the plasma frequency w} =4rawi. It is
clear that F, is negative and hence, in contrast to
F,, it is repulsive in nature. Therefore, it seems

that if spatial dispersion is too strong, then the
dispersion force may change its character from
attractive to repulsive.

The present derivation clearly shows how the
surface modes contribute to the dispersion force.
Because of the special combination in which ¥ and
€, appear in (5.12), it is thought that the disper-
sion force between two spatially dispersive bodies
will be

P 2 (¢(’)+1)(¢(2’+1) 2k ot
Fzz_é—‘;;—z— o dwf dK<(§b “1)(4) )e ’ 1>iw,

(5.19)

where zp(” and <p‘2’ are the ¢ functions, for each of
the two spatially dispersive dielectrics, defined

by a relation of the form (5.13). We again point

out that ¢ +1=0 gives the dispersion relation (5.8a),
and hence if the spatially dispersive dielectric is
treated in an approximation other than (I.6.3), then
the dispersion force would still be given by (5.19)
with a new function which is such that ¥ +1=0

gives the dispersion relation for surface polari-
tons under this new approximation.?*

Finally it should be noted that Lifshitz’s method
can be extended, to the case of nonlocal dielectric
functions, presumably by taking the following as
the correlation function for the fluctuating currents
(notation is same as that of Lifshitz), in an iso-
tropic medium,

(Ki(r,1)K;(0,0)) = 5; fdakdwl"(k w)e ikT- uut

ij 2 )4
with
I'(k, w) =27 coth(Buwi/2) Ime (k, w) .

We have, however, not tried this prescription to
obtain (5.12).
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