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Transform for calculating scattering amplitudes. II. Numerical results for the Yukawa
potential
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Numerical evaluation of high-order terms in the Born series for an attractive Yukawa potential is

accomplished with a transform described in an earlier paper. Born terms through order five are
computed at high energy and through order seven at low energy. These are resummed using a vari-
ational functional for the T-matrix elements suggested by Rabitz and Conn to give good agreement
with the existing numerical study of Walters.

I. INTRODUCTION

In an earlier paper' a transform of the free-
particle Green's function was obtained which led
to an inhomogeneous line-integral equation for po-
tential scattering amplitudes. This equation has
been iterated numerically for an attractive Yukawa
potential at high and low energies, thus generating
at the high (low) energy the first five (seven)
terms in the Born series. These terms have
been resummed using the variational approach
of Rabitz and Conn to give good agreement with
the direct numerical studies of Walters. '

II. REVIEW OF TRANSFORM APPROACH

In the first paper of this series the function
St'

F(k, s) = " e "f "y,(r')dr

was shown to satisfy the inhomogeneous line-in-
tegral equation

F(k, s) = Eo(k s)
0 s

[e.g. , (12}of paper I], with
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(k )
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s'+ k'+ ko —2kk0 cosx

part when ~=k. This uniquely determines how the
branch cuts must be drawn in the complex 7 plane.

III. ITERATIVE SOLUTION OF EQ. (1)

As Eq. (1) involves the integral of a function of
two variables over a curve in the space of its var-
iables, it is best described as an inhomogeneous
line-integral equation. Iterating the equation (or
expanding in powers of Vo, the potential strength)
generates the sequence of equations

1 F„~(1&s~+s )dT
s1

0

The solutions of these equations evaluated at the
points (ko, s,) are the terms in the Born series for
the T matrix,

T(kf, k;) = Q Vo") T("~(ky, k;),
n -i.

T~"'(kf, k, ) =E„,(ko, so) .

As Eq. (2) involves only a one-dimensional inte-
gration, it is well suited for numerical evaluation.
The computation requires knowledge of the pre-
vious iterate along the line (T, s, + s'(c, T)} for
0 + T & k. Once a quadrature scheme has been de-
cided upon, the calculation proceeds as follows.
For each n, we need E„(ko, so). Thus E„,is
needed along the line

E = 2ko cosx kf ki ~ ki =kok

Eo(k„so) is equal to the first Born term for elas-
tic scattering off Vo(e '0/r), and E(k„s,) is the
complete elastic scattering amplitude off Vo(e '0/r).
The variable s' which occurs in Eq. (1}is a parti-
cular function of s, k, and 7, namely, s"=ox —7'
—k'„with c=(s'+k'+ko)/k; in order for (1) to be
valid the branch of s' must be so chosen that s'
= —ik, when 7=0 and s' must have a positive real

with o„=(s',+2ko')/k, . This in turn requires F„,
along the line

2+n-1 Sn-1+ Tn-i. + 0

with s„„=s,+s'(c„, 7„,). Likewise, this requires
E 3 along the line
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0'n-2 =
n 2

with s„,= so+ s'(o„„T„2). Continuing this back-
ward recurrence, we ultimately require I'0 at a
set of points N" in number, where N is the num-
ber of quadrature points used in the numerical in-
tegration scheme. Note also that although o„ is
real, o„,will be complex for some values of T„
because s'(o„, T„,) is complex for some values of

Recalling that Eq. (I) was obtained by choos-
ing the branch of s"(o, T) =o7 —7'- k', in such a
manner that s'(o, 0) = —iko and Res'(o, k)& 0, we
see that s'(o„, T„,) must also be such that s'(o„, 0)
= —iko and Res'(o, T ) & 0 for all 0 & m & n —I;
otherwise the assumed integral expression for
E„(7',s, + s'(o„„,T„))would not be valid. This
means that one must either carefully choose the
branch of s' at each stage of the recurrence pro-
cedure or, what is equivalent, augment the ener-
gy by an infinitesimal positive imaginary i&, and
take the principal root of s'(o„, T„,). Appendix
A shows that this does indeed give rise to the cor-
rect branch.

IV. QUADRATURE SCHEME

In Sec. III an iterative scheme for the evalua-
tion of E„(k„so)was described which depended
upon a numerical quadrature of Eq. (2). To carry
out this quadrature, we first observe that
s'(o, r, ) which occurs in the denominator of
the integrand represents a possible singularity.
The roots of s' occur at T, = ~0 +p and ~0

-p, with p' =+0' —ko. Letting x, +iy, denote the
root which has its real part closest to the origin,
and x, +iy, the other root, we note that both x, and

x, must either be simultaneously positive or nega-
tive (i.e., one root cannot lie in the right half-
plane and the other in the left half-plane). This
may be easily checked by examining the two equa-
tions xxx2 —y~y, =k', xjy2+x2yl =0. Furthermore,
y, and y, must either have opposite signs or both
be 0. Also, the two roots cannot coalesce. For
this to occur p must equal zero, which cannot
occur if o„has an imaginary part (p' = 4o'„—k o),
and also cannot occur if 0 is pure real. For a

real, we must have s real; if s is real then
o & 2(s' +k',)'", so that p o s & s, & 0. Thus,
as the roots cannot coalesce the possible singular-
ities in the integrand are still integrable singular-
ities. The quadrature scheme employed makes
use of this fact in the following way. If x, & 0,
break the integration region up into two pieces
0 & T„„-x, and x, & 7, & v . (The second region
is unnecessary if T &x, .) In the first region use
a new integration variable x = (x, —v„,)"', in the

second x=(7'„,—x,)"'; if x, & 0, only a single re-
gion is necessary, along with the substitution
x = (7, -x„)'~'. In both cases the integrand ex-
pressed in terms of the new variable is well be-
haved at the point x=0 (T,=x, ) for all values of
y„ including the case y, =0. [As the integration
in Eq. (2) proceeds along the real axis, the singu-
larity in s' occurs only when y, =0, but the sub-
stitutions described here ensure that the integrand
is uniformly bounded and continuous expressed as
a function of the new variable x, and thus readily
approximated by a quadrature for all values of y, .]
The only other point we have to worry about is

, =x,. Appendix B shows that this point does
not give rise to any difficulty in the quadrature.

It is clear then that after changing to the new in-
tegration variable x, ordinary Gauss-Legendre
quadrature should do very well, as each interval
is of finite length and the integrand is continuous
and bounded throughout. For the numerical results
reported below, a minimal number of points (four)
was used in each quadrature step. As a check on
the procedure and to see whether four quadrature
points were sufficient the numerical results were
compared with the analytic iteration of Eq. (2)
once [see paper I and references therein]; the
agreement was essentially exact.

TABLE I. Terms in the Born series for scattering off
-1.1825 e "/r.

ko

1.816 1

1.816 2

1.816 3

1.816 4

1.816

0.663

0.663 2

0.663 3

0.663 4

0.663 5

0.663 6

0.663 7

z(n) (0)

—2.000 00
o.ooo oo b

0.140 93
0.51186
0.173 09

-0.125 40
—0.828 64x 10
-0.49215x 10 i

—0,455 71x 10
0.448 55&& 10 ~

-2.000 00
0.000 00
0.725 08
0,96147
0.126 95

-0.978 45
—0.644 17

0.565 23
0.753 75

—0.13924x 10 i

-0.519 64
—0,416 04

0,121 51
0.576 06

—0.263 30
0.000 00
0.548 09
0.270 21
0.144 10

-0.904 45
—0.744 57
-0.488 83
—0.555 85

0.436 13
-1,064 31

0.000 00
0.621 77
0.880 66
0.13988

-0.955 13
-0.645 36

0.559 19
0.753 62

-0.124 34
-0.519 51
-0.416 39

0.12145
0.576 13

x 10 ~

xlo i

xlP '
xlp ~

xlo 2

10-1

xlo ~

-0.140 93
0.000 00
0,340 71
0,192 30
0.125 37

-0.721 79
—0.680 68
-0.480 07
-0.635 69

0.424 54
—0.725 09

0.000 00
Q. 544 50
0.814 38
0.15123

-0.933 12
-0.646 43

0.553 26
0.753 48

—0.109 56
-0.519 38
-0,416 74

0.12140
0,576 21

x 10

x 3.0
xlo i

x 10-1
xlP 2

x]0 '

x 1Q

'Heal part. Imaginary part.

V. NUMERICAL RESULTS

Tables I-III present the numerical results for
the calculations described in the previous sections;
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TABLE II. Computed scattering amplitudes.

k p= 1 ~ 816 T (o)

Born sum

g 5 (y )n tr(n)

I.2, 3j Pade
approximant

Walters calcul. ation

k p= 0.663

Born sum
gS(V )n Pn)

Born sum
g) (y )Il y(n)]

I:2, 3] Pade
approximant

[3,4] Vade
approximant

Walters calculation

2.1244
0.7231
2.1865
0.7387
2.182
0.739

0.1667
4.0997

-1.6468
1.0998
1.1589
1 ~ 6818
1.1580
1.7148
1.116
1.671

0.0170
0.3310
0.0796
0.3474
0.079
0.3478

-1.1076
3.9328

-2.9207
0.9318

-0.1106
1.5123

-0.1156
1.5190

-0;142
1.5041

-0.1114
0.1962

-0.0482
0.2123

-0.05
0.2134

-1.6373
3.7888

—3.4499
0,7865

—0.6424
1.3606

-0.6555
1.3571

-0.651
1.3584

Vp was set = to —1.1825 in order to facilitate com-
parison with the study of Walters'; two incident
energies k0=1.816 and k0=0.663 were selected
and the terms in the Born series were calculated
at three angles (() =0, —,m, and )() through order
five at the larger energy and seven at the smaller.
These terms are listed in Table I. When summed

'&p using Eq. (3), we get an approximation to the
scattering amplitude. Table II shows that the
agreement between these Born sums and Walters's
calculation at k0=1n816 is fair and at ko 0 663
poor. That is not at all surprising, since the Born
series is not expected to converge at low energies.
On the other hand, using the variational approach
of Rabitz and Conn' for the T matrix one may use
the computed terms in the Born series at each en-
ergy and each angle to generate a variational ap-
proximation to the scattering amplitude. Writing

=g T~ &+/ T()y ~ ~ ~ gtrial 1 2 S

and requiring that the functional

=&t I yl +)+&& I y&OT „„tI +)+&& I
7' „,]GOVI 6)

&t) I T, ,t GoT'r;, ) I a) +&& I
&

be stationary with respect to variations in the pa-
rameters (x„.. .x„)gives rise to an optimum
T„,„that is. equal to the [N, %+1] Pads approx-
imant to the scattering amplitude. The coefficients
of this approximant are easily obtained from the
first 2N+1 terms in the Born series. Those coef-
ficients are listed in Table III, and the corres-
ponding variational approximations to the scatter-
ing amplitudes are listed in Table II for compari-

TABLE r~r. Coefficients in Pade approximants.

&tat = IQ, (yo)"&„ / &++"(Vo)"Qn]

P„(0)

k p= 1.816 N =2

1 -2.000 00
0.000 00

2 -0.436 92
-0.597 84

3 Q.49951x lp 2

-0.22110x 10 '

k, =0.663 N =2

-2.OOOOO

0.000 00
—1.065 15
-0.406 77
-0.396 32 x 10
—0.29615x lo '

k p= 0.663 N = 3

-2.000 00
0.000 00

-3.11949
—1.032 39
—0.988 35
-0.736 50
-0.314 97 x lQ ~

—0.31309x lp i

P„(2X)

—0.263 31
0.000 00

-0.227 58x 10 ~

0.105 58
0.959 34x 10 2

0.321 96x 10

-1.064 32
0.000 00

-0.279 50
0.83873x 10 '

-0.26318x 10 2

Q.2l841x 10

-1.064 32
o.ooo oo

-1.995 79
-0.384 68
—0.505 22

0.55607x 10 ~

-0.10291x10 i

O, 386 O3x 10-'

P„(7(')

-0.140 93
0.000 00

-0.15359x 10 '
0.93804x10 '
0.16389x lp
0.215 92x 10

-0.725 09
0.000 00

-0.68607x 10 '
0.318 69
0.225 77x 10

—Q.16696x 1Q

-0.72509
0.000 00

-1.11521
0.443 09

-0.3665Ox lp '
0.484 54
0.326 88x 10-'
0.13222x 10 2

Q„(o)

0.288 92
0.554 85

-0.375 96 10
0.61398x10 '

0.89511
0.684 12
0.78922x10 '

0.203 92

1,922 29
0.996 93
0.775 30
1,11646
0.24626x lp '
0.216 04

Q, (z&)

0.294 59
0.625 22

-0.694 66x 10 '

0.767 29x 10

0.846 80
0.748 63
0.91478x 10 ~

0.220 09

2.459 38
1.1S8 87
1.059 14
1.779 86

—0.60531x 10 '
0.354 46

Q„(m)

0.350 74
0.698 92

-0,956 35x 10
0.120 09

0.845 57
0.683 62
0.44608x 10 '
0,176 38

2.339 90
0.512 Q6

1.441 15
1.057 41
0.105 02
0,26945
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son with the Born series and the Walters calcula-
tion. This time. agreement with the Walters cal-
culation is excellent at the high energy and good
at the low energy. Furthermore, the calculated
amplitudes at, the low energy are seen to be very
stable on going from the [2, 3] to the [3, 4] Pade
approximant.

VI. CONCLUSIONS

A practical scheme for computing accurate high-
order terms in the Born series for potential scat-
tering has been illustrated with an attractive
Yukawa potential. When resummed using a varia-
tional procedure these terms give excellent agree-
ment with existing calculations. The Born terms
themselves will be analyzed in a later study to see
what information they provide about the nature and
position of the singularity which determines the
radius of convergence of the Born series.

APPENDIX A: BRANCH s'(0, T,}

We demonstrate here that replacing ho by k'0

+i& and selecting the principal branch of

Ims„, » 0. Thus taking the principal branch of
s"(a„„7„,), we see that either (a) if Ims„, & 0,

& 7„„sothat again Res'(o„„,v„,) & 0, Ims'(a„„

=Re(s„,)'&sao (because Ims„, is assumed equal
to zero). This ensures s'(a„„~„,) =Res„,& s,.
Thus in all cases s'(a„„r„,) lies in the lower
right quadrant, so that Res„,~ s, and Ims„, »Q.
Clearly one may proceed inductively to show that
Res & s~&0 and Ims»0 for all 0»e»n —1;
arguing as above this ensures that s'(a, 0) = —iko;
Res'(o„, 7 ) & 0 for I& m& n.

APPENDIX O' SECOND SINGULARITY OF
t2 2 2

S =0 T I —T 2-ko

Note that j y, j
=

j (x,/x, )y, j so that the second sin-
gularity is further away from the real axis than
the first (recall that x, and x, were labeled so that
j x, j

&
j x, j). Again there is no difficulty if j y, j

& 0;
the integration proceeds along the real axis. I et
us examine the case y, = 0 more closely. y, = 0
implies y, =0 implies o real implies 8 real. We
must determine whether the variable &, ever
gets out as far as x,. The answer is no:

a —(s2 y 1 2 + k ~)/1 & 2(s2 y k 2)"&2

s'(a„, 0) = —ik„Res'(o, 7„)& 0 .

Suppose that 0', has been replaced by 0', +i~, then x2 &a~+ p~ (s~+ k0) + s~ ko+ so

Tm
m-1 m-1

because s real and Res & so. Thus x, &ko+s, & v .
Thus the integrand is bounded and continuous at
the point &, the end point of the integration, as
mell as at x, for the case y, =y2=0. For small but
Ilonzel'0 y2 we must exa111111e I/[(7~ 1

—x2) +y2]
in the range 0» 7, » ~ and show that it is uni-
formly bounded. For Imo =0, me have seen this
term is at most I/s„as both y, and x, vary con-
tinuously with Imo there must exist an interval
0 &jima„j &5 in which

thus choosing the principal branch of the square
root certainly gives s'(a„, 0) = —ik, . Furthermore,
we can show that s must lie in the lower right
quadrant of the complex plane. To see this note
that s'(a„, r„,) is either negative pure imaginary
or non-negative real, and s'(o„, ko) = so. [Recall
that a„=(s',+2ko)/ko ]Thus Re.s„,~ s, & 0 and

I/[(~. , —x,)'+ y,'] '"& I/2so.

For jIma j
& &, there is also no problem. Recall

that x, was the root with a real part of largest ab-
solute value, and also that x, =Re(-' cr +p„); if a„-

lies in the lower right-hand quadrant o' lies in
the lomer left-hand quadrant, so that p lies in
the lower right-hand quadrant and the plus sign
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is appropriate. That also means

y, =Im( —,v„+p ) & Im —,e„&—,5 .

If o lies in the lower left quadrant, then o' lies

in the upper half-plane; p lies in the upper right
quadrant, so the minus sign is appropriate for x, .
Thus

~C. M. Rosenthal, Phys. Rev. A 9, 273 (1974).
2H. A. Rab|tz and R. Conn, Phys. Rev. A 7, 577 (1973).

3H. R. J. Walters, J. Phys. 8 4, 437 (1971).


