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Quantum electrodynamics in the presence of dielectrics and conductors. I.
Electromagnetic-field response functions and black-body fluctuations

in finite geometries
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A form of quantum electrodynamics is developed which allows us to treat a number of problems

involving dielectric and conducting surfaces, the presence of which leads to a number of new observable

effects. A number of suitably defined response functions play a basic role in the present approach, as

these in conjunction with the fluctuation-dissipation theorem lead to electromagnetic field correlation
functions, which describe physical effects such as lifetimes, frequency shifts of the excited states, disper-
sion forces, etc. The quantization of the electromagnetic field is only implicitly used. A large part of
the present paper is devoted to the calculation of the response functions involving different geometries
and various types of dielectrics. Both spatially dispersive and spatially nondispersive dielectrics are
considered. The response functions are calculated using Maxwell's equations and the usual boundary
conditions at the interface adjoining the two mediums. As a first application of the present approach,
the black-body fluctuations in finite geometries and the influence of surfaces on it.'- temporal and spatial
coherence are studied. An interesting theorem is also proved which enables us to calculate the normally

ordered (antinormally ordered) correlation functions from the symmetrized correlation functions.

I ~ INTRODUCTION

The interaction of radiation with matter has
always been a fascinating subject. Over the last
decade it has received a new impetus and a large
class of new phenomena have been discovered.
Different kinds of theories have been advanced to
discuss the general problem of interaction of radia-
tion with matter (cf. Refs. 1, 2). Most of the sys-
tems studied to date (except the case of laser emis-
sion and some problems in nonlinear optics) cor-
respond to the interaction of the matter with the
electromagnetic field in free space. Such systems
include the well-known problems of (i) coherence
properties of black-body radiation, ' (ii) absorption
and emission of electromagnetic waves, ' (iii) spon-
taneous emission free space' —both dynamical and
kinematical aspects, (iv) anomalous magnetic mo-
ment of the electron, ' etc. Such problems have
been treated by quantizing the electromagnetic field
in the entire free space and by using appropriate
perturbation theory. ' '

In the present series we would like to investigate
how the presence of the dielectric and conducting
surfaces affects, say, lifetimes of excited states,
Lamb shifts, the anomalous magnetic moment of
the electron, and in general the transition proba-
bilities, coherence properties of the black-body
radiation, etc. We will show that the zero-point
fluctuations of the dielectric field lead to appre-
ciable effects, which, within our present experi-
mental capa.bility are observable,

To deal with all these problems, we need a form
of electrodynamics applicable in presence of di-

electric interfaces. One obvious way i.s first to
solve the classical Maxwell equations and then
quantize the solutions. However, one runs into
problems with such a procedure, and the quantiza-
tion can be done only in certain specific situa-
tions. ' Fortunately, it so happens that in al1. the
above-mentioned problems, we do not need to
quantize the field explicitly, as all the relevant
(observable) entities can be shown to be related
to the expectation values of the commutators and
a.nticommutators of the field operators a,t different
space-time points. ' We also know, from response
theory"" from statistical mechanics, that such
expectation values, for equilibrium systems, can
be related to suitably defined response functions.
Hence it is clear that the problem of interaction of
radiation with matter, in presence of dielectric
interfaces, is solved once the appropriate response
functions are known. The first part of this series
of papers is devoted to the calculation of response
functions involving various geometries and dif-
ferent kinds of dielectrics. The plan of this paper
is as follows.

We begin in. Sec. II by summarizing some re-
sults from the linear response theory and discus-
sing the types of external probes to be considered
in the calculation of electromagnetic field fluctua. —

tions. In Sec. III we prove an important theorem
concerning the symmetrized and normally ordered
correlation functions. In Sec. IV black-body fluc-
tuations in the entire free space are considered
and the results of Mehta and Wolf obtained. This
elementary example is included as it serves to
illustrate the basic concepts involved. We calcu-
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late in Sec. V the electromagnetic field response
functions in the region bounded by two isotropic
nonmagnetic dielectrics, and in Sec. VI the same
calculation is done when one of the dielectrics is
replaced by a spatially dispersive dielectric. In
See. VII, we use the results of Secs. II, III, and V
to calculate the coherence properties of black-body
fluctuations in eonsA ained geometries and show
how the presence of a surface affects its temporal
and spatial coherence.

p =-e 8"o/tr(e 8"0), p=1/I&sT (2.1)

where k~ is the Boltzmann constant and T is tem-
perature. I et us perturb this system by an exter-
nal perturbation of the form

II. LINEAR RESPONSE THEORY AND

ELECTROMAGNETIC FIELD FLUCTUATIONS

In this section we recall few formulas from lin-
ear-response theory and discuss the types of
probes needed to describe the electromagnetic
field fluctuations both in free space and in finite
geometries. Consider a quantum-mechanical sys-
tem characterized by a Hamiltonian Ho and the
equilibrium density matrix"

g(t —t') =(I/O») d(op((u)e ' " ' '. (2.6)

The symmetrized correlation function defined by

S„(r,F', t t') —= ,'((A-, (r, t) —(A, (r, t)),A,.(r', t')

—(A,.(r', t'))j), (2.9)

is given by the fluctuation-dissipation theorem

S,(r, r', &u) =I coth(P~S/2) X~(r, r', ~). (2.10)

If the variables A,. and A, have the same signature
under time reversal, then X,",(r, r', w) is odd in (u,

real and symmetric under the interchange i =j,
r~r', and hence X" is the imaginary part of X. If
A, and A, have opposite parity, then X,".&(r,r', &u)

is even in +, pure imaginary, and antisymmetric
under the interchange i =j, r =r' and therefore in
this case X,"& = -i ReX,.~. The symmetry properties
of X,'&(r, r', +}follow from the dispersion relation
(2.6}.

For the problem of electromagnetic fluctuations
the external probes will be taken to be external
polarization (P(r, t) and external magnetization
R(r, t). The Hamiltonian H,„, in the present case
1s

II,„,= — d'r A,. r, t,. r, t, (2.2) H,„,= — r, t E r, t +SR r, t H r, t d'x,

(2.11)

where X„.(r, r', t —t') is the usual susceptibility
tensor defined by

X„.(r, r', t —t') =2i&I(t —t')X,",.(r, r', t —t') (2.4)

with
11

Xfg X$J + Xf Jp (2.5)

d
X,', (r, r', (u) =P

CO —(d
(2.6)

where &l is a step function: &I(v) =1 if ~&0 and zero
otherwise and where ( ~ ) denotes an average with
respect to (2.1). It is clear from (2.3) that

6(A,.(r, ~))
6f (

) ~) =X(J(rrr r&)) (2.'t)

where the Fourier-transformed quantities are de-
fined by

where f, are the e.xternal forces and A~ are the
dynamical variables of the system under considera-
tion. A straightforward perturbation theory shows
that the linear response of the variable A, to f,
is given by

il(ri,.(r, t))=g Jd'r'
j

x dt'X,.
&

r, r', t —t', . r', t', 2.3

where E and H are the second-quantized operators
corresponding to the electric and magnetic field,
respectively. Vfe now introduce four types of re-
sponse functions:

X,.~ss(r, r', &) =6&@,(r, (u))/6e, (r', (u),

X;;,(r, r', ~) =«E;(r, ~))/t&II, (r', ~),

X„„s(r,r', (o) =6(H, (r, (u))/66. ',.(r', (u),

X; „(r,r', &u) =6&H,.(r, (u))/6II, .(r', (o),

(2.12)

(2.13)

(2.14)

(2.15)

and we introduce the corresponding symmetrized
correlation functions

SIJ~&(r, r', t —f') = —,'((E, (r, t), E&(r', t')j), (2.16)

9jf'(r, r', t —t') =-,'((E,.(r, t), H, (r', t')j), (2.17).

9~&,'. &(r, r', t t') = ,'((H, (—r, t), Z-, (r', t')j), .(2.18)

&I~&(r, r', t -: t') =2((H, (r, t},H, (r', t'.)j). (2.19).
It should be noted that E {H) is an even (odd) vari-
able under time reversal and hence X,".

~EE, X~"2-HH will,
respectively, be the imaginary parts of X,,»,
X$gHH' Similarly X& jEH ~l jHE will be equal to
-i ReX,»„,-i ReX, &HE. From the fluctuation-dis-
sipation theorem (2.10), it is now clear that

8,',"(r, r', ~) =-A coth(P(uh/2) imX, ,s~(r, r', ~),
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9,'2 &(r, r', &l&) = i-It coth(/&de/2) Re&&,,sH (r, r', &o),

(2.21)

8I& '(r, r', &d) = ih-coth(P&dk/2) Rey, ,Hz(r, r', (u),

(2.22)

[H, (r,. t)] by the Hilbert transform relation

—

( )
1 t'" E,(r, t') dt'E~, t = —P

H, (r, t') dt'
(3.2)

St&&)2&(r, r', (o) =8' coth(p(uh/2) imp&~„„(r, r', (u);

(2.23)

thus the four response functions defined by (2.12)-
(2.15) completely determine the correlation func-
tions. The response functions are to be calculated
from the solution of Maxwell's equations:

1 8VxE =-——(B+4»K),et

V ~ (B+4»5K) =0,
(2.24)

VxH = ——(D+4»$'},c et

V ~ (D+4+}=0.
(2.25)

Equations (2.24), (2.25) for the response are to be
solved subject to the usual boundary conditions,
namely (i) tangential components of E and H and
(ii) normal components of D and B are continuous
across an interface, where D and 8 as usual de-
note the electric induction and magnetic induction,
respectively. We, of course, assume that no sur-
face currents and surface charges are present.
%e will describe the dielectric in terms of the ap-
propriate dielectric function. This is the only
phenomenological element in the theory. We will
also assume "sharp" surfaces.

III. RELATION BETWEEN SYMMETRIZED CORRELATION

FUNCTIONS AND THE NORMALLY ORDERED
CORRELATION FUNCTIONS

(E&-&(r, t)E&'&(r', t')),
where E"' and E' ' are the positive and negative
frequency parts of the field operator E. In this
section we discuss the relation which exists be-
tween two types of correlation functions.

We assume that the electromagnetic fields are
represented by analytic signals"; then their posi-
tive and negative frequency parts are defined by

E,'."=-.'(z,. + iz,.),
H,"' =-,'(H,. ~ iaaf,.),

where E&(r, t) [H&(r, t)] is given in terms of E&(r, t)

(3 1)

The fluctuation dissipation theorem enables us to
calculate the symmetrized correlation functions
of the form (2.16)—(2.19) in terms of linear re-
sponse. In many applications such as in photon
absorption measurements, ' one measures normally
ordered correlations of the form

We introduce normally ordered correlation func-
tions:

8&".&(r r' t t') =-(Z&-&(r, t)z&'&(r', t')), (S.S)

8,'~~'(r, r', t —t') = (E! '(r, t) H~" '(r', t')), (3.4)

8!~y'(r, r', t —t') = (H! '(r, t) EJ"(r', t')), (3.5)

X,'", '(r, r', t —t') = (H,''(r, t) H,"'(r', t')) . (3.6)

It should be noted that we are dealing with sta-
tionary fields, i.e., fields for which many-time
correlation functions are invariant under time
translation. For such fields, (3.2) leads to inter-
esting relations" between the correlation functions
of E and E For e.xample, we have from (3.2)

(Z,.(r„ t, ) E,.(r„ t,)}
1 dt'dt" (E,(r„ t') E,(r„t")).
7r' (t' t, )(t" t—,)—
1 &, „(E,.(r„ t' —t")EJ(r„0)), P dt dt1,„(E,.(r„ t') E;(r„0))

2 (tll t )(tll t tl)

which on using the identity
1 dtN

2 (tll t}(tll )
(

becomes

(z,.(r„t, ) z, (r„t, ))=(z,. (r. „t, —t, ) z,.(r„O))
and hence

(E,.(r„ t, ) Eq(r„ t, )) = (E&(r„t, ) E,(r2, t2)). (3. .7)

Similarly one can prove that

(Z,.(r„t, ) E,(r„t,))= -(E,(r„t, ) Z, (r„ t,)).
(s.8)

Hence from (3.7) and (3.8) it follows that

8&,"&(r„r„t, t, ) = .'(E, (r„ t, ) Z—,(r„-t,)).
+-,'i(E,.(r„t, ) E,(r„t,)).

] ~+OO

dt" 5+(t" —t2)2 7t g {&o

x (E,.(r„ t, )E,(r„t-))
+ oo

dt" 5, (t, —t, —t")

x (E,(r„ t")E,(r„0)). (3.9).
Note that from (2.5} and (2.16) one has
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(Z, (r„t")E,.(r„0))=I',"~EE (r„r„t")

+ 8&&E, '(r„r„t")

These can again be related to symmetrized cor-
relations; for example, in place of (3.10) we have

hence SI~ '(r„r„t, —t, ) = (I/2&&) dt" 6 (t, —t, —t")

+OX&&&EE('r„r„t")] . (3.10)

On taking the Fourier transform, (3.10) leads to

&&',&"&(r„r„a))=&I( (u)[k-g&'qEE(r„r„(u)

+ 8&, &E(r„r„~)], (3.11)

which is the desired relation between 8'"' and
8&E&. In obtaining (3.11)we used the relation

(3.12)

On using (2.20), (3.11)becomes

and hence

x [lip,".,.EE(r„r„t")

+ &&lI, '(r„r„t")],

&&l&&", &(r„r„~)=&I(~)II[1+coth(p~h/2)]

x Imp. „.EE(r„r„~),
8I~&&(r„r„&u)= —i&I(~)k[1+coth(p&h/2)]

&& Reg, ,» (r„r„~),
&iI",. & (r„r„&o)= -i&i(~)I[1+coth(p~k/2)]

xRe&&&EE(r& ra ~)

3CI", & (r„r„~)= &1(&)k[1 + coth(P~k/2)]

x imp;»IE(r„r2, &),

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
8&&f & (r„r„co)= &&t&l (-~)[1 + c oth(p~k/2)]

x imp, ,EE(r„r„&u).

Similarly one can show that

X&,"&(r„r„&L&)=I'(-~)[1+coth(p(uk/2)]

(3.13)
showing that the antinormally ordered correlation
functions only have positive frequency components.
The relations of this section will be useful in Secs.
IV and VII of the present paper and in Paper III
of the present series of papers.

x Im)(&y&&&& ( 1 && r&i &L )i (3,14)

9&&E'(r„r„(o)= —iK&l (—+)[1 + coth(p&A/2)]

xRey, ,E„(r„r„&u), (3.15)

9&& & (r„r„&u)= ih&I ( -&)[1 +—coth(p~II/2)]

x Rey(qEE(r„r„&u). (3.16)

(3.20)

Relations (3.13)-(3.16) are very basic and show
how the normally ordered correlation functions
can be obtained from the knowledge of the linear
response functions. It is interesting to note that
the Fourier transforms of the normally ordered
correlations vanish for positive frequencies with
Fourier transforms defined by (2.8).

If the measurements are carried with a quantum
counter, "then we need to calculate the antinormal-
ly ordered correlations defined by

g&&", &(r„r„t, —t, ) =(Z&'&(r„ t, ) Z&-&(r„ t, )),
(3.17)

8&&", &(r„r„t, t, ) =(E&&'&(r„—t, ) a&&-&(r„ t, )),
(3.18)

9&", &(r„r„t, t, ) =(a&"(r„ t—,) Z& &(r„ t,)), -

(3.19)

IV. BLACK-BODY FLUCTUATIONS

IN INFINITE DOMAIN

As a preliminary application of the results of
Secs. II and III, we consider black-body fluctua-
tions in infinite domain. These have been exten-
sively discussed by Mehta and Wolf. ' We include
this example just to show how the response func-
tions can be used. Mehta and Wolf took the usual
expansion of the field operators and used the diag-
onal coherent-state representation' of the density
operator to calculate the normally ordered corre-
lation functions.

From the Maxwell equations (2.24) and (2.25) we
obtain

V x V x E = ik,[-ik,E+4»vx3R —ik,4%],
V E=-4»V 8', k =~/c,0

which can be rewritten as

(V'+k')E =-4&&[k,'5'+v(v ~ &I')] —4&&ik vxSR.
(4 1).

Similarly we ind

(v'+ k,')H = -4&&[k209lt+ v(v SR)]+4&&ik,vx@.
(4 2)

These equations should be solved subject to the
outgoing boundary conditions at infinity. We as-
sume, throughout this paper, external probes of
the form
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6'(r, &u) =p(&o)6(r —r, ),

SR(r, ~) = m((u)5(r —r, ).
Let Gp be the free-space Green's function

G~(lr —r'I) = e"ol — 'I/

then the solution of (4.1) and (4.2) is

(4.3)

(4.4)

fining relations (2.'l), (2.12)-(2.15) that

92
+ Q r —r 47

E(r, ~) =[ko2p+i(p ~ i)+ ik,Vx rn]

x '"I'-' I/~

H(r, (u) =[k,m+i(m ~ i) —ik,exp]
xe"oI' 'oI/Ir —r, ~.

(4.5)

(4.6)

It is now clear from (4.3), (4.5), (4.6) and the de-

ik-,e„, . G, (r —r'),
l

where e&,.„ is the completely antisymmetric tensor
of Levicivita. Hence on combining (2.20)—(2.23),
(4.7), and (4.8) we obtain the symmetrized corre-
lation functions

8!". (r r' ~) =X!"(r r' ~)=kcoth p&k s' sin(k ~r —r'~)026. +--
$$ 9 9 ij 2 Bx Bx r —ri Jf

9!". (r r' ~)= 9!"(-r r.
' (u)=-i@k coth '- u. . ——p&K s sin(k,

~

r —r'~)
ij 9 9 ij 9 9 P 2 "' sx ir —r'il

(4.9)

(4.10)

Equation (4.9) is the well-known expression for the symmetrized correlation function obtained by Landau
and Lifshitz in a different manner. "

.The normally ordered correlation functions can be obtained from
(3.13)—(3.16) and (4.7), (4.8):

h!",. '(r, r', ~) =RP,. '(r, r', &u) =q(-&u)k[1+ coth(P~k/2)] k', &,, +
s' sin(k,

~
r —r'~)

i j
P(d@

(4.11)

In the time domain one has, for example,
+ 828'"'(r r' t) = — d~e ' '2 (-~)k(e" I I —1) '

271' J Bx,.bx& r —r'

82 00 /eikpR ~- ikpB)

82 OO

—&,V' p [(pkcn —ict)'+Z'] -'
Bx ~ Bx)

45c ~
v ~ [(pkcn —i ct)'+R'] ' [(plcn —i ct)'+ 8'] '

Similarly the mixed correlation is found to be

82 00

9!~'(r,r', t) = -O!~'(r, r', t) =- —e,.„Q[(Phcn —i t)' cB']+
n=l

—85cz ~ Pkc fz —z ct'~ [(pkcn- ict)'+Z']'

{4.12)

(4»)

The results {4.12) and (4.13) are equivalent to the
results of Mehta and Wolf. ' It is remarkable that
we have not used any particular mode expansion
of the field operators in deriving (4.12) and (4.13).
Antinormally ordered correlations are similarly
obtained from (4.5), (4.6), and (3.22)-(3.25).

V. RESPGNSE FUNCTIGNS FGR THE ELECTRGMAGNETIC
FIELDS BETWEEN TWG ISGTRGPIC, NGNMAGNETIC, ANO

SPATIALLY NGNMSPERSIVE BGDIES

In this section we will calculate response func-
tions for the case of .two identical isotropic, non-
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V2E+k', ~E=O, V E=O,

H=VxE/ik„ for —~ &z &-d, 0-z &~,

(5.2)

(5.2)

subject to the appropriate Maxwell boundary con-
ditions at z = -d and z = 0. The solution for E in

the region -~ &z & —d (region III) and 0 &z &~

(region I) can be expressed as angular spectrum of

plane waves"

E"'(r (o)= J" g")(u v (d)e' ' dudv, K ~ 8"'=0,

magnetic, and spatially nondispersive bodies sepa-
rated by vacuum. W'e assume that each body is
characterized by the dielectric function e((o). We
moreover assume that the dielectrics occupy
volumes 0&a & and -~ &z &-d, d being the sepa-
ration between the two bodies. The response func-
tions which we obtain in this section will be very
basic in all the applications which we consider in
this series of papers.

If we assume that there is an external polariza-
tion probe located at r =rp in the region -d &z &0,
then the response of the electric field (magnetic
field) would yield the coherence function 8„(8&i).
Similarly the response of the magnetic field (elec-
tric field) to an applied magnetization would yield
the correlation function R, , (B,.i). We first calcu-
late the response of the electric field to an ap-
plied polarization. We must now solve the following
set of equations

V'E + koE = -4)z[kzo&P + V (V ~ (P)] -d &z &0, (5.1)
H =VxE/ik,

E~ becomes

Eo(r, &o) = 2' [k.'p+V(0 V)]
wp

h"'[k' —(R R )]+6' '[k' —(K Ko)]

+Rii(Rii ' &"))(I-w/wo)+Rii(KII '7(&' ')(I +w/wo)

= v[k'(K, x K,x p)l, —k', (Kx K,xp)„],

(5.11)

&&exp[iu(x —x,)+ iv(y —y, )+ izo, lz —z, l].
(5.8}

The angular spectrum representation for the mag-
netic field is obtained by using the relation H
=Vx E/ik, .

On applying Maxwell boundary conditions at z =0,
we obtain

gII" ——hII" +(oil ' —v(KoxKoxP)ll,

v=(i/2&tw, ) e 'Ko'o, (5.9)

Rxh«& =R, x(&l&'&+Rtx8& &+ vk', (R,xp). (5.10)

Using the transversality of 8"',8'" and on taking
the cross product with K, (5.10) becomes

k'h&'& =8&'&(R R )+X&-&(R R,') —vk'(RxR, xp)

-R,(RI h&"&)(I -u/w, )

—R,'(Rll. h( ')(1+w/w, ).

The component of this equation parallel to the
surface z =0 is

R = (u, v, w), w' =
kooky

—u' —v',

E"'(r, (o) = J" J[ $'"(u, v, (o)e'K 'dudv,

(5.4) where (5.9) has been used to elfminate S,l". From
(5.11) one easily obtains the following two e&lua-

tions:

K' ~ h (z) =0, K' = (u, v, -w), (5.5)

where the square root is chosen such that Imw~0.
The solution in the region II (-d &z &0}consists of
the solution of the homogeneous equation and a
particular solution:

E"'(r, (d) = [8"'(u, v, &o)e&~o'

K, ~ S~') =0,

+ h ' ' (u, v, (o)e'"o' ]du dv + Eo,

Ko' h =0, Ko =(u~v, wo),

z ding dD
Go(lr —r'l) = exp[zu(x —x')+ zv(y —y')

27k g wp

(5.6)

and where Eo is given by (4.5) with m =0. On using
the Weyl representations for Green's function'6

+ KII ~li ~ [p okll )wo( II p!I)]i
w 6-w0

(5.12)

0

where Kll is the vector parallel to the surface
z =0 and has components K„= (u, v, 0) and p, is the
component of p along z direction.

Applying now the Maxwell boundary conditions
ate =-d, we obtain

hII e =BI! e +(oII e —v (K xK xp)IIp p li~

(5.14)

(Rl x g(z))e&iood (R x g(+))e-&wod
0

~ ( K )( g (- ))eiw( d + vtkz ~t )(p

+ZWp 8 —8 (5.V) v' = (i/2)tw )e '"o'o+'"o' (5.15)
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Carrying out an analysis similar to that which led
to (5.12) and (5.13), we find that (5.14) and (5.15)
lead to

(K»xS&&")e ' p" + ' (K»xSI& ')e'"(&"
0

= -v'hop(K~&xp„) ', (5.16)K+ AD

(K 7(.l"')e '"o"+ (K 8' ')e'w(&"
0

= —v (op [k&&P) +Bio(K&&
'

p&&)].
SUDS + ZO

(5.17)

On solving (5.12), (5.13), (5.16) and (5.17) for
the four unknown (K»'hei ), (KiixSI& )r we obtain

g {-) 0 D-lf K 5 + 0 -iK ~ r -2i d -iK' ~ r
llX ll

=
2 4 llXplli (5.18)

(5.19)

—1&0 SU 6+M)g( & — D (l) p +(o K p )e o' (&p (li p ((& K p&&)e o o (& =(o g
0 0

(5.20)

~ g {+)
ll ll

0

where B, and D, are given by

0
(s.21)

' 2 2~o~ + I' -2im ~ - ~ + ~o -2i~ ~e o, D2=i — e
ZU 0 K —K 0

(5.22)

(5.23)

dQ dv gg Q +g)g"' (r r (o)= D-1(((2+(&2) eiKo (r -ro) +eiKo'(r -rp) + 0
zzEE y Dy u 0 ZU C —K0

The tangential components of 8 are given by

(Kli (2 II) ~ (Kll ~() +(Kll (2ii) +(& (K&& (2&&)

k2
II

k2
II

The complete electric field is obtained by substituting (5.18)-(5.23) into (5.6). The Eo term leads to the
usual translationally invariant response functions which we have computed in Sec. IV. We have, for ex-
ample, the response of the z component of the electric field to an applied P~:

X(eiKO r —(KO rp eiKt& r —(Kp'rp-2iw(&d) (5.24)

(5.26)

where we have ignored the usual translationally invariant contribution. " As mentioned earlier the response
function y(i„e can be obtained from H =(r'x E/ihip and the relations (5.6), (5.18)-(5.23).

We now show how to calculate the response function )((~H„(r, r„(o). We have seen that in free space
y, ,» -—X„«,however, for a bounded medium it does not hold as the boundary conditions satisfied by E and
H are asymmetrical for a dielectric medium. To calculate p,.&„H we apply a magnetization at r =r0. The
equations to be solved are now

(V2+0;)H = 4~[0;3g-+V(V 3Tt)]
I d&e &0 (s.2s)E = -QxH 2ko

(q2+)2e)H=O, E= —VxH/ik, e, V ~ H=O, for -~&2&-d, 0&2&~.

Gn using continuity of H and tangential E and on expressing each of the fields in the angular spectrum rep-
resentation, we obtain on carrying out an analysis very similar to that which led to (5.18)—(5.23, :

ZSU SU + K ~ ~.5t(-& o f)-( o (i22&r)2 ((& K .m )e-iKo rpe 2(wpr( (&riom-+((& K .m )e-iKo ro

(5.27)

K .R',"'=-
ll li 2 0

—'k2

-iK ~ r ~+ M'o

0

e- i KD' ro-2i F00 4

(5.28)

(5.29)
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(5.30)

u(KII Rll) V (Kll Rll)
3(&

Q(KII XXII) +V (Kll All)
x

II
k2

II

(5.31)

This completes our calculation of all the response functions. From (5.27)-(5.31) we have, for example,

:z dQ d'U W + WX") (» ~)= —- D-1(2(2+V2) eiKo (r -r o) +8(Kp ~ (r -ro) o
zzHH ~ 0~ 2+ W W —W0 0

4K@ I'0+ fKp I $Kp I'p+gKt) f 2gtop dW
ge +e (5.s2)

where as before we have written here only the
surface-dependent contribution. We next discuss
some special cases.

~ 2

KIIX5CII ' = D '(Kllxmll)
0

x (8-«o'o+8 «o'o-2(~o") (5.40)

A. Each dielectric replaced by a perfect conductor

On taking the limit of a perfect conductor, Eqs.
(5.18)—(5.22) reduce to

KIIXXII+ = D '(Kllxmll)
2KW0

X ( -iK r -(Ko'o). (5.41)

2

K X g (- ) o D 1(K X )(8-2(utpp iKO' 1'()

27jw 0

(Kp rp) (5.33)

On taking the limit d-~,
(5.27}-(5.30}reduce to

g (+) ~(+) p

Eqs. (5.18)-(5.22) and

(5.42)

B. Dielectric occupying -oo&~z&~-d absent

)( g(+) Q D-1(K Xp )(8-iKO ro 8-iKQ ro)
0

(5.34)

Kll ' gll
—— Dp [(kllP~ +w K p )e

0

~ (k2P W K p )8 (Kp rp 2(rope]

(5.s5)

0 0

gW
(k IIP). w pK I I p II }27wp

Woe W -~K r ()e 0 0=W08
W06+ W

Zk2
llx II

=
2gw llxmll

w 6+w e 0 0

0 0

(5.43)

(5.44)

(5.45}
2gwp

(+)
Wp ~z

+ (kllPj. Wo

(5.s8)

(kiln)). -w Kll ™II)( ) -WU0

2gwp 0

0 e f Kp I'0
W )K)( )

$0+ Wp
(5.48)

1 e 21&0d
0 (5.3V)

and the corresponding magnetic field equations
reduce to

K, S7( ) o D 1[(k2 m w K m )8 Q Q 2(o
ll II 2&W 0 II & p II li

0

2'
(Kll Ill)8 '"''"

0
(5.47)

In the limit of infinite conductivity (perfect con-
ductor), these equations further reduce to

=W0X( ',

-(O', Im, +W,KII ~ ml)e '""o]
(5.s8)

0
(5.48)

Kll XII+ — D [(kjj™)-w Ki ™ll)e
0

(kll I) +WOKII mll)8 p p]

KllxKII =
2 (K(I x mll)8

0

MW
(kll m, -woKII mll)e-"o'(I

0

(5.49)

=-W X")
p z (5.39) (5.50)
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VI. RESPONSE FUNCTIONS FOR THE ELECTROMAGNETIC
FIELDS BETWEEN A SPATIALLY DISPERSIVE AND

SPATIALLY NONDISPERSIVE DIELECTRIC

The amplitudes C, and C, are not independent but
are related linearly by"

e(k, & ) =e.+X/(k'-u'),

where

(6.1)

We now consider electromagnetic field fluctua-
tions in the domain bounded by a spatially dis-
persive and a spatially nondispersive dielectric.
Such a calculation will be useful in our trea, tment
of dispersion force between a spatially dispersive
and a spatially nondispersive dielectric. " We
treat the spatially dispersive body" in the effec-
tive-mass approximation and for simplicity only
consider the case of bodies separated by small
distances, i.e., when the retardation effects can
be ignored.

We write the dielectric function, in the effec-
tive-mass approximation, as

Q w,.c,. =k', (w, -w„) 'C„

w~=p, —(u +v )~

which we will write as

(6.6)

D, ( , ,x)alO)=f dwdue"*'"" p (-i@,. (),),

where

(6.10)

(6.9)

It can be further shown that the normal component
of electric induction at z =0 is given by

y = 47&o.m*(d, /I,
g' = (m*/k(v, )((d' —~', + i ~I'),

(6.2)
(6, =w, ~,. —(Xw2&/2w„')(w, -u)„) ',

e, =e, +.g/(w, ' —u)'„).
(e.ii)

and where m* is the effective mass, I' is a phe-
nomenological damping, and & is related to the
oscillator strength. It should be noted that an
electron gas in the hydrodynamic approximation
is described by a similar dielectric function. We
must know the structure of the electromagnetic
field inside the spatially dispersive medium. For
the model (6.1) we will obtain the structure of
electromagnetic field in the approximation that
electric induction D and E are related by" " II,„,= p r, t4 r, t d'x. (e.i2)

Equations (6.6)—(6.11) completely characterize
the electromagnetic fields inside the spatially dis-
persive medium. Having obtained the fields in-
side, we proceed to calculate the response of the
potential to an applied charge at the point r„ i.e.,
p(r, (d) = p((d)6(r —r, ). The perturbing Hamil-
tonian has the form

x E(r', &u) d'r', (6.3)

It is now clear that the response function

X(r, r', (d) = 6(4(r, (d-))/ep(r', (d), (e.i3)

where the integration. is over the volume of the
medium only and G„ is the Green's function de-
fined by

G„(ir —r'i) =e"i' "i/ir -r'i. (6.4)

The scalar potential C satisfies the equation

(6 6)

V'4'+ (X/4)&e ) V & „(ir —r'i) V'4 (r', (u) d'r ' = 0.

(6.5)

Let us assume that the spatially dispersive medi-
um occupies the domain 0 &a &~. Then it can be
shown that the solution of (6.5) is given by

V'C' = -47&pe (r —r, ),

and in region III, the Laplace equa, tion

v'4 =0.

(6.14)

(6.15)

We write the solution in the region II, III in the
form of angular spectrum of plane waves

will yield the fluctuation correlation of the scalar
potential at two different space-time points. We
consider the following situation: the dielectric
characterized by e,(~) occupies the domain —~
&z &-d (region III) and the spatially dispersive
dielectric occupies the volume 0 &z &~ (region I).
We assume that the external charge is located at
r, in the vacuum (the region II, -d &z &0). In the
region II we have Poisson's equation

w', = -(u' +v'), w', = k', —(u' +v'), k', = &(' —y/e, .
(6.V)

O(3) (r ~) dudv 4'"'(u v (d)e'""""' '")'
9

(6.16)
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4&"(&,~)= Jd«&(«(@"'(«,U, ~)e' '+4"'&(«, U, &d)

xe ' &*+(ip/avw, )

+ e-iuxo-iv)&0+ iw&) s-zo)] eius+
«&9

9

Similarly on applying boundary conditions at z = -d
we obtain

—1 ~ zp@(+)+ 3 @(-)e2iQ'1d + ~ e2ito1d-sK I'0 0
&3+ 1 27t se,

(6.17)

where the Weyl representation of the Green's func-
tion,

K =(u, v, —w&).

On solving (6.21) and (6.22) we obtain

(6.22)

1 i dQ dV
exp[iu(x -x,)+ iv(y -y, )

+ iw, [z —z,(],

@(-) D-l
27T ZU1

-2im d-iK'r -iK" ro —e o
C3 —1

(6.23)

(6.18) C, (+) ~ --1 -iK r -iK' ~ re 'o —e
2 +ZU1

has been used. To calculate 4'", 4'" we use the
continuity of 4 and the normal component of the
electric induction. Applying boundary conditions
at z =0 we have where

~ P, —P, n+w, (1 —n)
( 24)

p, —p, n-w, (1 —n)

4 4 =4( ) 4() I e 'K'o
2 7I'S6 1

K =(u, v, w, ),

p p, @„=w,[4"' —C' '+(ip/avw, )e '"'o]

(6.19)

(6.20}

t~+ 1 p&
—p2n+ w&(1 —n)

D ] 3 i
t q

—1 p&
—

p2 n —w q (1 —n)

(6.25)

The response function (6.13) is therefore given by

x(r, r', ~) = x"'(r, r', &)+x"'(r, r', &),

On using (6.9), (6.19), and (6.20) we find the rela-
tion

4&(+) C, (-) w(( ) + p) p2 2p -iK r&

w&(1 —n) —p&+p~n 2i(w&

(6.»)

where y(" is the free-space value

X(0)(r, r', &v) = -[r —r'~ ',

and X"' is equal to

-d ~z, g' ~0,

(6.26)

(6.27)

(1}1»» 0 0 e I 0+e 1 0 — e 1 0iu(x-X )+is(y-y ) ifO (S-S ) -i to (C-S ) 3 -im (8+8 +24)
2P SU 1D

P, —P, «&M, (l —«),. «„,
)p —p n-w (1 —n)

The response function X,,«(r, ro, «)) is obtained from X(r, r„)&@by using

(6.26)

(6.29)

The response function (6.29) will be useful in the calculation of among other things the dispersion force
between a spatially dispersive body and spatially nondispersive body. The response function (6.28) takes
a simpler form if the dielectric e3 is absent

x"'(r, r„(d)=
22'

d'udv p&
—p2n —w&(l —n)

ezp[iu(x -xo)+ iv(y -y, ) + iw, (z+@,)]. (e.so)

VII. BLACK-BODY FLUCTUATIONS

IN FINITE GEOMETRIES

In this section we consider how the black-body
fluctuations are modified due to the presence of
boundaries. We have already computed all the

relevant response functions in Sec. V and these in
conjunction with (3.13)-(3.20) will lead to all the
correlation functions 8,, , K, , , 9,&, 9,, . We are
treating fluctuetions in a specialized geometry,
i.e., in the region bounded by two dielectrics. One

has, for example,
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g(H)(r r &0) g(H&(0)(r r (0) ~g&H&((&(r r (L))

('7 .1 )

x;& (r r, &)=x(') H(r, r &0),

~i/EH( I 0& } ~iJHE( r 0i

(V.12)

where 7t&(E)E(r, r„(0) is given by (5.24). In order
to study some new features of the black-body ra-
diation in finite geometries, we treat the simpli-
fied situation: Consider the fluctuations in the
region -~(z (0 (vacuum) bounded by a perfect
conductor at one end, z =0. In this case formulas
(5.47)-(5.50) apply. Equations (5.47) and (5.48)
can be rearranged in the form

(i /2)T )e [KII(KII P) k&& Pll + Pj0KII]

(7.3)

g,' ' = (i/2z((&0)e 'Ko'0[p~kll —Wo(KII ' pli)] ~

To obtain X,'~» we calculate the magnetic field
from (5.47), (5.48), and the r elation H = (7 &( E/i k, .
It is seen from (7.3) and ('7.4) that the contribution
E from the solution of the homogeneous equation
is

(7 4)

Eh. =[(P '~).) 7 —(P ' II)(7 —kl&P

+ 2k,'{E p) z] e"0E'/R',

where R' is the distance of the point r from the
image of r„ i.e.,

{7.5)

R„' =X -Xo, R,' =y —yo, Rg ——Z +so,

and hence H„, . is equal to

H„. = -i k, Pox Vt(e "0E'/R'},

Pp!l Pll ~ Pox Px

From (7.5), (7.7), (5.49), (5.50) we obtain the
response functions

2

Bx~ Bxy

(7.6)

(7.7)

where g,',"'"'(r, ro, (0) is the usual contribution
given by (4.12) and g,',"'"' is the surface dependent
contribution given by

g'"'"'(r, r„o))=2k)7(-&0)(1 —e 8 "~) '

(7 2)

The correlation functions have similar properties

g(H&(0&(r r &d) 5( (H)&0)(r r &d)

g&H)&0)(r r (0) g(H)(0&(r r &d)

g(H&(()(r r &0) 3C(H)())(r r (0)

g&H)(()(r r (d) ~g(H)o&(r r (0)

(7.13}

In particular on using (3.13) and (7.8), we have

h„'H'"&(r, rory) =-h&7(-(d)(1+coth-,'p&dh)

sink
(7.14)

g,',"»" (r, rp&) =+n)7(-&d)(I+coth-,'p(oh)

sink
('7.15)

and on taking Fourier transforms (7.14}and (7.15)
lead to

(H) &&) {~ ~
}

4hc ~ (p@cn ict) + 2R'& R
f(Phcn —i ct)'+R "]'g{N){1)

('7.16)

g(H&&)&(m ~
)

+4' ~ (Phcn ict) +2R& R
)&

~ [(Pmcn —i ct)'+R "]'
(7.17)

The corresponding translationally invariant corre-
lations g(iH'"& are given by (4.12). The black-body
radiation is no longer isotropic a,s the translation
invariance is broken.

One can now study temporal and spatial fluctua-
tions of the black-body radiation in a manner
similar to that of Mehta and Wolf. In the present
case owing to breakdown of translational invari-
ance, temporal coherence itself depends on the
point ro, e.g. ,

4hc ~ (P1tcn —i ct)' -4E0,

[{Phcn —ict)'+4z'0]' '

oa
—ko25,.~ + 2k~os]35~3

= -X,",H&H (r, r., &d),

(7.8)

(7.9)

('7. 18)

g(,")(')(r„r„t) =+ g [(Ighcn —fact)'+4z', ]
' .

1

(r, r„&0)= ik, (25„—1)e,, , 8, 8'

=+7t"iEH(r ro "}.
(7.10)

(7.11)

In particular for zo-0, we obtain

(7.19)

The symmetry properties (V.9) and (7.11) are to be
compared with those for translationally invariant
response functions

x&[4, 1 —ict/hcP], X(„") 2K„„"(",
('l. 20)
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where g[S, a] is the generalized Riemann i; function
defined by'4

B(R) =3RcothR+3R' cschmR

+ 2R' csch'R cothR —8 . (7.25)

g[S, a] = Q (n+ a) ' .
3=0

(7.21)

g(z")(ro, r„ f) =0 if i tj . (7.22)

To discuss the spatial coherence we put t=0 in
(7.16), (7.1'I), and (4.12). The resulting summa-
tions can be evaluated in closed form:

where

—R~ R~ (7.23)

We thus see that the magnitude of g„", in the
limiting case z, -0, is twice that in the absence of
the conducting surface whereas g„„" vanishes. It
also follows from (7.8) that any two orthogonal
components of the electric field at the same space
point r are uncorrelated, i.e.,

X(„")(r,ro, 0) is given by (7.25) with the sign of
the terms involving R' changed. The mixed cor-
relation is given by (7.10):

g(~)(~)(r r t) +g(~)(~)(r- r t)

Bkci
e, ~, R,'(1 —26„)r

/ben —ict
X

[(Pkcn —ict)'+ R"]'

(7.26)

We have so far considered only the second-or-
der correlation functions of the black-body radia-
tion. Since higher-order correlation functions
can be expressed in terms of the second-order
correlation functions, "'"this completes our study
of the black-body fluctuations.

R, = ()(/n)R, R,' = (w/n)R', o. =KcP,

A(R) = -R cothR —R' csch'R

—2R csch RcothR+4, (7.24)
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