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Neutron inelastic scattering data from a monatomic liquid can be directly translated into a pair
interaction. This requires accurate experimental determination of the zeroth and fourth moments of
S(v,co). The iterative calculation works because the Fourier transform of the fourth moment gives a
good zeroth approximation to the second derivative of the potential. Recent molecular dynamics data
on liquid rubidium are used to illustrate the method, Experiments should be carried out to exploit this
method.

The experimental technique of neutron inelastic
scattering provides detailed information about
fluctuations of density and also about diffusive mo-
tion of the particles in the system. In the case of
liquid systems, comparison of the experimental
results with molecular dynamics calculations,
which require an assumed interparticle potential,
has been used as an indirect check on the validity
of the potential assumed. The first case of this
kind was of course liquid argon"; recently liquid
rubidium has also given encouraging results. '

The purpose here is to show that a neutron ex-
periment is by itself capable of yielding the pair
interaction in a monatomic liquid; in case multi-
body forces are present in the Hamiltonian but are
relatively less important, one would obtain an ef-
fective two-body approximation for the Hamilto-
nian. Further discussion is relegated to the end
of the note.

Neutron experiments, after careful reduction of
the raw data, yield S(v, (()) the dynamical scatter-
ing function; Av and/a~ are, respectively, the mo-
mentum and energy change of the scattered neu-
tron. For liquids only the magnitude z is relevant.
After removing the detailed balance factor
exp(-h(d/2kBT), the scattering function becomes
symmetric in cu, and in many cases of interest the
symmetrized function has negligible quantum con-
tribution. For very light nuclei and for very large
z the recoil term exp(-S'g'/8MksT) may have to
be consider d as well. In the following we shall
consider the symmetrized function in purely clas-

0*{.) =(p/M) Jd-, g(.)oosaxe (/ex*. (2)

For large z, 0'(v)-0. We assume that v', has
been measured to its limiting value, namely
3~'k~T/M+0'(0), so that I'(~) = ~', —3~'k~T/M
—0'(0) is available over the whole range of e, and,
of course, vanishes at large ~. We get

P(v) = ——
I drg(r)j, (vr)("(r)

(3)
Here j~(zr) is (sinvr)/zr; P' and g" are the deriv-
atives of P(r)

The central point of this note is that the first

sical terms.
I et us assume that the experiment is detailed

and accurate enough to provide us with the first
three even moments of S(g, ~), to be denoted, re-
spectively, by ((d'), ({d'), and ((()'). Now (uP) =—S(z)
is the structure factor, its Fourier transform be-
ing the pair correlation g (r). (uP) is just z'kBT/M,
T being the temperature, M the mass of the parti-
cles. (w~) can be written in terms of the number
density p, g(r), and the pair potential g(r), assum-
ing only pair interactions in the Hamiltonian (de
Gennes'). Let uP, =(up')/(uP). The notation used
here is given in Ref. 6. We have

(d', =3~'k, T/M+0'(0) —n'(~),
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TABLE I. [Idt)(r)]„and [g" (~)]„where n is the iteration number, r the distance in units of 4.4048 A. Bows marked g
or p" give the true potential and its second derivative. The unit of energy is 555.89x10 ergs. Below r =0.8, p" can
probably be improved by using a better algorithm in the numerical integration.
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term on the right-hand side of Eq. (3) gives the
main contribution to P(z). For the moment accept-
ing this statement as correct, and using the fact
that $' and P" vanish for large r, we see the possi-
bility of an iterative solution of Eq. (3). We write
Eq. (3) as

P(z) +Q(&) = —(p/M) J dr g(r)j (zr)lp" (r) . (4)

The zeroth approximation for P"(r) is obtained
from the Fourier transform of P(g). Introducing
this and its integral P'(r) into Q(g), we get the next
approximation to P"(r) from the Fourier transform
of P(z)+Q(z), and so on. Of course g"(r) cannot
be obtained for small values of r, for which g(r)
vanishes.

The method has been tested by using the recent
molecular-dynamics calculations4 on liquid rubid-
ium. Unfortunately the neutron experiments' were
not directed towards a determination of (&o').
Hence P(a) and g(r) given by molecular dynamics
have been used as input for justifying the asser-
tions made above. A plot of P(g) can be inferred
from Fig. 3 of Ref. 4.

Table I gives the results. The line marked n
gives the nth approximation to P"(r), namely
[g"(r)]„. n=0 already shows a fair representation
of the true P"(r) (line marked g"). For insertion
into Q(a), [P"(r)], is put equal to zero below r
=0.93 (units are shown in caption for Table I);
[P'(r)], is calculated as —J [P"(r)]odr. Then the
transform of P(z) +Q(a) is on line I. The improve-
ment is obvious. As the iterations proceed, [P"(r)]„
is put equal to zero at successively lower values
of r, namely 0.90, 0.86, 0.84, 0.82, 0.80, 0.78,

0.76. The values of g(r) below 0.76 are zero. Note
that the only region which defies gradual improve-
ment is below 0.80. The last two lines show the
function P(x) and the values obtained for the poten-
tial from the final iteration (No. 8). A trapezoidal
integration with r =0.002 was used throughout.

In conclusion we note the following:
(i) For mixed coherent and incoherent scatterers

(e.g. , Na, Ar) the basic equation becomes
(c, +c, )v, '[(u', —3z'kT/M —0'(0)] = 0'(tc), an-d is
therefore directly applicable even in this case. co',

now stands for the ratio of the fourth and the sec-
ond moment of v, S„.„„+o,S,-„„where 0, and 0, are
the coherent and incoherent scattering cross sec-
tions, respectively. If o,«o; (as for protons), the
method will fail because co', will be almost equal to
3z'kT/M+i7, (0).

(ii) The experimental requirements are twofold.
First, an accurate diffraction experiment is
needed to get g (r) analogous to Yarnell's experi-
ments with liquid argon. Second, an inelastic
scattering experiment is needed which is tuned not
to high resolution for the quasielastic region, but
to low resolution and high intensity in the inelastic
region relevant to the determination of the fourth
moment. In liquid rubidium, for example, this
implies covering a range of II. up to 6 A ', with co

going up to about 50 psec ' (k~= 30 meV) around
g=6 A ' and much less for smaller z's. It is hoped
that experimental work along these lines will soon
be attempted.

(iii) In argon where two- and three-body terms
in the Hamiltonian have been successfully worked
out, ' the above treatment should give an effective
pair interaction; comparison of this with the much
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used L-J potential for argon should be enlightening.
(iv) For systems where quantum effects are not

negligible the above formulation still holds when
cast in terms of the third moment of a suitably
modified unsymmetrized S(g, &u).

'

(v) Since g(r) and hence S(e) are known to be
sensitive mainly to the repulsive part of the inter-
action, it appears that (~') is a key experimental
quantity for the determination of the potential in
the attractive region.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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